
TSUKUBA J. MATH.
Vol. 41 No. 2 (2017), 265–296

EXTENDING FUNCTORS FROM THE CATEGORY

OF STRICT MORPHISMS OF INVERSE SYSTEMS

TO THE ASSOCIATED PRO-CATEGORY WITH

APPLICATIONS TO THE FIRST DERIVED LIMIT

By

Peter Mrozik

Abstract. We show that functors on the category of strict mor-

phisms of inverse systems which are indexed by arbitrary cofiltered

small categories have at most one extension to the associated pro-

category and give conditions characterizing the existence of exten-

sions. This is applied to provide a concrete extension of the first

derived limit to the category of pro-groups.

1. Introduction

To any category C one can associate the category of inverse systems inv-C

and the pro-category pro-C. A good reference is [8]. In the most general form

inverse systems are indexed by cofiltered small categories. Many authors restrict

to directed preordered sets as index categories which is a substantial simplifi-

cation. The justification is the following reindexing principle which ‘‘improves’’

inverse systems: For each inverse system X indexed by a cofiltered small category

there exists an isomorphism f : X! X 0 in pro-C such that X 0 is indexed by a

cofinite directed ordered set. Cofiniteness enables induction on the number of

predecessors which is an essential technique in many proofs.

Working with these more special inverse systems is su‰cient for most pur-

poses. There are, however, questions where this approach appears inappropriate.

Many important constructions for inverse systems (e.g. derived limits) are pri-

marily not concerned with morphisms, but typically have natural continuations

to functors living on the subcategory lev-C � inv-C of level morphisms. Finding
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pro-extensions to functors living on pro-C is a highly non-trivial task and it is not

expedient to restrict to any sort of special inverse systems.

As a further challenge some interesting functors F on lev-C (e.g. the derived

limits) have a completely natural extension to functors Fstr living on the sub-

category str-C � inv-C of strict morphisms which are the most elementary mor-

phisms of inv-C in that they satisfy evident strict commutativity requirements (see

Section 2). Here are some obvious questions.

(1) Does Fstr have a pro-extension? More precisely, under what conditions

does there exist a pro-extension?

(2) Are pro-extensions of Fstr unique?

(3) If we have directly constructed a pro-extension of F from lev-C to pro-C,

we get an induced extension F 0 of F to str-C. Does F 0 agree with the

natural extension Fstr?

In this paper we develop the machinery to address these questions. We generalize

some classical results for inverse systems indexed by directed preordered sets to

arbitrary inverse systems. In particular we show that in the realm of cofinite

index categories all pro-morphisms can be represented by strict morphisms which

is a basic prerequisite for most proofs. In Section 5 we focus on level morphisms

and show that for a cofinite A the canonical functor P : CA ! pro-CA is a

localization at a certain class of level morphisms which means in particular that

functors on CA have at most one pro-extension to pro-CA. In Section 6 we show

that functors on str-C have at most one pro-extension to pro-C (which answers

question (2) in the a‰rmative) and give criteria for their existence (which answers

question (1)). In Section 8 we apply this to the first derived limit lim �
1 and show

that it has a unique pro-extension from str-G to pro-G (G ¼ category of groups).

In Section 9 we briefly discuss the abelian case and show that all derived limits

lim �
n have a unique pro-extension from str-AG to pro-AG (AG ¼ category of

abelian groups) which generalizes previous results by Watanabe [10] and Mar-

dešić [9].

For the derived limits the existence of pro-extensions from lev-C (C ¼ G;AG)

to pro-C is well-known. For n ¼ 1 and C ¼ G this is based on the topological

description of lim �
1 via the homotopy limit on pro-SS1; see e.g. [4]. For C ¼ AG

the functors lim �
n occur as the right derived functors of lim � : pro-AG! AG and

are thus uniquely determined by this property. All this is based on completely

1This entails a certain vagueness because the homotopy limit depends on the precursory construction

of a closed model structure on pro-SS (SS ¼ category of simplicial sets). In the literature one can find

various di¤erent constructions; see e.g [7].
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natural ‘‘systemic’’ constructions, but it is a priori not clear how the resulting

pro-extensions of lim �
n from lev-C to pro-C are related to the natural extensions

of lim �
n from lev-C to str-C, i.e. we do not get answers to questions (1) and (3).

In [10] and [9] one finds positive answers for the abelian case and directed

preordered index categories; we generalize this to arbitrary index categories. In

the non-abelian case the questions have never been addressed so far. We answer

question (1) in the a‰rmative (Theorem 8.1); concerning question (3) we have

partial results (Theorem 8.3).

2. Pro-categories

We recapitulate the basic definitions (cf. [8]). Let S denote the category

of small categories (whose morphisms are functors) and P the category of

preordered sets and increasing functions. Each preordered set A can be regarded

as small category whose objects are the elements of A and whose morphisms

are given by morða1; a2Þ ¼ fða1; a2Þ j a1 b a2g. Doing so, the morphisms of P

turn out to be functors between small categories. In that way we identify P

with a full subcategory of S. To each A A S we associate oðAÞ A P by

setting oðAÞ ¼ obðAÞ and a1 b a2 if there exists a morphism u : a1 ! a2. We

call b the induced preordering on A. To emphasize the role of u we also write

a1 bu a2.

For any two objects A;B A S let ½B;A� denote the set of all functions

j : obðBÞ ! obðAÞ.
Let C �S denote the full subcategory of cofiltered small categories and

D � P the full subcategory of directed preordered sets.

The objects of inv-C and pro-C are all functors X : A! C, where A is any

element of C. Each such X is called an inverse system in C indexed by A. We

also write X ¼ ðXa ¼ XðaÞ; pu ¼ XðuÞÞa A obðAÞ;u AmorðAÞ.

Given X ¼ ðXa; puÞa A obðAÞ;u AmorðAÞ and Y ¼ ðYb; qvÞb A obðBÞ; v AmorðBÞ, the mor-

phisms f : X! Y of inv-C are all systems f ¼ ðj; ð fbÞb ABÞ with j A ½B;A� and
fb A CðXjðbÞ;YbÞ such that the following holds: For each morphism v : b1 ! b2
in B there exist a A A and morphisms ui : a! jðbiÞ in A such that fb2 � pu2 ¼
qv � fb1 � pu1 . We refer to j as the index function of f and denote it by indðfÞ.
Two morphisms fi ¼ ðji; ð f i

b ÞÞ : X! Y are called equivalent (f1 @ f2) if each

b A B admits a A A and morphisms ui : a! jiðbÞ such that f 1b � pu1 ¼ f 2
b � pu2 .

The morphisms of pro-C are the equivalence classes of morphisms in inv-C with

respect to @. The canonical functor mapping each morphism to its equivalence

class is denoted by P : inv-C! pro-C.
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We give ½B;A� the structure of a category by defining a morphism t : c! j

to be a collection of morphisms tb : cðbÞ ! jðbÞ. The induced preordering on

½B;A� is denoted by b.

Given a morphism f of inv-CðX;YÞ and a morphism t : c! indðfÞ in ½B;A�,
we define f t ¼ ðc; fb � ptbÞ which is a morphism of inv-CðX;YÞ such that f t @ f.

This endows inv-CðX;YÞ with the structure of category: A morphism t : g! f

is a morphism t : indðgÞ ! indðfÞ in ½B;A� such that g ¼ f t. The induced pre-

ordering on inv-CðX;YÞ is denoted by b.

The following is an obvious consequence of the axiom of choice.

Proposition 2.1. For f1; f2 A inv-CðX;YÞ the following are equivalent:

(1) f1 @ f2

(2) There exist c A ½B;A� and morphisms ti : c! indðf iÞ such that f t11 ¼ f t22 .

(3) There exists gb f1; f2.

For each A A C we have the category CA whose objects are the inverse

systems indexed by A and whose morphisms f : X! Y are the natural trans-

formations between the functors X;Y : A! C. There is natural identification of

CA with a subcategory of inv-C: Each natural transformation f ¼ ð faÞ can be

regarded as a morphism of inv-C by writing f ¼ ðidA; ð faÞÞ. The wide sub-

category2 of inv-C given as the union of all CA, A A C, will be denoted by lev-C.

Its morphisms are called level morphisms.

For each functor j : B! A in C we obtain a functor

j� : CA ! CB; j�ðXÞ ¼ X � j; j�ðfÞb ¼ fjðbÞ:

If c : C ! B is another functor, we have ðc � jÞ� ¼ j� � c�.
The category str-C of strict morphisms3 is defined as follows. Its objects are

all inverse systems in C. For X A CA and Y A CB we set

str-CðX;YÞ ¼ ff ¼ ðj; f �Þ j j A CðB;AÞ; f � A CBðj�ðXÞ;YÞg:

Composition of morphisms is defined by

ðc; g�Þ � ðj; f �Þ ¼ ðj � c; g� � c�ðf �ÞÞ:

Obviously str-C is a wide subcategory of inv-C such that lev-C � str-C.

2A subcategory K 0 � K is wide if it contains all objects of K.

3For inverse systems indexed by directed preordered sets this concept goes back to [5, Ch. VIII] under

the name ‘‘map of inverse systems’’.
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The set CðB;AÞ of functors B! A inherits the structure of a category from

½B;A�. Let CnatðB;AÞ � CðB;AÞ denote the wide subcategory whose morphisms

are natural transformations. The induced preordering on CnatðB;AÞ is denoted by

�. If A A D, then CnatðB;AÞ ¼ CðB;AÞ.
This endows str-CðX;YÞ with the structure of category: A morphism t : g! f

is a morphism t : indðgÞ ! indðfÞ in CnatðB;AÞ such that g ¼ f t. The induced

preordering on str-CðX;YÞ is denoted by �. Clearly g � f implies gb f in

inv-CðX;YÞ. Note that f t is a morphism of str-CðX;YÞ provided t : c! indðfÞ is
a morphism in CnatðB;AÞ.

On str-CðX;YÞ we define f1 x f2 if there exists g A str-CðX;YÞ such that

g � f1; f2. x generates an equivalence relation 1 which is compatible with com-

position so that we obtain a quotient category qstr-C ¼ str-C=1 and a com-

mutative diagram

str-C inv-C???y
???y

qstr-C ���!
i

pro-C

H���!

where the vertical arrows are the quotient functors.

3. An Alternative Representation of Pro-morphisms between Cofinitely

Indexed Inverse Systems

For each preordered set A we define a@ a 0 if ab a 0 and a 0b a. The

quotient set pðAÞ ¼ A=@ becomes an ordered set4 by defining ½a�b ½a 0� if

ab a 0.

