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THE HYPERGEOMETRIC FUNCTION FOR
THE ROOT SYSTEM OF TYPE 4 WITH
A CERTAIN DEGENERATE PARAMETER

By

Nobukazu SHIMENO and Yuichi TAMAOKA

Abstract. We express explicitly the Heckman-Opdam hypergeomet-
ric function for the root system of type A with a certain degen-
erate parameter in terms of the Lauricella hypergeometric function.

1. Introduction

Radial parts of zonal spherical functions on real semisimple Lie groups give
a class of multivariable hypergeometric functions ([9], [12]). In rank one cases
they are expressed by the Gauss hypergeometric function ([12], [14]). Heckman
and Opdam develop the theory of hypergeometric functions associated with root
systems by generalizing zonal spherical functions ([10], [11], [21]).

On the other hand, generalizations of the classical hypergeometric functions
of one-variable include hypergeometric series given by Appell, Lauricella, and
Kampé de Fériet, and the hypergeometric function of matrix argument ([1, 13,
15), [3)).

It is of interest to identify these different approaches to hypergeometric
functions in several variables. Sekiguchi [25, 26] shows that the zonal spherical
function on SL(n,R) with a certain degenerate parameter can be written by the
Lauricella hypergeometric function Fp. Tamaoka [29] shows that the Jack poly-
nomial with a certain degenerate parameter can be written by Fp (see Theorem
4.1 of this paper).

Beerends [2, Theorem 5.4] shows that the hypergeometric function associated
with the root system of type BC with a certain degenerate parameter can be
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written by the generalized Kampé de Fériet function. Beerends and Opdam
[3, Theorem 4.2] give a precise relation between the hypergeometric function
of matrix argument and the hypergeometric function associated with the root
system of type BC with a certain degenerate parameter.

In the present paper we express explicitly the hypergeometric function asso-
ciated with the root system of type 4 with a certain degenerate parameter in
terms of the Lauricella hypergeometric function Fp (Theorem 3.2). This result can
be regarded as a generalization of a result of Sekiguchi [25, 26] for a zonal
spherical function on SL(n,R) and that of Tamaoka [29] for the Jack polynomial.
The result is already indicated in [28] without proof and might be known for
specialists. However, as far as we know, a precise representation formula has
never been obtained in the literature.

This paper is organized as follows. In §2 we review the hypergeometric
function associated with the root system of type 4 and define a certain degenerate
parameter. In §3 we prove our main theorem by introducing a system of dif-
ferential equations of second order. We remark on the case of the Jack poly-
nomial in §4 and relate our second order differential operators with the Cherednik
operators in §5.

2. Hypergeometric function for the root system of type A, ;

In a series of papers starting from [10], Heckman and Opdam develop the
theory of the hypergeometric function associated with a root system. In this
section we review the hypergeometric function for the root system of type 4,_;.
We refer to [11] and [21] for details.

Let n be a positive integer greater than 1 and equip R” with the standard
inner product (,). Consider the subspace a of R" defined by

a={teR":t1+---+1,=0}.

Let a* denote the space of real-valued linear functions on a. We identify a*
with a by the inner product (,). Let ¢; denote the element of R" with i-th
entry 1 and all the other entries 0. We consider the root system R of type
An—l;

R={ej—e;: 1 <i# j<n}.

The Weyl group W of R is isomorphic to the symmetric group S,,.
Let af denote the space of complex-valued linear functions on a. By
the correspondence als = Aie; + -+ Ay — (A1,...,4,) € C", we have the
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following identification:
aé :{(21,...,/1,1)6(:”:/11 +...+,{n:0}.