As the skeleton of A A C we denote the ordered set sðAÞ ¼ pðoðAÞÞ. The

canonical function sA : A! sðAÞ is a morphism in CðA; sðAÞÞ. A morphism

c A ½B;A� resp. c A CðB;AÞ is called skeletal if it has the form c ¼ ĉc � sB,
where ĉc A ½sðBÞ;A� resp. ĉc A CðsðBÞ;AÞ.

An internal diagram D in a category C consists of a set V of objects of C and

a set E of morphisms between these objects. A cone over D consists of an object c

of C and a family of morphisms gv : c! v, v A V , such that for all morphisms

e : v! v 0 in E, e � gv ¼ gv 0 . If c is not an object of D, we use the wording outer

cone. The following is well-known.

4As an ordering on a set we understand an antiysmmetric preordering.
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Proposition 3.1. Let A be a small category. Then A A C if and only if each

finite internal diagram in A has a cone.

A small category B is called cofinite if for each b A B there exist only

finitely many morphisms with domain b. By CðcfntÞ � C resp. DðcfntÞ � D

we denote the full subcategories having as objects all cofinite B A C resp.

B A D.

A function x A ½B;A� is called weakly cofinal if for all a A A there exist b A B

and a morphism u : xðbÞ ! a in A. A functor j A CðB;AÞ is called

(1) equalizing if for all b A B and all morphisms u1; u2 : jðbÞ ! a in A there

exists a morphism v : b 0 ! b in B such that u1jðvÞ ¼ u2jðvÞ,
(2) cofinal if it is weakly cofinal and equalizing.

If x 0b x in ½B;A� and x is weakly cofinal, then also x 0 is weakly cofinal. If

A A P, then each functor j : B! A is equalizing; thus j is cofinal if and only if

it is weakly cofinal.

Let Ceq denote the wide subcategory of C whose morphisms are all equalizing

functors. This yields a wide subcategory streq-C of str-C whose morphisms have

index functors in Ceq. The relations x and 1 on str-C can be modified in the

obvious way to produce relations on streq-C which are denoted by the same

symbols.

Lemma 3.2. Let B A CðcfntÞ and A A C. For i ¼ 1; . . . ; n let be given functions

ai; a
0
i : morðBÞ ! obðAÞ, li; ni; n

0
i : morðBÞ ! POW ðmorðAÞÞ5, such that for each

v : b ! b 0

� liðvÞ is a finite set of morphisms aiðvÞ ! a 0i ðvÞ,
� niðvÞ is a finite set of morphisms a1ðvÞ ! aiðvÞ,
� n 0i ðvÞ is a finite set of morphisms a 01ðvÞ ! a 0i ðvÞ.

Then there exist

(1) a skeletal functor c : B! A

(2) for i ¼ 1; . . . ; n functions oi;o
0
i : morðBÞ ! morðAÞ such that for all

v : b ! b 0, oiðvÞ is a morphism cðbÞ ! aiðvÞ and o 0i ðvÞ is a morphism

cðb 0Þ ! a 0i ðvÞ
with the following property: For all v : b ! b 0, all i ¼ 1; . . . ; n, all ui A liðvÞ,
wi A niðvÞ and w 0i A n 0i ðvÞ the following diagram commutes with the possible excep-

tion of the right inner square:

5The symbol POW denotes powerset.
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cðbÞ

a1ðvÞ ���!
wi

aiðvÞ???yu1

???yui

a 01ðvÞ ���!w 0i a 0i ðvÞ

cðb 0Þ

cðvÞ

?????????????y

 ����  ����������
�

 ����
 �����������

o1ðvÞ
oiðvÞ

o 0
1
ðvÞ

o 0i ðvÞ

If for some i one has aiðvÞ ¼ wiðbÞ, a 0i ðvÞ ¼ wiðb 0Þ with a function wi : obðBÞ !
obðAÞ (‘‘functional case’’), one can find a morphism ti : c! wi in ½B;A� such
that one can take oiðvÞ ¼ ðtiÞb, o 0i ðvÞ ¼ ðtiÞb 0 . In case wi is a functor and

liðvÞ ¼ fwiðvÞg, then ti is necessarily a natural transformation.

Moreover, if A is cofinite, then c can be chosen to be equalizing.

NB If l1ðvÞ ¼q, liðvÞ ¼q, niðvÞ ¼q or n 0i ðvÞ ¼q, then in the above

diagram it is understood that corresponding arrow u1, ui, wi or w 0i is omitted. The

consequence is that the corresponding commutativity assertion falls away.

Proof. Let TðBÞ ¼ fðb; b 0; vÞ A obðsðBÞ � sðBÞÞ �morðBÞ j sBðvÞ ¼ ðb; b 0Þg
and PðBÞ ¼ fðb; bÞ A obðsðBÞ � BÞ j sBðbÞ ¼ bg. We construct

(1) a functor c 0 : sðBÞ ! A

(2) for each ðb; b 0; vÞ A TðBÞ morphisms oiðb; b 0; vÞ : c 0ðbÞ ! aiðvÞ, o 0i ðb; b 0; vÞ :
c 0ðb 0Þ ! a 0i ðvÞ resp. in the functional case for each ðb; bÞ A PðBÞ a mor-

phism tiðb; bÞ : c 0ðbÞ ! wiðbÞ
such that for all ðb; b 0; vÞ A TðBÞ and all ui A liðvÞ, wi A niðvÞ, w 0i A n 0i ðvÞ the fol-

lowing diagram commutes with the possible exception of the right inner square:

c 0ðbÞ

a1ðvÞ ���!
wi

aiðvÞ???yu1

???yui D1ðb;b 0; v;ui ;wi ;w
0
i Þ

a 01ðvÞ ���!w 0i a 0i ðvÞ

c 0ðb 0Þ

c 0ððb;b 0ÞÞ

?????????????y

 ����
��

 ������������
���

 ������
 ���������������

o1ðb;b 0; vÞ
o 0i ðb;b 0; vÞ

o 0
1
ðb;b 0; vÞ

o 0i ðb;b 0; vÞ

In the functional case we consider all ðb; bÞ A PðBÞ instead of all ðb; b 0; vÞ A TðBÞ
and replace in the above diagram oiðb; b 0; vÞ by tiðb; bÞ and o 0i ðb; b 0; vÞ by

tiðb 0; b 0Þ.
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This is clearly equivalent to the lemma. The right square subdiagram will

be denoted by D2ðb; b 0; v; ui;wi;w
0
i Þ. Removing from D1ðb; b 0; v; ui;wi;w

0
i Þ the

object in the upper left corner and the three morphisms starting there yields

a diagram denoted as D3ðb; b 0; v; ui;wi;w
0
i Þ. For a fixed b A sðBÞ there are

only finitely many diagrams having the form Djðb; b 0; v; ui;wi;w
0
i Þ. Let D�j ðb; b 0;

v; ui;wi;w
0
i Þ denote the internal diagram canonically associated to Djðb; b 0; v; ui;

wi;w
0
i Þ.
Let prðbÞ denote the set of predecessors of b, i.e. of all b 0 such that bb b 0.

Then prðbÞ 	 prðb 0Þ if and only if bb b 0. Since B 0 is ordered, we have moreover

prðbÞ ¼ prðb 0Þ if and only if b ¼ b 0.

Let kðbÞ ¼ number of predecessors of b. Assume bb b 0. Then clearly

kðbÞb kðb 0Þ, and kðbÞ ¼ kðb 0Þ if and only b ¼ b 0. In particular, for b; b 0 A sðBÞ
with kðbÞ ¼ kðb 0Þ, we either have b ¼ b 0 or b, b 0 are not comparable with respect

to b.

We construct the necessary objects and morphisms by induction over

kðbÞ.
For kðbÞ ¼ 1 let D be the union of the finitely many internal diagrams having

the form D�2 ðb; b; v; ui;wi;w
0
i Þ. Choose a cone ðm;waÞ over D and set c 0ðbÞ ¼ m,

c 0ððb; bÞÞ ¼ id and oiðb; b; vÞ ¼ waiðvÞ, o
0
i ðb; b; vÞ ¼ wa 0

i
ðvÞ. In the special case based

on a function wi we set tiðb; bÞ ¼ wwiðbÞ.

Assume we have constructed the components for all b with kðbÞam. If A

is cofinite, assume moreover that for all pairs ðb; b 0Þ such that bb b 0 and kðb 0Þ <
kðbÞam the following holds: For any two morphisms u1; u2 : cðb 0Þ ! a in A one

has u1cððb; b 0ÞÞ ¼ u2cððb; b 0ÞÞ.
Consider b� with kðb�Þ ¼ mþ 1. Let D be the union of the finitely

many internal diagrams having the form D�1 ðb; b 0; v; ui;wi;w
0
i Þ with b 0a

b < b�, D�3 ðb�; b 0; v; ui;wi;w
0
i Þ with b 0 < b� and D�1 ðb�; b�; v; ui;wi;w

0
i Þ. If A

is cofinite add all (finitely many) morphisms u : c 0ðbÞ ! a in A where

b < b�.

Choose a cone ðm;waÞ over D and set c 0ðb�Þ ¼ m, c 0ððb�; b�ÞÞ ¼ id and, for

b < b�, c 0ððb�; bÞÞ ¼ wc 0ðbÞ oiðb�; b; vÞ ¼ waiðvÞ, o
0
i ðb�; b; vÞ ¼ wa 0

i
ðvÞ. In the special

case based on a function wi we set tiðb�; b �Þ ¼ wwiðb �Þ. r

Corollary 3.3. Let B A CðcfntÞ and A A C. Then for each f A inv-CðX;YÞ
there exists g A str-CðX;YÞ such that gb f (so that ½g� ¼ ½f� in pro-C). The index

functor of g can be chosen to be skeletal. If A is cofinite, then it can moreover be

chosen to be equalizing. If we are given x A ½B;A�, we can achieve indðgÞb x. In

case x A CðB;AÞ, we can achieve indðgÞ � x.
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Proof. For each morphism v : b ! b 0 in B there exist aðvÞ A A and mor-

phisms nðvÞ : aðvÞ ! jðbÞ, n 0ðvÞ : aðvÞ ! jðb 0Þ such that the following diagram

commutes:

XaðvÞ ���!pnðvÞ
XjðbÞ ���!fb Yb

pid¼id

???y
???yqv

XaðvÞ ���!
pn 0ðvÞ

Xjðb 0Þ ���!
fb 0

Yb 0

Now apply Lemma 3.2 with a1ðvÞ ¼ a 01ðvÞ ¼ aðvÞ, a2ðvÞ ¼ jðbÞ, a 02ðvÞ ¼ jðb 0Þ,
a3ðvÞ ¼ xðbÞ, a 03ðvÞ ¼ xðb 0Þ and l1ðvÞ ¼ fidg, l2ðvÞ ¼q. If x A CðB;AÞ set

l3ðvÞ ¼ fxðvÞg, otherwise l3ðvÞ ¼q. Moreover, let n2ðvÞ ¼ fnðvÞg, n 02ðvÞ ¼ fn 0ðvÞg
and n1ðvÞ ¼ n 01ðvÞ ¼ n3ðvÞ ¼ n 03ðvÞ ¼q.