The Weyl group W ~S, acts on at by wi= (Ay11),---,Au1m) (WE W,
Leag).
Let R, denote the set of positive roots defined by

Ry={¢—e¢:1<i<j<n}
Let P, denote the set of dominant integral weights
P, ={leal:(ha)eZy (xeRy)}
~{(A, o) i+ =0, - el (1<i<j<n)}

Here Z. denotes the set of non-negative integers and «” the coroot of o defined
by o =20/(a,a). For k € C, define

k n—1 n—3 n—1
p(k)—EZoc—(— Pl k). (2.1)
aeR,
Put
A=expa={zeRlj:z;---z,=1} CRL
and Si:ziai (1 <i<n). The Weyl group W ~ S, acts on A by
f

Wzt Z0) = (Zwt(1) -5 21 ()

We employ “GL”-picture for convenience. We consider a function ¢ on R, and
impose the differential equation

(14 +9)p=0

to give a function on A. For 1eag write z/# = z{ .-z,
Define the differential operator L(k) by

n z; 4 z;

L(k) = 2 2T g 9. )

(k)= 9 +k > 3= 9) (2.2)
i=1 1<i<j<n ]

Let S(ac) denote the symmetric algebra of ac and S(ac)"” its subalgebra con-

sisting of the W-invariant elements. It is known that there exist a commutative

algebra D(k) of W-invariant differential operators containing L(k) and an
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algebra isomorphism y: D(k) — S(ac)”. In particular, we have p(L(k))(%) =
(4,2) = (p(k), p(k)).

ReMARK 2.1. If &k = 1/2, then D(k) is the set of the radial parts of invariant
differential operators on SL(n,R)/SO(n). For general k, the commutative algebra
D(k) was first constructed by Sekiguchi [25, 27] giving a set of generators
explicitly. In §5, we review a construction of D(k) by the Cherednik operators.

Let Q be the Z-span of R and Q. the Z,-span of R,. There exists a unique
solution ¢(z) = ®(A,k;z) on Ay :={z€d:z1 <z <--- <z, for

L(k)p = ((4,4) = (p(k), p(k)))ep (23)
of the form
(4, k;z) = Y Tu(Ak)z" 7804 To(2,k) =1, (2.4)
neQy

where the coefficients I',(4,k) are rational functions in A with possible poles at
the hyperplane H, for some u < 0, with

H,={l€ad: 24+ u,pn) =0}
Moreover, ¢ = ®(4,k) also satisfies
Dy =y(D)(4)¢ (D eD(k)). (2.5)

From [11, Proposition 4.2.5] the apparent simple pole of ®(4, k) along H, is
removable unless u = no for some ne —Z, and a € R,. We call 1 e a¢ generic if
(A,0") ¢ Z for all e R. A= (41,...,2,) € af is generic if and only if 4; —4; ¢ Z
(1<i<j<mn). If Aead is generic, then

{O(wh,k):we W}

forms a basis of the solution space of (2.5) on A, ([11, Corollary 4.2.6]).
Let I'(-) denote the Gamma function. Let ¢(4,k) and ¢(4,k) denote the
meromorphic functions defined by

L% — %)

I<i<j<n
&, k)

R = o (2.7)

(2.6)
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For k=1/2,1, or 2, ¢(A, k) agrees with Gindikin-Karpelevich’s product formula
for Harish-Chandra’s c-function on G/K = SL(n,K)/SO(n,K), where K =R, C,
or H, respectively.

The denominator in (2.7) is given explicitly as follows.

) - C((j—ik) v (Tk)
c(ptk), k)= 1] r((j_i+1)k)_H(F(jk)>.

1<i<j<n =2

Let S denote the set of poles of 1/é(p(k),k), that is
S={keC\Zy: jkeZ for some j=273,...,n}. (2.8)

For ke C\S and generic 4, define

F(hk) =Y e(wi, k)D(wi, k). (2.9)

weW

Heckman and Opdam proved that ¢(z) = F(4,k;z) extends to an entire function
of Aeag, ke C\S and z in a tubular neighborhood of 4 in A¢ and is a unique
W-invariant real analytic solution of (2.5) on A such that ¢(1) =1 ([11, Part I,
Chapter 4], [21, §6.3], [19, Corollary 4.8]). Here we put 1 =(1,...,1) € 4.

If k=1/2,1, or 2, then F(4,k) is the restriction to A of the zonal spherical
function on G/K = SL(n,K)/SO(n,K) with K =R, C, or H, respectively. Here
A is the maximally split abelian subgroup of G with the Cartan decomposition
G = KAK.