This yields a skeletal functor c : B! A and morphisms t : c! j, t 0 : c! x;

in the functorial case t 0 is a natural transformation. Set g ¼ f t. r

Corollary 3.4. Let B A CðcfntÞ and A A C and let f1; f2 A str-CðX;YÞ. Then
f1 @ f2 in inv-CðX;YÞ if and only if there exists g A str-CðX;YÞ such that g � f1; f2.

The index functor of g can be chosen to be skeletal. If A is cofinite, then it

can moreover be chosen to be equalizing. If we are given x A CðB;AÞ such that

indðf iÞ �ti x, we can achieve g �si f i such that t1s1 ¼ t2s2.

Proof. The ‘‘if ’’-part is obvious. Conversely, let f1 @ f2. Then there exist

c A ½B;A� and morphisms t1 : c! indðf1Þ, t2 : c! indðf2Þ such f t11 ¼ f t22 ¼ g. A

suitable application of Lemma 3.2 yields the assertion. r

Corollary 3.5. In str-CCðcfntÞ the following are equivalent:

(1) f1 @ f2

(2) f1 x f2

(3) f1 1 f2

The same holds in streq-CCðcfntÞ.

We therefore obtain the following alternative representation of pro-

morphisms between cofinitely indexed inverse systems.

Theorem 3.6. i : qstr-CCðcfntÞ ! pro-CCðcfntÞ and i : qstreq-CCðcfntÞ ! pro-CCðcfntÞ
are category isomorphisms.
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4. Reindexers

For each inverse system X indexed by A A C and each functor j : B! A with

domain B A C we obtain a canonical morphism

rðX; jÞ ¼ ðj; idj �ðXÞÞ : X! j�ðXÞ

in str-C. For each morphism f ¼ ðj; f �Þ : X! Y in str-C we thus have a

canonical decomposition

f ¼ f � � rðX; jÞ:

The rðX; jÞ constitute a natural transformation

rð�; jÞ : id ! j�

between the functors id : CA ! CA � str-C and j� : CA ! CB � str-C.

Moreover, if j splits as j ¼ c � w with functors w : B! C and c : C ! A,

then f splits as

f ¼ fðc;wÞ � rðX;cÞ;

where fðc;wÞ ¼ ðw; f �Þ : c�ðXÞ ! Y (note that w�ðc�ðXÞÞ ¼ ðc � wÞ�ðXÞ ¼ j�ðXÞ).
If c : C ! B is another functor, then clearly

rðj�ðXÞ;cÞ � rðX; jÞ ¼ rðX; j � cÞ:

For a functor c : B! A and a natural transformation t : c! j let

iðX; tÞ ¼ ðid; ðptbÞÞ : c�ðXÞ ! j�ðXÞ:

This is a morphism in CB such that

iðX; tÞ � rðX;cÞ ¼ rðX; jÞt:

If w : B! A is a functor and o : w! c is a natural transformation, we have

iðX; tÞ � iðX;oÞ ¼ iðX; t � oÞ:

In the special case B ¼ A we may take j ¼ id. For each functor c : A! A

and natural transformation t : c! id we get the level morphism

iðX; tÞ : c�ðXÞ ! id �ðXÞ ¼ X:

Definition 4.1. A morphism having the form rðX; jÞ for some X and some

cofinal functor j : B! A is called a reindexer (or more precisely a reindexer

over j).
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Proposition 4.2. Each reindexer rðX; jÞ induces an isomorphism in pro-C.

Proof. A pair ðt;cÞ consisting of a function c : A! B and a morphism

t : j � c! id in ½A;A� is called an associate6 of j. Choose any associate and

define

kðX; j; t;cÞ ¼ ðc; ðpta : j�ðXÞcðaÞ ¼ XjðcðaÞÞ ! XaÞÞ:

Let u : a1 ! a2 be a morphism in A. There exist b A B and morphisms

vi : b ! cðaiÞ. Since j is equalizing, there exist b 0 A B and a morphism w : b 0 ! b

such that ðu � ta1 � jðv1ÞÞ � jðwÞ ¼ ðta2 � jðv2ÞÞ � jðwÞ. Set wi ¼ vi � w : b 0 ! cðaiÞ.
Then ðu � ta1Þ � jðw1Þ ¼ ta2 � jðw2Þ. This implies that kðX; j; t;cÞ A inv-Cðj�ðXÞ;
XÞ.

We have kðX; j; t;cÞ � rðX; jÞ ¼ ðj � c; ðpta : XjðcðaÞÞ ! XaÞÞ ¼ idt @ id and

rðX; jÞ � kðX; j; t;cÞ ¼ ðc � j; ðptjð bÞ : j�ðXÞcðjðbÞÞ ¼ XjðcðjðbÞÞÞ ! XjðbÞ ¼ j�ðXÞbÞ.
There exist b 0 A B and morphisms v : b 0 ! b, v 0 : b 0 ! cðjðbÞÞ. Since j is

equalizing, there exist b 00 A B and w : b 00 ! b 0 such that ðtjðbÞ � jðv 0ÞÞ � jðwÞ ¼
jðvÞ � jðwÞ. This implies ptjðbÞ � pjðv 0�wÞÞ ¼ pjðv�wÞ which shows rðX; jÞ � kðX; j;
t;cÞ@ id. r

Remark 4.3. The reindexers rðX; jÞ with cofinal functors j A CðA;AÞ such
that j � id have a distinctive feature: The inverse isomorphism in pro-C is rep-

resented by a level morphism. In fact, any natural transformation t : j! id yields

the associate ðid; tÞ of j. Then kðX; j; t; idÞ ¼ iðX; tÞ is a level morphism. Note

also that each functor j � id is automatically weakly cofinal.

Example 4.4. Let X be an inverse system indexed by A A C and A 0 � A be

a cofinal subcategory which means that the inclusion functor i : A 0 ! A is cofinal.

Then i�ðXÞ is the cofinal subsystem of X indexed by A 0 and rðX; iÞ is a reindexer.

Example 4.5. Let A1;A2 A C and p i : A1 � A2 ! Ai the projection functor

(which is cofinal). Each reindexer over such a p i is called a projection reindexer.

Example 4.6. This example is taken from [6, Proposition 8.1.6] where it

appears in dual form; see also [8, Ch. I, §1.4, Theorems 2 and 4]. For A A C let

PðAÞ be the set of finite internal diagrams D in A having a unique initial object

mAðDÞ. An initial object of D is an object m A D such that

6This concept is defined for any j A ½B;A�. Associates of j exist if and only if j is weakly cofinal.
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(1) For each object a A D there exist exactly one morphism ua : m! a in D.

(2) um ¼ id.

(3) For each morphism u : a! a 0 in D, u � ua ¼ ua 0 .

PðAÞ is ordered by inclusion; it is cofinite but in general not directed. The initial

object function mA : obðPðAÞÞ ! obðAÞ extends to a functor mA : PðAÞ ! A (the

morphisms in PðAÞ are the pairs ðD1;D0Þ with D1 	 D0, and we let mAðD1;D0Þ be
the unique morphism in D1 from mAðD1Þ to mAðD0Þ A D0 � D1).

For A A Cnmx ¼ full subcategory of C whose objects do not have maximal

elements it turns out that
� PðAÞ A Dðord; cfntÞ ¼ full subcategory of D whose objects are ordered

cofinite sets.
� mA : PðAÞ ! A is a cofinal functor.

We remark that the same is true for A A DðordÞ ¼ full subcategory of D

whose objects are ordered sets. In this case PðAÞ is nothing else than the set of

finite internal diagrams D in A having a maximal element mAðDÞ (which is auto-

matically unique).

For each inverse system X indexed by A A Cnmx, we define PðXÞ ¼ ðmAÞ
�ðXÞ.

As the standard cofinite reindexer we denote

mX ¼ rðX; mAÞ : X! PðXÞ:

To deal with arbitrary A A C, [6] uses the cofinal projection functor

pA : A�N! A. Define P 0ðAÞ ¼ PðA�NÞ and m 0A ¼ pA � mA�N : P 0ðAÞ ! A

which is a cofinal functor. As the modified cofinite reindexer we denote

m 0X ¼ rðX; m 0AÞ : X! ðm 0AÞ
�ðXÞ ¼ P 0ðXÞ:

It would be desirable if the association A 7! PðAÞ had a continuation to

a functor P : Cnmx ! Dðord; cfntÞ. The natural definition of the induced

PðjÞ : PðBÞ ! PðAÞ is of course PðjÞðDÞ ¼ jðDÞ, but in general jðDÞ B PðAÞ
when D A PðBÞ. We circumvent this problem by considering only regular functors7

j : B! A characterized by the property that jðDÞ A PðAÞ and jðmBðDÞÞ ¼
mAðjðDÞÞ for all D A PðBÞ. Examples for such functors are all embeddings8

j : B! A and all j : B! A such that A is ordered.

On the wide subcategory Cnmx
reg � Cnmx whose morphisms are the regular

functors we thus obtain a functor P : Cnmx
reg ! Dðord; cfntÞ and a natural trans-

formation m ¼ ðmAÞ : P! id.

7This concept is defined for arbitrary A;B A C.

8This means that j establishes a category isomorphism between A and a subcategory A 0 � B.
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Let E : C! Cnmx be the functor defined by EðAÞ ¼ A�N, EðjÞ ¼ j� idN

and Creg � C be the wide subcategory whose morphisms are the regular functors.

We have EðCregÞ � Cnmx
reg and define a functor

P 0 ¼ P � E : Creg ! Dðord; cfntÞ

which comes together with the natural transformation m 0 ¼ ðm 0AÞ : P 0 ! id.