If k>0 and pe Py, then from [11, (4.4.10)] we have

F(u+pk), k) = c(u+ p(k), k) P(p, k), (2.10)

where P(u, k) is the Jacobi polynomial of Heckman and Opdam.
Let n be an integer greater than 1. For v e C define A(v,k) € al by

, (v v (n—1)v
A(v’k)_<_Z""’_E’T)+p(k)' (2.11)
It follows from (2.7) that
) _ T(nk)T'(v+ k)
c(Av, k), k) ~ T T k)’ (2.12)
For ve Z, it can be written by the shifted factorial
c(Av, k), k) = (), . (2.13)
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Here the shifted factorial is defined by (a), =1 and (@), =a(a+1)---(a+n—1)
for ne Z-y.
Notice that A(v,k) is generic if and only if

pk¢Z (1<p<n-2) and v+gk¢Z (1<qg<n-—1). (2.14)

Let Wg denote the permutation group of {1,...,n— 1} and W® denote the
set of representatives of minimal length for the coset We\W. That is, W®
consists of the elements w; = e,

_12---n—2n—1n _123---n
L N T TR n n—1)" T\ 1 2 o on—1 )

Here w; (1 <i<mn) is the element of S, of minimal length such that
wiln+1—1i)=n.
We have the following proposition for the hypergeometric function with the

degenerate parameter A(v,k).

PrROPOSITION 2.2. (i) Assume k e C\S and A(v,k) is generic ((2.8), (2.14)).
Then

F(A( Z (Wid(v, k), k)D(wid(v, k), k;z) (z€ A).

(i) Assume veZy and gk ¢ Loy for any 1 < g <n. Then

F(A(v,k),k;z) = (51]2; DO(A(v,k), k;z) (z€ A).

Proor. First we prove (i). If n =2, then (i) is just (2.9). Assume n > 2.
Then k #0 by (2.14). If we W\W®, then there exists / (1 </ <n—2) such
that w(/) > w(/+1). Then wAi(v,k); — wi(v.k); = A(v,k), — (v, k)., = —k for
j=w(l) and i=w(l+1). By the definition (2.6) and (2.7) of the c-function,
c(wA(v,k),k) =0 unless we W®. Hence (i) is proved.

It follows from (2.7) that

o Tk (v + k)T (= — (i — 1)k)
ity k), k) = = 5Tt + k)T (=)

Thus c(w;iA(v,k), k) =0 (2 <i<n) for ve Z, and the equality of (ii) holds on
A under the assumption of (i). Notice that A(v,k) — p(k) € P, if and only if
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veZ;. Thus we have ®(A(v,k), k) = P(A(v,k) — p(k),k) and (ii) follows from
(2.10) and (2.12) by analytic continuation. O

In §3 we will show that F(A(v,k),k) can be written by the Lauricella hyper-
geometric function Fp.

3. A system of hypergeometric differential equations of second order

Let n be an integer greater than 1 and k& a complex number. Let z = (zj,

Z3,...,z,) denote a variable in R” and put & :Zii (I<i<n). For 1 <i<
. . . 0z;
Jj < n define the differential operator A; by
kzi+z k
By~ 5 220 9+ (145 0 ) (1)
2 Zj — Zj 2

We consider the system of differential equations

AW:*W (1<i<j<n). (3.3)

By summing up (3.3) for 1 <i< j <n and using (3.2) we have

kzi+z _ (n—=1)v(v+nk)
( > 9i9j—zzi_zj(8i—9j)><p——Tq). (3.4)

1<i<j<n

The differential operator in the left hand side of (3.4) is equivalent to —1 times
the second order hypergeometric differential operator L(k) given by (2.2) and
the coefficients of ¢ in the right hand side of (3.4) is —1{(A(v,k),A((v,k)) —
(p(k),p(k))}. Hence (3.4) is equivalent to (2.3) with 1= A(v, k).

If k =1/2, then (3.3) are radial parts of the differential equations satisfied by
the zonal spherical function on G = SL(n, R) expressed by the Poisson integral of
a SO(n)-invariant section of a degenerate principal series representation on G/ Pe,
where Pg is a maximal parabolic subgroup of G whose Levi part is isomorphic to
GL(n — 1,R). These differential equations on G are given by Oshima [22] using
generalized Capelli operators in the universal enveloping algebra U(gl(n,C)).
Moreover, (3.4) is the radial part of the differential equation corresponding to the
Casimir operator.

By the change of variables

Zi

yi = (1 <i<n-— 1), Yn = Zn, (35)

Zn
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we have

0 0
=yi— (A<i<n-1), M+ +h=y.—.
0yi Vn
Hence, (3.2) means that ¢ does not depend on y,. By the change of variables,
(3.1) for 1 <i< j<n become

Ay = 99 — = 2 9 — 9
J J Zyl_yj( ./)
v k . .
+(z+iy&+ap (I<i<j<n-—1), (3.6)
ky+1
A =88+ 48 1) s L gt 8,
2y,'—1
v k .
_|_(;_|_§>(19[_(19]+...+3n_1)) (l<i<n-1). (3.7)

Here we write 9; = y,-a‘—;_ (I<i<n-—1)in (3.6) and (3.7). Putting

o1y vut) = 1 yu) " "u(yrs o ya), (3.8)

the differential equations (3.3) become the following differential equations for u:

<&@k”i:;f0uo (l1<i<j<n—1), (3.9)
k
—( %+ G v 9,
yi—1
kyi

y'_1(81+-~+9n_1—v)>u:0 (I<i<n-—1), (3.10)

which can be written in the following form:
Vidi+k)du=y;FH+k)%u (1<i<j<n-1), (3.11)
G+ + % —v—k)u
=y +k)( S+ 4+ —vu (1<i<n-—1). (3.12)

We recall the Lauricella hypergeometric function Fp of n — 1 variables and
the corresponding system Ej of differential equations of rank n. The Lauricella
hypergeometric function Fp is the analytic continuation of the series
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FD(aaﬁla"wﬁnfhy; J’17~~-,J/n—1)

(a)n11+--»+m,,,1 (ﬂl)ml T (ﬂnfl)mnq mi My
Z | | yl ...ynf] I (313)
my,...,m,_1 >0 (y)mlJr'“ern—lml' LSS

where o, f,...,0, 1,7 are complex constants with y ¢ Z_o. It satisfies the fol-
lowing system of differential equations:

Vil%i +B)KF =y (i +B)KF (1<i<j<n-1),
S+ +%Q+y-1DF (Ep)
=2+ )G+ G +)F (I<i<n-—1).

The system (Ep) is holonomic of rank n. If y ¢ Z_y, then the Lauricella hyper-

geometric function Fp(a,fy,...,Bu_1s7; V1,---, Yu—1) Is the unique analytic solu-

tion of (Ep) such that F(0) = 1. We refer to [15], [13, §9.1], and [18] for details.
Equations (3.11) and (3.12) constitute (Ep) with

o=-v, pi=---=p_1=k y=—v—k+1. (3.14)
By the change of variables
xi=1l—y (I<i<n-1), (3.15)
(3.11) give equations of the same form
(9 +k)Ju=x;(%+k)du (1<i<j<n-—1). (3.16)

Here we write Si:x,-a% (I<i<n-—1). By (3.12) and (3.16), we have the
following equations.

i1+ + % +nk—1u
=xH+) G+ +Ih—vu (I<i<n-1). (3.17)
Equations (3.16) and (3.17) constitute (Ep) with
o=—-v, pi=-=p,_1 =k, y=nk (3.18)
Consequently, if nk ¢ Z.g, then
(7)) = (1 ) Ep(=v ko konks 1=y D= ) (3419)

is the unique analytic solution for (3.2) and (3.3) satisfying ¢(1,...,1) = 1.
The symmetric group S, acts on the variable z = (zy,...,z,) as permutations,
hence it acts on the variable y = (yi,..., yu_1).
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LemmA 3.1.  The function ¢ given by (3.19) is S,-invariant.

Proor. Recall that y; = z;/z, for 1 <i <n— 1. The transposition (i,i+ 1)
(1 <i<n-2) interchanges y; and y;. Since f,=---=f,_ 1=k, o(y) is
invariant under the transposition (i,i+1) (1 <i<n-2).