Let strreg-C denote the wide subcategory of str-C whose morphisms have

a regular index functor. Given f ¼ ðj; f �Þ : X! Y in strreg-C, the index functor

j � m 0B of m 0Y � f splits as j � m 0B ¼ m 0A � P 0ðjÞ. Hence

m 0Y � f ¼ ðm 0Y � fÞðm 0
A
;P 0ðjÞÞ � rðX; m 0AÞ ¼ ðm 0Y � fÞðm 0

A
;P 0ðjÞÞ � m 0X:

We define

P 0ðfÞ ¼ ðm 0Y � fÞðm 0
A
;P 0ðjÞÞ : P

0ðXÞ ! P 0ðYÞ:

It is easy to verify that this yields a functor

P 0 : strreg-C! str-CDðord; cfntÞ

coming together with the natural transformation m 0 ¼ ðm 0XÞ : P 0 ! id.

5. Pro-extensions and Localization

We recall the concept of localization. For any functor F : K! K̂K let INVðFÞ
denote the class of all morphisms f in K such that Fð f Þ is an isomorphism

in K̂K.

Definition 5.1. Let F : K! K̂K be a functor.

(1) Let F : K! L be a functor. A functor F̂F : K̂K! L is called a F-shift of F

if F̂F �F ¼ F .

(2) Let S be a class of morphisms of K. F is said to be a localization at S if

(a) S � INVðFÞ
(b) Each F : K! L satisfying S � INVðFÞ has a unique F-shift.

For each full subcategory F � C and each wide subcategory J � inv-C we

denote by JF resp. pro-CF the full subcategory of J resp. pro-C having as

objects all inverse systems indexed by some A A F. If F has only one object A,

we simply write JA resp. pro-CA. The restriction of P to JF will again be

denoted by

P : JF ! pro-CF:
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Definition 5.2. Let F : JF ! L be a functor.

(1) A pro-extension of F is a P-shift F̂F : pro-CF ! L of F .

(2) F satisfies the shifting condition if for all morphisms f 0, f of JF \ str-CF

such that f 0 � f one has F ðf 0Þ ¼ FðfÞ.

The focus of this paper are existence and uniqueness of pro-extensions. The

existence of a pro-extension clearly implies the shifting condition. The following is

an immediate consequence of Theorem 3.6.

Proposition 5.3. Let F � CðcfntÞ be a full subcategory and F : str-CF ! L

be a functor. Then the following are equivalent:

(1) F has a unique pro-extension.

(2) F has a pro-extension.

(3) F satisfies the shifting condition.

In particular, F has at most one pro-extension.

Lemma 5.4. Let F : CA ! L be a functor and F̂F : pro-CA ! L a pro-

extension of F. Then for each morphism f ¼ ðj; f �Þ : X! Y in str-CA with cofinal

index functor j �t id

F̂FðPðfÞÞ ¼ Fðf �Þ � F ðiðX; tÞÞ�1:

NB F ðiðX; tÞÞ ¼ F̂FðPðiðX; tÞÞÞ is an isomorphism in L because PðiðX; tÞÞ is an

isomorphism in pro-CA.

Proof. F̂F ðPðfÞÞ ¼ F̂FðPðf �ÞÞ � F̂FðPðrðX; jÞÞÞ ¼ F̂FðPðf �ÞÞ � F̂FðPðiðX; tÞÞ�1Þ ¼
F̂F ðPðf �ÞÞ � F̂F ðPðiðX; tÞÞÞ�1 ¼ F ðf �Þ � FðiðX; tÞÞ�1. r

Theorem 5.5. Let A A CðcfntÞ. Then P : CA ! pro-CA is a localization at

the class IðAÞ of all morphisms iðX; tÞ where t establishes a relation j �t id for

some cofinal j A CðA;AÞ. (NB A functor j � id is cofinal if and only if it is

equalizing.)

Proof. By Proposition 5.3 it su‰ces to show that each functor F : CA ! L

with IðAÞ � INVðF Þ has a pro-extension.

We know that each morphism f : X! Y in pro-CA is represented by a mor-

phism f ¼ ðj; f �Þ in str-CA with an equalizing j �t id. Define

F̂FðfÞ ¼ Fðf �Þ � F ðiðX; tÞÞ�1:
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We show that this does not depend on the choice of the representative f and the

choice of t. Let f i ¼ ðji; f �i Þ be representatives of f such that ji �ti id. There exists

g ¼ ðc; g�Þ such that c is equalizing, g �si f i and t1s1 ¼ t2s2 ¼ o : c! id. The

diagram

X  ��������iðX; tiÞ
j�ðXÞ ��������!f �i

Y

iðX;siÞ

x???
c�ðXÞ

������
���!  ���������iðX;oÞ g�

commutes and we infer F ðf �i Þ � FðiðX; tiÞÞ
�1 ¼ Fðg�Þ � FðiðX;oÞÞ�1.

We next show that F̂F is a functor. It is trivial that F̂FðidÞ ¼ id. Let g be

represented by g ¼ ðc; g�Þ : X! Z with c �s id. Define a natural transforma-

tion j�ðsÞ : j � c! j; j�ðsÞa ¼ jðsaÞ. Then g � f is represented by g � f ¼ ðj � c;
ðg � fÞ�Þ, where j � c �t�j �ðsÞ id. We obtain a commutative diagram

X  ���iðX; tÞ
j�ðXÞ Y c�ðYÞ ���!g � Z

c�ððj�ðXÞÞÞ����
ðj � cÞ�ðXÞ

�������!f �  �������iðY;sÞ

�������
!  �������

�����
�����

�����
�����!

 ��������������������
iðj �ðXÞ;sÞ c�ðf �Þ

iðX; t�j �ðsÞÞ ðg�fÞ�

which shows that F̂Fðg � fÞ ¼ F̂FðgÞ � F̂FðfÞ.
For level morphisms one has j ¼ id and t ¼ id so that iðX; idÞ ¼ id and

f � ¼ f, hence F̂F �P ¼ F . r

Let j A CðB;AÞ be cofinal. Define a functor

j� : pro-CA ! pro-CB

as follows: For the objects set j�ðXÞ ¼ j�ðXÞ, for the morphisms f : X! Y set

j�ðfÞ ¼ PðrðY; jÞÞfPðrðX; jÞÞ�1. Then by construction

(1) The following diagram commutes:

CA CB

P

???y
???yP

pro-CA ��������!
j �

pro-CB

�����������!j �

(2) The PðrðX; jÞÞ constitute a natural isomorphism id ! j�.
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Given a cofinal j A CðcfntÞðB;AÞ, we call a functor F : str-CCðcfntÞ ! L ad-

missible with respect to j if all reindexers over j are contained in INVðF Þ. It

is called strongly admissible with respect to j if in addition F jstr-CA
, F jstr-CB

have

pro-extensions FA : pro-CA ! L, FB : pro-CB ! L. Note that these are unique by

Theorem 5.5.

Lemma 5.6. Let F : str-CCðcfntÞ ! L be strongly admissible with respect to j.

Then the F ðrðX; jÞÞ constitute a natural isomorphism FA ! FBj
�.

Proof. Define a functor F 0A : pro-CA ! L by F 0AðXÞ ¼ F ðXÞ and F 0AðfÞ ¼
F ðrðY; jÞÞ�1FBj

�ðfÞF ðrðX; jÞÞ for f : X! Y. For level morphisms f : X! Y we

have F 0Að½f�Þ ¼ FðrðY; jÞÞ�1FBð½j�ðfÞ�ÞF ðrðX; jÞÞ ¼ FðrðY; jÞÞ�1Fðj�ðfÞÞF ðrðX; jÞÞ
¼ FðrðY; jÞÞ�1Fðj�ðfÞrðX; jÞÞ ¼ FðrðY; jÞÞ�1FðrðY; jÞfÞ ¼ FðfÞ ¼ FAð½f�Þ. By the

uniqueness of pro-extensions of functors living on CA we see that F 0A ¼ FA.

r

Lemma 5.7. Let F � C and G;H � CðcfntÞ be full subcategories such that

G;H �F, F : str-CF ! L be a functor and G : pro-CG ! L resp. H : pro-CH !
L be pro-extensions of F jstr-CG

resp. F jstr-CH
. Let A1;A2;A3 A F, A 01;A

0
2;A

0
3 A G

and ji : A
0
i ! Ai be cofinal functors such that F is admissible with respect to j1, j2,

j3. For each pro-morphism f : X1 ! X2 between inverse systems Xi indexed by Ai

define a morphism EðF ;G; j1; j2ÞðfÞ : F ðX1Þ ! FðX2Þ in L by

EðF ;G; j1; j2ÞðfÞ

¼ FðrðX2; j2ÞÞ
�1
Gð½rðX2; j2Þ�f½rðX1; j1Þ�

�1ÞFðrðX1; j1ÞÞ:

(1) For any morphism f : X1 ! X2 in str-C which admits a morphism

f 0 : j�1 ðX1Þ ! j�2 ðX2Þ in str-C such that rðX2; j2Þf ¼ f 0rðX1; j1Þ one has

EðF ;G; j1; j2Þð½f�Þ ¼ F ðfÞ:

(2) If g : X2 ! X3 is pro-morphism and X3 is indexed by A3, then

EðF ;G; j2; j3ÞðgÞEðF ;G; j1; j2ÞðfÞ ¼ EðF ;G; j1; j3ÞðgfÞ:

(3) If A 01 ¼ A 02 ¼ B and c : B 0 ! B is a cofinal functor such that B 0 A H and

F is admissible with respect to c, then

EðF ;G; j1; j2ÞðfÞ ¼ EðF ;H; j1c; j2cÞðfÞ:
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Proof. (1) follows from

EðF ;G; j1; j2Þð½f�Þ

¼ FðrðX2; j2ÞÞ
�1
Gð½rðX2; j2Þ�½f�½rðX1; j1Þ�

�1ÞFðrðX1; j1ÞÞ

¼ FðrðX2; j2ÞÞ
�1
Gð½f 0�ÞF ðrðX1; j1ÞÞ ¼ F ðrðX2; j2ÞÞ

�1
Fðf 0ÞF ðrðX1; j1ÞÞ

¼ FðrðX2; j2ÞÞ
�1
FðrðX2; j2ÞÞF ðfÞ ¼ F ðfÞ:

(2) is obvious and (3) follows from Lemma 5.6. r

Theorem 5.8. Let F : str-CCðcfntÞ ! L be a functor such that all projection

reindexers in str-CCðcfntÞ are contained in INVðFÞ and each F jstr-CA
has a pro-

extension FA : pro-CA ! L (which is unique by Theorem 5.5). Then F has a unique

pro-extension.

Proof. By Proposition 5.3 it su‰ces to prove the existence of a pro-

extension. We use Lemma 5.7.

For a morphism f : X1 ! X2 in pro-CCðcfntÞ, where Xi is indexed by Ai, define

F̂F ðfÞ ¼ EðF ;FA1�A2
; p1

A1;A2
; p2

A1;A2
ÞðfÞ : FðX1Þ ! F ðX2Þ

where p i
A1;A2

: A1 � A2 ! Ai denotes the projection which is cofinal. Note that

G � C is the full subcategory having the one object A1 � A2.

Claim 1: For A1 ¼ A2 ¼ A we have F̂Fð½f�Þ ¼ FðfÞ for any morphism

f : X1 ! X2 in CA.

Proof. Let t : A� A! A� A be the functor exchanging coordinates.

Set f 0 ¼ rððp1
A;AÞ

�ðX2Þ; tÞðp1
A;AÞ

�ðfÞ A str-Cððp1
A;AÞ

�ðX1Þ; t�ððp1
A;AÞ

�ðX2ÞÞÞ. Since

p1
A;At ¼ p2

A;A, we have

f 0rðX; p1
A;AÞ ¼ rððp1

A;AÞ
�ðYÞ; tÞðp1

A;AÞ
�ðfÞrðX; p1

A;AÞ

¼ rððp1
A;AÞ

�ðYÞ; tÞrðY; p1
A;AÞf ¼ rðY; p2

A;AÞf:

Lemma 5.7 proves Claim 1. r

Claim 2: The above definition yields a functor F̂F : pro-CCðcfntÞ ! L.

Proof. Claim 1 shows that F̂Fð½id�Þ ¼ id. Let g : X2 ! X3 in pro-CCðcfntÞ. We

show that F̂FðgfÞ ¼ F̂F ðgÞF̂F ðfÞ. Let p ij : A1 � A2 � A3 ! Ai � Aj and r i : A1 � A2 �
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A3 ! Ai denote the projection functors which are cofinal. Using Lemma 5.7 we

see that

F̂FðfÞ ¼ EðF ;FA1�A2�A3
; r2; r1ÞðfÞ;

F̂FðgÞ ¼ EðF ;FA1�A2�A3
; r3; r2ÞðfÞ;

F̂FðgfÞ ¼ EðF ;FA1�A2�A3
; r3; r1ÞðfÞ:

This shows that F̂FðgfÞ ¼ F̂F ðgÞF̂F ðfÞ. r

Claim 3: Let X be an inverse system indexed by A, j A CðB;AÞ be any (not

necessarily cofinal) functor and r ¼ rðX; jÞ : X! j�ðXÞ the induced morphism.

Then F̂F ð½r�Þ ¼ F ðrÞ.

Proof. Define c ¼ ðj� idBÞDBp
2
A;B : A� B! A� B where DB : B! B� B

is the diagonal functor. Then jp2
A;B ¼ p1

A;Bc. With s ¼ rððp1
A;BÞ

�ðXÞ;cÞ :
ðp1

A;BÞ
�ðXÞ ! c�ððp1

A;BÞ
�ðXÞÞ ¼ ðp2

A;BÞ
�ðj�ðXÞÞ we obtain rðj�ðXÞ; p2

A;BÞr ¼
srðX; p1

A;BÞ. Lemma 5.7 shows F̂Fð½r�Þ ¼ FðrÞ. r

Claims 1–3 prove F̂F ð½f�Þ ¼ FðfÞ for all morphisms in str-CCðcfntÞ since we have

f ¼ f �rðX; indðfÞÞ with a level morphism f �. r

Remark 5.9. Theorem 5.8 can be generalized to functors F : str-CF ! L

where F � CðcfntÞ is a full subcategory such that A� B A F whenever A;B A F.

An interesting question is whether P : str-CCðcfntÞ ! pro-CCðcfntÞ is a local-

ization at reindexers in str-CCðcfntÞ. We conjecture that it is not. A first indica-

tion is

Proposition 5.10. Let F � Cnmx be a full subcategory such that all A A F

are totally preordered with respect to the induced preordering. Then P : str-CF !
pro-CF is not a localization at reindexers in str-CF.

Proof. Let Z2 denote the category having one object � and two morphisms

0, 1 which are composed by 1 � 1 ¼ 1 and 0 � m ¼ m � 0 ¼ 0. Define a functor

Y : str-CF ! Z2 by setting for each morphism f ¼ ðj; f �Þ

YðfÞ ¼ 0 j is not weakly cofinal

1 j is weakly cofinal

�

282 Peter Mrozik



That this is in fact a functor can be seen as follows. Let j A CðB;AÞ, c A CðC;BÞ.
It is obvious that if j is not weakly cofinal, then j � c is not weakly cofinal, and

if j, c are weakly cofinal, then j � c is weakly cofinal. We claim that if c is not

weakly cofinal and B is totally preordered and A has no maximal element, then

j � c is not weakly cofinal. There exists b0 A B such that BðcðgÞ; b0Þ ¼q for all

g A C. Since B is totally preordered, we have b0 bcðgÞ for all g A C. More-

over jðb0Þ is not a maximal element so that we can find a0 A A such that

Aðjðb0Þ; a0Þ ¼q. Choose a1 b a0; jðb0Þ. If j � c were weakly cofinal, we could

find g0 A C such that jðcðg0ÞÞb a1. But then jðb0Þb jðcðg0ÞÞb a1 b a0 which is

a contradiction.

Assume P : str-CF ! pro-CF were a localization at reindexers in str-CF.

Since all these reindexers are contained in INVðYÞ, there is a unique functor

Y 0 : pro-CF ! Z2 such that Y 0 �P ¼ Y. This implies that all morphisms in

str-CF which induce isomorphisms in pro-CF (‘‘P-isomorphisms’’) are contained

in INVðYÞ. But this is not true because there exist P-isomorphisms having

no weakly cofinal index function. For example, choose any object X of C, any

A A F and any constant functor j : A! A. Let ½X �A be the inverse system

indexed by A such that all Xa ¼ X and all bondings are identities. Then

ðj; ð fa ¼ idX ÞÞ : ½X �A ! ½X �A is a P-isomorphism not contained in INVðYÞ.
r

6. Pro-extensions of Functors on str-C

Theorem 6.1. Let F : str-C! L be a functor. Then the following are

equivalent:

(1) F has a unique pro-extension.

(2) F has a pro-extension.

(3) F satisfies the shifting condition and INVðFÞ contains all standard cofinite

reindexers.

(4) F jstr-CDðord ; cfntÞ
has a pro-extension (which is unique by Proposition 5.3) and

INVðF Þ contains all modified cofinite reindexers.

In particular, F has at most one pro-extension.

Proof. ð1Þ ) ð2Þ ) ð3Þ: Obvious.

ð3Þ ) ð4Þ: By Proposition 5.3 F jstr-CDðord; cfntÞ
has a pro-extension. To

complete the proof it su‰ces to show that all reindexers having the form r ¼
rðX; pAÞ : X! p�AðXÞ are contained in INVðF Þ. Define a functor i : A! A�N,

iðaÞ ¼ ða; 1Þ. Let s ¼ rðp�AðXÞ; iÞ : p�AðXÞ ! i�ðp�AðXÞÞ ¼ X. We have s � r ¼ id and

id � r � s. This implies that F ðrÞ is an isomorphism whose inverse is FðsÞ.
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ð4Þ ) ð1Þ: Let F : pro-CDðord; cfntÞ ! L be a pro-extension of F jstr-CDðord; cfntÞ
.

Define F̂F by F̂FðXÞ ¼ FðXÞ for the objects; for the morphisms f : X1 ! X2 set (cf.

Lemma 5.7)

F̂FðfÞ ¼ EðF ;F ; m 0A1
; m 0A2
ÞðfÞ:

It is obvious that F̂F is a functor. We show that it is a pro-extension of F .

Let f be a morphism of strreg-C. Then rðX2; m
0
A2
Þf ¼ P 0ðfÞrðX1; m

0
A1
Þ so that

F̂F ð½f�Þ ¼ FðfÞ.
For an arbitrary morphism f ¼ ðj; f �Þ in str-C we split j ¼ p � ~jj where

p : A� B! A denotes projection and ~jj : B! A� B, ~jjðbÞ ¼ ðjðbÞ; bÞ. This

induces a splitting

f ¼ fðp; ~jjÞ � rðX; pÞ:

r ¼ rðX; pÞ is a reindexer, hence ½r� is an isomorphism in pro-C so that F̂Fð½r�Þ is an
isomorphism.

fðp; ~jjÞ ¼ ð~jj; f �Þ is a morphism of strreg-C since ~jj is an embedding. Choose any

b0 A B and define a functor i : A! A� B, iðaÞ ¼ ða; b0Þ. We have p � i ¼ id, thus

i�ðp�ðXÞÞ ¼ X. Letting s ¼ rðp�ðXÞ; iÞ : p�ðXÞ ! X, we obtain s � r ¼ id so that ½s�
is the inverse isomorphism to ½r�. Since i is an embedding, s is a morphism of

strreg-C so that F ðsÞ ¼ F̂Fð½s�Þ which is an isomorphism. We have FðsÞ � F̂Fð½r�Þ ¼
F̂F ð½s�Þ � F̂Fð½r�Þ ¼ F̂Fð½id�Þ ¼ F ðidÞ ¼ FðsÞ � FðrÞ, hence F̂F ð½r�Þ ¼ F ðrÞ. This yields

F̂Fð½f�Þ ¼ F̂F ð½fðp; ~jjÞ�Þ � F̂Fð½r�Þ ¼ F ðfðp; ~jjÞÞ � FðrÞ ¼ F ðfÞ:

Finally let G : pro-C! L be any pro-extension of F . Then G 0 ¼ Gjpro-CDðord ; cfntÞ

is a pro-extension of F jstr-CDðord ; cfntÞ
whence G 0 ¼ F by Proposition 5.3. We infer

GðfÞ ¼ Gð½rðX2; m
0
A2
Þ�Þ�1Gð½rðX2; m

0
A2
Þ�f½rðX1; m

0
A1
Þ��1ÞGð½rðX1; m

0
A1
Þ�Þ

¼ FðrðX2; m
0
A2
ÞÞ�1F ð½rðX2; m

0
A2
Þ�f½rðX1; m

0
A1
Þ��1ÞFðrðX1; m

0
A1
ÞÞ ¼ F̂F ðfÞ: r

Theorem 6.1 is an extension of Proposition 5.3. The price we have to pay

in (3) is the additional condition that INVðF Þ contains all standard cofinite

reindexers; but note that since F satisfies the shifting condition, each standard

cofinite reindexer based on a mA : A! PðAÞ with A A CðcfntÞ is automatically

contained in INVðF Þ.