By the transposition (n—1,n), yi,..., ys—2, yu_1 change to yi/y,_1,...,
Yn—2/Yu-1,1/yn_1, respectively. It follows from the transformation formula ([15,
p. 149))

FD(a7ﬁl7"‘7ﬁn717y; x17...,xn,1)

:(1 _x’1*1)7“ XFD(“aﬂla"'a n72’y_ﬁl _'”_ﬁnflay;

Xn—1 — X1 Xn—1 — Xp-2 Xn—1
Xp—1 -1 Xn—1 -1 7Xn_l -1

that ¢(y) is invariant under the transposition (n — 1,n). Since S, is generated by
the transpositions (1,2),(2,3),...,(n—1,n), the lemma is proved. O

Now we state the main result of this paper, which asserts that the hyper-
geometric function of type A,_; with parameter A(v,k) defined by (2.11) is
written by Fp as in (3.19). In the case of k= 1/2, that is the case of the
zonal spherical function on SL(n,R)/SO(n), this theorem is given by Sekiguchi
[25, 26].

THEOREM 3.2. Assume k € C\S and ve C. Then we have
F(;“(Vvk)vk;z) = (yl e yn—l)iv/nFD(_Vaka R ,k,l/lk; 1 - Yiyeons 1 - yn—l)a

where A(v,k) and y; are given by (2.11) and (3.5).

Proor. For 2 < j <mn, there exists a unique series solution u;(y) with the
leading term H;;Lj Vi kylr ;l+)1k ™ for the system (Ep) with (3.14) that converges
on a neighbourhood of y =0 in {yeR"':0<y, < yy<--- < y,_1}. More-
over, the set of wu(y):=Fp(—v,k,....k,—v—k+1;y) and ui(y) 2<j<n)
forms a basis of local solutions of Ep for generic k& and v ([7, Section 3.3.1 (f)],
[24, Section 1.5], [8, Section 35]).

For 1 <i < n, let ¢, denote the solution of the system of equations (3.2) and
(3.3) corresponding to u; by (3.5) and (3.8). Then ¢; is a solution of (3.4) with the

characteristic exponent w;A(v,k) — p(k) and the leading coefficient 1. Thus ¢, =
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®(w;A(v,k), k) and it is a solution of the hypergeometric system (2.5) with A =
A(v,k). Since {p;: 1 <i <n} forms a basis of the solution space of the system
of equations (3.2) and (3.3) for generic k& and v, ¢ given by (3.19) is a solution of
(2.5) with A = A(v,k) for any k€ C\S and v e C by analytic continuation.
Thus ¢ is a S, invariant solution of (2.5) with 2 = A(v, k) that is real analytic
and ¢(1,...,1) = 1. Hence ¢(z) = F(A(v,k),k,z) by the uniqueness of the hyper-
geometric function. O

ExaMpLE 3.3. We give examples of 4; and A,. Assume k € C\S.

First we consider the case of A;. The Lauricella hypergeometric function Fp
of one variable is the Gauss hypergeometric function ,F;. From Proposition 2.2
and Theorem 3.2, it holds on A, that

F((v, k), k;2) = yy PaF (—v, k, 2k; 1 — py)

TR (v+k) _yp

=TT 2k 1 Rk =k L)

CROT(=v+k) ek

F(k)l"(_v) yl 2F1(V+2k,k’v+k+1;yl).

The above equalities are well-known formulae for the hypergeometric function of

type A1 and the Gauss hypergeometric function ([21, Example 6.3], [11, proof of
Theorem 4.3.6], [6]). Note that F(A(v,k), k) can be written by the Jacobi function

([14])
oy ge=1/2k-172)
F(i(v7 k)7k7 Z) - ¢2\/——1(V+k) (2)
1 .2t
= F —v,v+2k,k+§;—smh 5 ) (3.20)

where z = (e’,e™) and y; =e*. If ve Z,, then

k), _,
F(i(v7k)7k;z) = ((zk))‘ yl /22F1(—v,k,—v—k+ 1;J/1)

V

and from (3.20)