Remark 6.2. Theorem 6.1 can be generalized to functors F : str-CF ! L

where F � C is a full subcategory such that Dðord; cfntÞ �F and A� B A F

whenever A;B A F. Such an F will be called admissible.
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7. Extending Functors from lev-C to str-C

Throughout this section let F � C be an admissible full subcategory and

F : lev-CF ! L be a fixed functor. A necessary criterion for the existence of a

pro-extension is the existence of an extension of F to str-CF 	 lev-CF. Since

functors on str-CF have at most one pro-extension, we have a 1-1-correspondence

between pro-extensions of F and extensions of F to str-CF which itself have a

pro-extension. A characterization of pro-extensible functors on str-CF was given

in Theorem 6.1.

For each extension ~FF of F to str-CF and each morphism j : B! A in F we

obtain a natural transformation

LðjÞ ¼ L ~FF ðjÞ : F jCA ! F jCB � j�; LðjÞX ¼ ~FFðrðX; jÞÞ

such that

Lðj � cÞX ¼ LðcÞj �ðXÞ �LðjÞX for all j A FðB;AÞ; c A FðC;BÞ:ð7:1Þ

Any collection L ¼ ðLðjÞÞj AmorðFÞ assigning to each morphism j : B! A in

F a natural transformation LðjÞ : F jCA ! F jCB � j� such that (7.1) is satisfied

will be called an extensor for F .

Given an extensor, define for each morphism f ¼ ðj; f �Þ : X! Y in str-CF

FLðfÞ ¼ Fðf �Þ �LðjÞX : FðXÞ ! F ðYÞ:

This yields a functor FL : str-CF ! L which is an extension of F . Moreover we

have FL ~FF
¼ ~FF and LFL

¼ L. This means that there is 1-1-correspondence between

extensions ~FF of F and extensors L for F .

Examples of extensors occur in the context of the homotopy limit (see e.g.

[1, Ch. XI §3.2], [4, §4.3] although (7.1) has not been considered there). A

necessary condition for FL having a pro-extension is

LðjÞ is a natural isomorphism whenever j is a cofinal functor:ð7:2Þ

This reflects the fact that a necessary condition for the existence of a pro-

extension of a functor ~FF on str-CF is

~FF ðrÞ is an isomorphism whenever r is a reindexer:ð7:3Þ

It is not known to the author whether this condition is su‰cient (this would

imply that P : str-CF ! pro-CF is a localization at reindexers which appears

doubtful in the light of Proposition 5.10).
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This indicates that the concrete construction of the homotopy limit on

Hoðpro-SSÞ in [4, §4.3] contains a gap9. In [4] one finds an explicit construction

of a functor Exy : lev-SSDðord; cfntÞ ! Hoððpro-SSÞf Þ which is claimed to have a

pro-extension to pro-SSDðord; cfntÞ. An extensor L for Exy is constructed in [4,

(4.3.3)]; it satisfies (7.2). What is missing is the verification of (7.1) and a proof

of either that (7.3) is su‰cient for the existence of a pro-extension or that ExyL
satisfies the shifting condition. Fortunately this gap is not dramatic because the

universal construction of the homotopy limit on Hoðpro-CÞ in [4, §4.2] is correct.

8. The First Derived Limit on pro-G

We begin by reviewing the definition of the first derived limit of an inverse

system X : A! G given by Bousfield and Kan [1, Ch. XI, §6.5] as the coho-

motopy set p1ðP�XÞ of the cosimplicial replacement P�X of X. The latter is

defined for inverse systems in arbitrary categories C with products. It consists of

objects PnX A C, nb 0, and coface and codeneracy morphisms. With An ¼ fu ¼
ða0  �

u1
a1  �

u2 
 
 
  �un�1 an�1  �
un

anÞ j ai A obðAÞ; ui A morðAÞg we have

PnX ¼
Y
u AAn

Xu; Xu ¼ Xða0Þ ¼ Xa0 :

This construction produces a functor P� : lev-C! cC ¼ category of cosimplicial

objects in C (see [1]). p1 is a functor from cG to the category Set0 of pointed sets

and Bousfield and Kan define

lim �
1 ¼ p1 �P� : lev-G! Set0:

P� has a straightforward extension to str-C. In fact, each f ¼ ðj; ð fbÞÞ A
str-CðX;YÞ induces a cosimplicial morphism

P�f : P�X! P�Y

which consists of the unique morphisms Pnf making the following diagrams

commute for all v ¼ ðb0  
v1

b1  
v2 
 
 
  vn bnÞ A Bn:

PnX ���!Pnf
PnY

pjðvÞ

???y
???ypv

XjðvÞ Yv����!
fb0

9Also the proof of [3, Theorem 4.1] contains a gap. The ‘‘naturality properties’’ of the homotopy limit

do not apply to diagrams which commute in the pro-category.
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Hence the original lim �
1 : lev-G! Set0 from [1] has a natural extension

lim �
1 ¼ p1 �P� : str-G! Set0:

Boiling down the definition of p1 to P�X gives us explicit formulae. Set

ZP1X ¼ fðxuÞ A P1X j Eðu1; u2Þ A A2 : pu1ðxu2Þx�1u1u2
xu1 ¼ eg

and define an operation of P0X on ZP1X by

ðgaÞ 
 ðxuÞ ¼ ðga0xu puðga1Þ
�1Þ

where u : a1 ! a0. Then p1ðP�XÞ ¼ lim �
1 X is orbit set of this operation. For the

morphisms we have

lim �
1ðj; ð fbÞÞð½ðxuÞ�Þ ¼ ½ð fb0ðxjðvÞÞ�

where v : b1 ! b0.

lim �
1 : lev-G! Set0 has a topological description based on the homotopy limit

(see [3], [4]). On lev-G one has a natural isomorphism

lim �
1Ap0 � holim �Ho �F lev

where holim : Hoðlev-SSÞ ! HoðSSÞ is the homotopy limit, Ho : lev-SS!
Hoðlev-SSÞ the quotient functor, F : G! SS a suitably defined functor and

F lev : lev-G! lev-SS the canonically induced functor. There exists an extension10

of holim to Hoðpro-SSÞ; this induces a pro-extension of lim �
1. Unfortunately the

extension of holim is not concrete enough to understand what the ‘‘topological’’

pro-extension of lim �
1 does with non-level morphisms. As a compensation we

establish the purely algebraic

Theorem 8.1. lim �
1 : str-G! Set0 has a unique pro-extension lim �

1 : pro-G!
Set0.

For the proof we need a modified description of lim �
1 X. Let

~AAn ¼ fu A An j a0; . . . ; an are nþ 1 distinct objectsg;

~PPnX ¼
Y
u A ~AAn

Xu;

Z ~PP1X ¼ fðxuÞ A ~PP1X j Eðu1; u2Þ A ~AA2 : pu1ðxu2Þx�1u1u2
xu1 ¼ eg:

10 It is adjoint to the inclusion HoðSSÞ ! Hoðpro-SSÞ and in that sense unique up to natural iso-

morphism.
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The canonical projection ~pp : P1X! ~PP1X restricts to ~pp : ZP1X! Z ~PP1X.

Moreover, the operation of P0X on ZP1X obviously restricts to an operation of

P0X on Z ~PP1X defined by the same formula as above.

Lemma 8.2. If A A Cnmx, then ~pp : ZP1X! Z ~PP1X is a bijection such that

~ppððgaÞ 
 ðxuÞÞ ¼ ðgaÞ 
 ~ppððxuÞÞ. If ðgaÞ 
 ~ppððxuÞÞ ¼ ~ppððx 0uÞÞ, then ðgaÞ 
 ðxuÞ ¼ ðx 0uÞ.
Therefore ~pp induces a bijection lim �

1 X! Z ~PP1X=P0X.

Proof. It is an easy exercise to show that if A does not have maximal

elements, then each diagram in A has an outer cone. Let A 01 denote the com-

plement of ~AA1 in A1.

For u : a1 ! a0 we define an internal diagram ðuÞ ¼ ða0; a1; u; ida0 ; ida1Þ. Let
ðb; v0 : b! a0; v1 : b! a1Þ be an outer cone for ðuÞ; note that v0 ¼ v1 if a0 ¼ a1.

Any such outer cone will be called a resolution of u. We have v0; v1 A ~AA1 and for

all ðxuÞ A ZP1X as well as for all ðxuÞ A Z ~PP1X the following holds:

xu ¼ xv0 puðxv1Þ
�1ð8:1Þ

This is true because ðu; v1Þ A A2 (resp. ðu; v1Þ A ~AA2 for ðxuÞ A Z ~PP1X) so that

e ¼ puðxv1Þx�1uv1
xu ¼ puðxv1Þx�1v0

xu.

Claim 1: ~pp : ZP1X! Z ~PP1X is injective.

Proof. Let ðxuÞ A ZP1X. Then (8.1) shows that the coordinates xu for

u A A 01 are uniquely determined by the coordinates xv with v A ~AA1. r

Claim 2: For ðxvÞ A Z ~PP1X and u A A 01, u : a! a, define xu ¼ xv puðxvÞ�1

where ðb; v : b! aÞ is a resolution of ðuÞ. This definition is independent on

the choice of the resolution and thus produces a canonical extension function

i : Z ~PP1X! P1X (i.e. with ~ppi ¼ id ).

Proof. Let ðb 0; v 0 : b 0 ! aÞ be another resolution. Choose an outer cone

ðc;w : c! b; w 0 : c! b 0; s : c! aÞ for ða; b; b 0; v; v 0Þ. We have ðv;wÞ A ~AA2 so that

e ¼ pvðxwÞx�1vw xv ¼ pvðxwÞx�1s xv. Since pu pv ¼ puv ¼ pv we obtain

xs puðxsÞ�1 ¼ xv pvðxwÞpuðpvðxwÞ�1x�1v Þ ¼ xv puðxvÞ�1:

Similarly xs puðxsÞ�1 ¼ xv 0puðxv 0 Þ�1 which proves the claim. r

Claim 3: iðZ ~PP1XÞ � ZP1X so that ~pp : ZP1X! Z ~PP1X is bijective.
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Proof. Let ðxuÞ ¼ iððxvÞÞ. For ðu0; u1Þ A A2 choose an outer cone ðb; vi : b!
aiÞ for ða0; a1; a2; u0; u1; u0u1; ida0 ; ida1 ; ida2Þ. This yields resolutions for u0, u1, u0u1.
Using (8.1) resp. the definition in Claim 2 we obtain

pu0ðxu1Þx�1u0u1
xu0 ¼ pu0ðxv1pu1ðxv2Þ

�1Þðxv0 pu0u1ðxv2Þ
�1Þ�1xv0 pu0ðxv1Þ

�1 ¼ e: r

Claim 4: ~ppððgaÞ 
 ðxuÞÞ ¼ ðgaÞ 
 ~ppððxuÞÞ. This is obvious.