FO(v, k), k;z) = C®(cosh 1),

(2K),
where C{¥ denote the Gegenbauer polynomial ([6, §3.15.1]).
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Next we consider the case of 4,. The Lauricella hypergeometric function Fp
of two variables is the Appell hypergeometric function F;. From Proposition 2.2
and Theorem 3.2, it holds on A, that

F(l(‘@k)ak;z) = (y1y2)7}'/3F1(_v7k7k1 3k7 1 - V1, 1 - yz)

CTEOT(v+k)

W)V V3 _ oy .
_I—-(k)r(v+3k)(y1y2) Fl( V,k,k, v k"’LJ’la}Q)

T'(3k)(v+2k)I(—v—k)
C(k)C(v+3k)T(—v)

X y;V/Sygv/3+kG2 <k7k7 v+ 2k7 -V - k’ _%7 _y2>
2
T(3K)T (v — 2k)

TN (<)

« (i) B (v + 3k o+ 26+ 12, yl).

Here

o0

Gz(“? al?ﬂ’ ﬁ/5 x’ y) = Z (Oc)m(a,)n(ﬁ)nfm(ﬁ/)mfn

m,n=0

x"7yn
min!’

where (a), = I'(a +n)/I'(a). The above equality involving F; and G, is a special
case of [20, (19)]. If ve Z,, then

k y
F(;L(v’k),k;Z) - ((3]3; (ylyz) /SFI(_V7k7k7_v —k+ 1§y17J/Z)

or
P(}'(Wk) —p(k),k,Z) = (ylyZ)_lyv/3F1(_v>k7k7_v_k+ 1;)’1>J/2)a

where P(u,k;z) is the Jacobi polynomial of Heckman and Opdam.

4. The case of veZ,

In this section assume that k >0 and veZ,. Put

ﬂ(v):(—f,...7—3,w>. (4.1)

n n n
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Then it follows from Proposition 2.2 and Theorem 3.2 that

P(u(v), k; 2)

(nk)l’
(k) v

(yl "'ynfl)ily/nFD(_vvkw"ak7nk; 1 _yla"'71 - J’n—l)

and
P(/l(V),k,Z) = (yl '”yn—l)i‘)/nFD(ivvkv'"7k77v7k+ 17 y17"'ay’l—l)a

where P(u(v),k) is the Jacobi polynomial of Heckman and Opdam.

The Jacobi polynomial for the root system of type A4,_; is essentially the
Jack polynomial. A partition A of length equal or less than n is a sequence /. =
(A1,...,4,) of nonnegative integers such that ; > 4, > --- > 4, > 0. Define |1] =
S, 4. For two partitions 4 and p we write x4 < 1 if |u| =|A| and Zijzl,uj <
>l A for all j>1.

For a partition A of length equal or less than n define the monomial
symmetric function m; by

m; = E x7.

oEe S,
There exists a unique P/Sl/ " that satisfies the following conditions:
PO =N "oy v e Clk), v =1, (4.2)
U<A
L(k)PMY = ()P h(a) =37 i + k(n + 1 = 20)). (4.3)

i=1

We call P;(_I/ k)(z) the Jack polynomial ([16, 17]). From [3, Proposition 3.3] we

have
PMY(2) = P(r(2), k;z) (z € A) (4.4)

A

for a partition 2 = (4y,...,4,) of length equal or less than n. Here n(4) € P, is
given by

71'(}.) = i /Il'é'l' — % (i }.l> (i (:‘i> .
i=1 i=1 i=1

Thus we have the following result as a corollary of Theorem 3.2.
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THEOREM 4.1 (Tamaoka [29]). Assume k >0, p,qe Z, and p > q. Then for
zeC"

1/k
P((p,/qiu,q) (21, - ’Zn)

nk n—1
:M Hzfz{f Fp q—p,k,...,lan;I—Z—l,...71—Z”71
(k)p—q i=1 Zn Zn

n—1
z Zn
- (Hzf’zﬁ)F[)(q—p,k,...,k,q—p—k+I;Z—l,..., . l).

i=1 n

REMARK 4.2. 1In [29], the second author proves Theorem 4.1 without using
the Heckman-Opdam theory. He just used the characterization of the Jack poly-
nomial by the conditions (4.2), (4.3) and properties of the Lauricella hyper-
geometric function.

In view of (2.10) and (4.4), Theorem 4.1 asserts that Theorem 3.2 holds for
k>0 and veZ,. We can deduce Theorem 3.2 from Theorem 4.1 in the same
manner as the proof of [3, Theorem 4.2].

5. Cherednik operators

First we review the Cherednik operator in the GL, case ([4, 21]). For
1 <i < n, define the Cherednik operator 7; ([4, §3.5]) by

T=8+kY ——(1—0)+kY. —Z—(1—0;) +p(k),

i<y 2T s AT

Here g;; is the permutation (ij) that acts as the transposition of the coordinates z;
and z;. Notice that the choice of the positive system of R to define the Cherednik
operators is opposite to that of [4, §3.5]. We take —R. as the positive system of R
to define T;.

The Cherednik operators satisfy the following relations:

T, T;] =0 (1<i,j<n), olj=To (j#ii+]l), (5.1)
O'iT,' — 71[+10',' = —k, (52)

where 0, =011 (1 <i<n—1). (5.1) and (5.2) are the defining relations of the
degenerate affine Hecke algebra H = (CS,,, x1,...,x,> of type GL,, if we replace
T; by x; in the above relations.
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For pe S(ac), put
Tp = p(Tla"'aTn)'
Write
T, = Z D‘(vp)w,
weW

where D\ (we W) are differential operator on A4 and define the differential

operator D, on A by

D,=Y_DP.

weW

D, is the differential operator that has the same restriction to symmetric functions
as T,.
For 1 <m < n, let e,(x) denote the m-th elementary symmetric polynomial:

()= D XX,
1<ij<-<ip<n
Then we have
Del :191++19n

and

. . 2
Dt’z: Z 3[3_5214‘2](81‘_gj)_k_<n+1>7

j
| <i<j<n 2z =7z 4 3

which are differential operators in (3.2) and (3.4), respectively. For p(x)=
x}+--+x2, D, =L(k)+ (p(k),p(k)), where L(k) is defined in (2.2). The
commutative algebra D(k) mentioned in §2 is given by

D(k) = {D,: peSac)"}

and has generators {L,,,..., L., }. Moreover, the algebra isomorphism y : D(k) —
S(aC)W mentioned in §2 is defined by D, — p.

The following proposition asserts that the differential operator A; given in §3
(3.3) is also related with the Cherednik operators.



170 Nobukazu SHIMENO and Yuichi TAMAOKA

ProposITION 5.1 ([28]). For 1 <i< j<n, define p;e S(ac) by

o) = (3= 00 +2) (o = ot + k7).

n

Then we have

V(v + nk)

Vv
Dp ZAU'+

i 2

REMARK 5.2. Though the choice of the positive system to define the
Cherednik operators is not essential, we choose as above because it matches
better with the characteristic exponents w;A(v,k) — p(k) (1 <i <n) given in §2

and the indicial equation

(1= pt0+2) (1= ot k42 =0 (53)
of (3.3) at infinity on A,. If
v#—k, =2k, ....(—n+ 1)k,
then the set of common solutions for (5.3) for | <i< j<n is
A k), ..o w (v, k) },

where A(v,k) and w; are given in §2.

This fact can be regarded as a special case of [23, Theorem 9, Equation (27),
Theorem 22]. Indeed, in [22, 23], Oshima constructed generators of annihilators
of generalized Verma modules for gl, by using generalized Capelli operators. The
deformation parameter ¢ in [23] corresponds to k in this paper. Using results in
[23], some part of results in this paper can be generalized to the case of arbitrary
® cC {1,2,...,n} as indicated in [28]. We will discuss in detail elsewhere.

REMARK 5.3. After we have finished our work, we noticed that the system of
differential equations (3.2), (3.3) and its characteristic exponents are stated in [5].
[5, Theorem 3.3] asserts that the system (3.2), (3.3) is of rank » and its solutions
are also solutions of the hypergeometric system (2.5) with A = A(v,k) without
proof.
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