Claim 5: If ðgaÞ 
 ~ppððxuÞÞ ¼ ~ppððx 0uÞÞ, then ðgaÞ 
 ðxuÞ ¼ ðx 0uÞ.

Proof. For v A ~AA1, v : a1 ! a0, we have ga0xv pvðga1Þ
�1 ¼ x 0v. For an

arbitrary u A A1, u : a1 ! a0, choose a resolution ðb; vi : b! aiÞ. Then

ga0xu puðga1Þ
�1 ¼ ga0xv0 puðxv1Þ

�1
puðga1Þ

�1

¼ ga0xv0 pv0ðgbÞ
�1

pv0ðgbÞpuðxv1Þ
�1
puðga1Þ

�1 ¼ x 0v0 puðx
0
v1
Þ ¼ x 0u

where we used pv0 ¼ pu pv1 . r

r

Proof of Theorem 8.1. We apply Theorem 6.1 by showing that the

conditions in 6.1 (3) are satisfied.

(a) Let f ¼ ðj; ð fbÞÞ and g ¼ ðc; ðgbÞÞ be morphisms X! Y such that g �t f.

We show that lim �
1 g ¼ lim �

1 f.

We have

lim �
1 gð½ðxuÞ�Þ ¼ ½ðgb0ðxðcðvÞÞÞ� ¼ ½ð fb0 ptb0 ðxðcðvÞÞÞ�:

For the pairs ðtb0 ;cðvÞÞ; ðjðvÞ; tb1Þ A A2 we obtain

ptb0 ðxðcðvÞÞx
�1
tb0cðvÞ

xtb0 ¼ e ¼ pjðvÞðxtb1 Þx
�1
jðvÞtb1

xjðvÞ:

jðvÞtb1 ¼ tb0cðvÞ implies

ptb0 ðxcðvÞÞ ¼ x�1tb0
xtb0cðvÞ ¼ x�1tb0

xjðvÞ pjðvÞðxtb1 Þ:

Thus

fb0ptb0 ðxðcðvÞÞ ¼ fb0ðx�1tb0
Þ fb0ðxjðvÞÞ fb0 pjðvÞðxtb1 Þ

¼ fb0ðxtb0 Þ
�1
fb0ðxjðvÞÞqv fb1ðxtb1 Þ:

Setting zb ¼ fbðxtbÞ
�1 we see that

ð fb0 ptb0 ðxðcðvÞÞÞ ¼ ðzbÞ 
 ð fb0ðxvÞÞ:
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This means

lim �
1 gð½ðxuÞ�Þ ¼ ½ðzbÞ 
 ð fb0ðxuÞÞ� ¼ ½ð fb0ðxuÞÞ� ¼ lim �

1 fð½ðxuÞ�Þ:

(b) Let r ¼ rðX; mAÞ : X! m�AX be the standard cofinite reindexer for an

inverse system X over A A Cnmx. Writing m ¼ mA we have explicitly

m�X ¼ ðXD ¼ XmD; pðD1;D0Þ ¼ pmðD1;D0ÞÞ;

r ¼ ðm; idXmD
: XmD ! XDÞ;

lim �
1 rð½ðxuÞ�Þ ¼ ½ðxmðD1;D0ÞÞ�:

Adapting the technique used in [10] for the case of an inverse system X of abelian

groups indexed by an ordered set A, we shall construct a function

s1 : ZP1m�X! ZP1X

which will induce an inverse for lim �
1 r. For v A ~AA1, v : a1 ! a0, let ðvÞi � ðvÞ

denote the diagram ðai; idaiÞ. Then ðvÞ; ðvÞi A PðAÞ. Note that if v A A 01, then

ðvÞ B PðAÞ unless v ¼ ida. For ðyðD1;D0ÞÞ A ZP1m�X set

yv ¼ yððvÞ; ðvÞ0Þ pvðyððvÞ; ðvÞ1ÞÞ
�1:ð8:2Þ

We observe that also yida is well-defined and yields yida ¼ e. Define

~ss1ððyðD1;D0ÞÞÞ ¼ ðyvÞ A ~PP1X:ð8:3Þ

We show that ~ss1ððyðD1;D0ÞÞÞ A Z ~PP1X, i.e. pv1ðyv2Þy
�1
v1v2

yv1 ¼ e for all ðv1; v2Þ A ~AA2,

where v1 : a1 ! a0, v2 : a2 ! a1. For i; j A f0; 1; 2g define diagrams i ¼ ðai; idaiÞ,
ij ¼ ðai; aj; vij; idai ; idaj Þ where i < j and v01 ¼ v1, v12 ¼ v2, v02 ¼ v1v2, 012 ¼ ða0; a1;
a2; v1; v2; v1v2; ida1 ; ida2 ; ida2Þ. Since ðyðD1;D0ÞÞ A ZP1m�X we obtain 6 equations

1) pv0ðyð012;01ÞÞy�1ð012;0Þ yð01;0Þ ¼ e (note pð01;0Þ ¼ pv0 )

2) pv0v1ðyð012;02ÞÞy�1ð012;0Þ yð02;0Þ ¼ e (note pð02;0Þ ¼ pv0v1 )

3) pv1ðyð012;12ÞÞy�1ð012;1Þ yð12;1Þ ¼ e (note pð12;1Þ ¼ pv1 )

4) yð012;01Þy
�1
ð012;1Þ yð01;1Þ ¼ e (note pð01;1Þ ¼ pida1 ¼ id )

5) yð012;02Þy
�1
ð012;2Þ yð02;2Þ ¼ e (note pð02;2Þ ¼ pida2 ¼ id ¼ id )

6) yð012;12Þy
�1
ð012;2Þ yð12;2Þ ¼ e (note pð12;2Þ ¼ pida2 ¼ id )

From 3)–6) we derive

3 0) pv0v1ðyð012;12ÞÞpv0ðyð012;1ÞÞ
�1
pv0ðyð12;1ÞÞ ¼ e

4 0) pv0ðyð012;01ÞÞpv0ðyð012;1ÞÞ
�1
pv0ðyð01;1ÞÞ ¼ e

5 0) pv0v1ðyð012;02ÞÞpv0v1ðyð012;2ÞÞ
�1
pv0v1ðyð02;2ÞÞ ¼ e

6 0) pv0v1ðyð012;12ÞÞpv0v1ðyð012;2ÞÞ
�1
pv0v1ðyð12;2ÞÞ ¼ e
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From 1) and 4 0), 2) and 5 0), 3 0) and 6 0) we infer

1 00) y�1ð012;0Þ yð01;0Þ ¼ pv0ðyð012;1ÞÞ
�1
pv0ðyð01;1ÞÞ

2 00) y�1ð012;0Þ yð02;0Þ ¼ pv0v1ðyð012;2ÞÞ
�1
pv0v1ðyð02;2ÞÞ

3 00) pv0ðyð012;1ÞÞ
�1
pv0ðyð12;1ÞÞ ¼ pv0v1ðyð012;2ÞÞ

�1
pv0v1ðyð12;2ÞÞ

In 1 00) we replace y�1ð012;0Þ via 2 00) and obtain

4 00) pv0v1ðyð012;2ÞÞ
�1
pv0v1ðyð02;2ÞÞy�1ð02;0Þyð01;0Þ ¼ pv0ðyð012;1ÞÞ

�1
pv0ðyð01;1ÞÞ

In 4 00) we replace pv0v1ðyð012;2ÞÞ
�1 via 3 00) and obtain

5 00) pv0ðyð012;1ÞÞ
�1
pv0ðyð12;1ÞÞpv0v1ðyð12;2ÞÞ

�1
pv0v1ðyð02;2ÞÞy�1ð02;0Þ yð01;0Þ ¼

pv0ðyð012;1ÞÞ
�1
pv0ðyð01;1ÞÞ

which produces

6 00) pv0ðyð12;1ÞÞpv0v1ðyð12;2ÞÞ
�1
pv0v1ðyð02;2ÞÞy�1ð02;0Þ yð01;0Þ pv0ðyð01;1ÞÞ

�1 ¼ e

We have pv0ðyð12;1ÞÞpv0v1ðyð12;2ÞÞ
�1 ¼ pv0ðyð12;1Þ pv1ðyð12;2ÞÞ

�1Þ ¼ pv0ðyv1Þ,
pv0v1ðyð02;2ÞÞy�1ð02;0Þ ¼ y�1v0v1

, yð01;0Þpv0ðyð01;1ÞÞ
�1 ¼ yv0 , thus

pv0ðyv1Þy
�1
v0v1

yv0 ¼ e:

Using Lemma 8.2 we obtain the desired function s1 : ZP1m�X! ZP1X as

s1 ¼ ~pp�1~ss1. Note that for all u A A1 ¼ ~AA1 [ fida j a A Ag

s1ððyðD1;D0ÞÞÞu ¼ yu ¼ yððuÞ; ðuÞ0Þ puðyððuÞ; ðuÞ1ÞÞ
�1:ð8:4Þ

This is true for u ¼ ida simply because s1ððyðD1;D0ÞÞÞ A ZP1X. Now define

s0 : P0m�X! P0X; s0ððgDÞÞa ¼ gðaÞ

where ðaÞ denotes the diagram ða; idaÞ. We have

~ss1ðg 
 yÞ ¼ s0ðgÞ 
 ~ss1ðyÞ

since

~ss1ðg 
 yÞv ¼ ~ss1ððgD0
yðD1;D0ÞpðD1;D0ÞðgD1

Þ�1ÞÞv

¼ gðvÞ0 yððvÞðvÞ0Þ pððvÞ; ðvÞ0ÞðgðvÞÞ
�1
pvðgðvÞ1yððvÞðvÞ1Þ pððvÞ; ðvÞ1ÞðgðvÞÞ

�1Þ�1

¼ gðvÞ0 yððvÞðvÞ0Þ pvðgðvÞÞ
�1
pvðgðvÞÞpvðyððvÞðvÞ1ÞÞ

�1
pvðgðvÞ1Þ

�1

¼ gðvÞ0 yððvÞðvÞ0Þ pvðyððvÞðvÞ1ÞÞ
�1
pvðgðvÞ1Þ

�1 ¼ gðvÞ0 yv pvðgðvÞ1Þ
�1

¼ ðs0ðgÞ 
 ~ss1ðyÞÞv:

Using again Lemma 8.2 we see that

s1ðg 
 yÞ ¼ s0ðgÞ 
 s1ðyÞ
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so that s1 induces

s : lim �
1 m�X! lim �

1 X:

We have

sðlim �
1 rð½ðxuÞ�Þ ¼ sð½ðxmðD1;D0ÞÞ�Þ ¼ ½s1ððxmðD1;D0ÞÞÞ�:

For v A ~AA1 we have

s1ððxmðD1;D0ÞÞÞv ¼ xmððvÞ; ðvÞ0Þ pvðxmððvÞ; ðvÞ1ÞÞ
�1 ¼ xv

so that

~ppðs1ððxmðD1;D0ÞÞÞÞ ¼ ~ppððxuÞÞ

whence s1ððxmðD1;D0ÞÞÞ ¼ ðxuÞ. This proves

s � lim �
1 r ¼ id:

For all ðD1;D0Þ A PðAÞ2 we have mðD1;D0Þ A A1 so that by 8.4

lim �
1 rðsð½ðyðD1;D0ÞÞ�ÞÞ ¼ lim �

1 rð½s1ððyðD1;D0
ÞÞ�Þ ¼ ½ðs1ððyðD1;D0

ÞÞmðD1;D0ÞÞ�

¼ ½ðymðD1;D0ÞÞ�:

Setting

zD ¼ yðD; ðmDÞÞ A XðmDÞ ¼ XmD ¼ m�ðXÞD;ð8:5Þ

we shall show

ðzDÞ 
 ðyðD1;D0ÞÞ ¼ ððymðD1;D0ÞÞÞð8:6Þ

which proves

lim �
1 r � s ¼ id

and thus shows that lim �
1 r is a bijection, i.e. an isomorphism in Set0.

We set ai ¼ mDi and u ¼ mðD1;D0Þ : a1 ! a0. Then (8.6) means explicitly

yðD0;ða0ÞÞyðD1;D0Þ pðD1;D0ÞðyðD1; ða1ÞÞÞ
�1 ¼ yððuÞ; ða0ÞÞpuðyððuÞ; ða1ÞÞÞ

�1:ð8:7Þ

This will be verified by transforming it into equivalent equations. For

ðaiÞ � ðuÞ � D1 we obtain

yðD1; ðuÞÞy
�1
ðD1; ða1ÞÞyððuÞ; ða1ÞÞ ¼ pððuÞ; ða1ÞÞðyðD1; ðuÞÞÞy�1ðD1; ða1ÞÞ yððuÞ; ða1ÞÞ ¼ e;

puðyðD1; ðuÞÞÞy�1ðD1; ða0ÞÞyððuÞ; ða0ÞÞ ¼ pððuÞ; ða0ÞÞðyðD1; ðuÞÞÞy�1ðD1; ða0ÞÞyððuÞ; ða0ÞÞ ¼ e:
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Inserting yððuÞ; ðaiÞÞ into (8.7) yields (note pðD1;D0Þ ¼ pu)

yðD0; ða0ÞÞyðD1;D0Þ puðyðD1; ða1ÞÞÞ
�1

¼ yðD1; ða0ÞÞpuðyðD1; ðuÞÞÞ
�1
puðyðD1; ðuÞÞÞpuðyðD1; ða1ÞÞÞ

�1

which is equivalent to

yðD0; ða0ÞÞyðD1;D0Þ ¼ yðD1; ða0ÞÞ:ð8:8Þ

For ða0Þ � D0 � D1 we obtain

yðD1;D0Þy
�1
ðD1; ða0ÞÞyðD0; ða0ÞÞ ¼ pðD0; ða0ÞÞðyðD1;D0ÞÞy�1ðD1; ða0ÞÞ yðD0; ða0ÞÞ ¼ e

which proves (8.8). r

An immediate consequence of Lemma 5.4 is

Theorem 8.3. Let A A CðcfntÞ. Then lim �
1 : GA ! Set0 has a unique pro-

extension lim �
1 : pro-GA ! Set0.

Whether our functor lim �
1 : pro-G! Set0 coincides with the holim-based pro-

extension remains open. The question is complicated by the dependency of holim

on the choice of a closed model structure on pro-SS (cf. [7]). However, our lim �
1

has the following characteristic feature.

Theorem 8.4. Let S denote the category whose objects are short exact

sequences 0! A 0 !f
0

A!f A 00 ! 0 in pro-G and whose morphisms g : ð0! A 0 !f
0

A!f A 00Þ ! ð0! B 0 !g
0

B!g B 00Þ are triples g ¼ ðg 0; g; g 00Þ of morphisms g 0 : A 0 !
B 0, g : A! B, g 00 : A 00 ! B 00 in pro-G such that the following diagram commutes:

0 ���! A 0 ���!f 0 A ���!f A 00 ���! 0???yg 0

???yg

???yg 00

0 ���! B 0 ���!
g 0

B ���!
g

B 00 ���! 0

For i ¼ 1; 2; 3 let Compi : S! pro-G be the functor selecting the i-th component

of short exact sequences and morphisms between such sequences.

There exists a natural transformation d : lim � � Comp3 ! lim �
1 � Comp1 such

that the following sequence is exact for each A A S:

0 ��! lim � A 0 ��!lim � f 0

lim � A ��!lim � f

lim � A 00 ��!d lim �
1 A 0 ��!lim �

1 f 0

lim �
1 A ��!lim �

1 f

lim �
1 A 00
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Proof. We do not go into details. The same arguments as in [9, §15.2]

reduce the general case to short exact sequences of level morphisms where

everything is well-known. Only [9, Lemma 15.12] requires a new proof. This

is a routine exercise requiring to use the construction of d : lim � � Comp3 !
lim �

1 � Comp1 as presented e.g. in [8, Ch. II, §6.2, Proof of Theorem 8]. r

We finally consider the case A ¼ N where

ZP1X ¼ fðxðn;mÞÞ j Enama p : pðm;nÞðxðm;pÞÞx�1ðn;pÞxðn;mÞ ¼ eg

with xðn;mÞ A Xn. Define

Y : ZP1X! P0X ¼
Yy
i¼1

Xi; Yððxðn;mÞÞÞi ¼ xði; iþ1Þ:

It is known that Y is a bijection. The action of P0X on ZP1X transforms via Y

into an action of P0X on P0X given by

ððgiÞ 
 ðx 0i ÞÞn ¼ gnx
0
n pðnþ1;nÞðgnþ1Þ

�1:

This yields the well-known elementary description of lim �
1 X for inverse sequences

from [1, Ch. IX, §2.1]. We denote it as LIM 1X. It comes as a functor

LIM 1 : GN ! Set0: Each level morphism f ¼ ð fiÞ : X! Y induces P0f : P0X!
P0Y, P0fððx 0i ÞÞ ¼ ð fiðx 0i ÞÞ, which induces LIM 1f : LIM 1X! LIM 1Y, LIM 1fð½x 0�Þ
¼ ½P0fðx 0Þ�.

For a morphism f ¼ ðj; ð fiÞÞ in str-GN let us define P̂P0f ¼ YYðZP1fÞY�1X :

P0X! P0Y. Explicitly

P̂P0fððx 0i ÞÞ ¼
Yjðiþ1Þ�1

j¼jðiÞ
fi p

j
i ðx 0j Þ

0
@

1
A:

For level morphisms we have P̂P0f ¼ P0f. This implies

(1) LIM 1 extends naturally to str-GN by setting

LIM 1
strfð½x 0�Þ ¼ ½P̂P0fðx 0Þ� ¼

Yjðiþ1Þ�1

j¼jðiÞ
fi p

j
i ðx 0j Þ

0
@

1
A

2
4

3
5:

(2) Y induces a natural isomorphism Y 0 : lim �
1! LIM 1

str between functors on

str-GN.

We conclude that LIM 1 has a unique pro-extension LIM 1 : pro-GN ! Set0 which

coincides with the unique pro-extension of LIM 1
str.
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9. The Derived Limits on pro-AG

Let lim �
n : lev-AG! AG be the n-th derived limit functor which can be

represented as lim �
n ¼ pn �P� where pn is the n-th cohomotopy group11 on cAG

(cf. [1, Ch. XI, §6]). The natural extension of P� to str-AG generates a natural

extension lim �
n : str-AG! AG. In [10] and [9] it is proved that lim �

n : str-AGD !
AG has a pro-extension lim �

n : pro-AGD ! AG. Using the methods of this paper

and the technique of [10], [9] one can prove the stronger

Theorem 9.1. lim �
n : str-AG! AG has a unique pro-extension lim �

n : pro-AG

! AG.

The crucial and di‰cult part of the proof is to show that each standard

cofinite reindexer r induces an isomorphism lim �
n r. This was proved for arbitrary

reindexers in [2, Lemma 6.3]. Moreover we have

Theorem 9.2. The functors lim �
n : pro-AG! AG of Theorem 9.1 are the

right derived functors of lim � : pro-AG! AG.

This has been proved in [9] for the case of directed preordered index cat-

egories by showing that the functors in question form a universal connected

sequence of functors whose connecting homomorphisms come from the short

exact sequence P�ðSÞ of cochain complexes associated to any short exact se-

quence S in str-AG. The same proof applies in the general case.

Remark 9.3. In their role as right derived functors the lim �
n : pro-AG! AG

are up to natural isomorphism uniquley determined by lim � : pro-AG! AG, but

this does not mean eo ipso that each individual lim �
n : str-AG! AG (let alone

lim �
n : lev-AG! AG) has a unique pro-extension.

We conclude with

Theorem 9.4. Let A A CðcfntÞ. Then lim �
n : AGA ! AG has a unique pro-

extension lim �
n : pro-AGA ! AG.

11For G A cAG, pnðGÞ is defined as the n-th cohomology group of G considered as a cochain complex

with coboundaries dn ¼
P

ið�1Þ
i
d i, d i the cofaces of G.
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[ 9 ] S. Mardešić, Strong shape and homology, Springer, Berlin Heidelberg New York, 2000.

[10] T. Watanabe, An elementary proof of the invariance of limðnÞ on pro-abelian groups, Glasnik

Mat 26 (1991), 177–208.

Berliner Str. 11

61194 Niddatal, Germany

E-mail: pmrozik@gmx.de

296 Peter Mrozik


