FINITELY GENERATED SEMI-CONES IN PRODUCT RINGS

By

Yoshimi KITAMURA and Yoshio TANAKA

Abstract. Semi-cones of rings determine the partial orders in the rings. We consider semi-cones in the direct product rings and the product extension rings, inducing finitely generated semi-cones. In particular, we give characterizations for semi-cones of the direct product rings and the basic product extension rings of the ring of integers.

1. Introduction

As a generalization of positive cones of integral domains, we introduced semi-cones of rings which determine partial orders in the rings ([4, 6]). In this paper, we consider semi-cones in the direct product rings and the product extension rings, inducing finitely generated semi-cones. In particular, we give characterizations for semi-cones of the direct product rings and the basic product extension rings of the ring of integers.

The symbol R means a non-zero commutative ring with the identity element denoted by 1.

The symbol Z means the ring of integers. Define $N = \{1, 2, ...\}$, and $Z^* = N \cup \{0\}$.

Let A, B be subsets of R. Define $-A = \{-x \mid x \in A\}, A + B = \{x + y \mid x \in A, y \in B\}, AB = \{xy \mid x \in A, y \in B\}, aB = \{a\}B$ for $a \in R$, and $A \setminus \{0\} = \{x \mid x \in A, x \neq 0\}$. Also, define the direct product set $A \times B = \{(x, y) \mid x \in A, y \in B\}$.

The single set $\{0\}$ (or $\{(0,0)\}$) is often denoted by 0.

As is well-known, for a partial order \leq on R, (R, \leq) is a partially ordered ring ([1]) if R satisfies the following conditions:

²⁰¹⁰ Mathematics Subject Classification: 06A06, 06F25.

Key words and phrases: partially ordered ring, direct product ring, product extension ring, semi-cone, cone, finitely generated semi-cone.

Received March 3, 2017.

Revised July 13, 2017.

(i) $a \le b$ implies $a + x \le b + x$ for all x, and

(ii) $a \le b$ and $0 \le x$ implies $ax \le bx$.

For a subset S of (a ring) R, let us call S a *semi-cone* (resp. *cone*) of R if it satisfies (i), (ii), and (iii) (resp. (i), (ii), (iii), and (iv)) below; see [4, 6].

(i) $S + S \subset S$, that is, S is additive.

(ii) $SS \subset S$, that is, S is multiplicative.

- (iii) $S \cap (-S) = 0$.
- (iv) $R = S \cup (-S)$.

A subset S of R satisfying (i), (ii) is called a *positive cone* ([8] (or [2])) if $R \setminus \{0\} = S \cup (-S)$.

We note that for a semi-cone S of R, we induce a partially ordered ring (R, \leq_S) , defining $x \leq_S y$ by $y - x \in S$. Conversely, for a partially ordered ring (R, \leq) , putting $S = \{x \in R \mid 0 \leq x\}$, S is a semi-cone of R, and $\leq = \leq_S$.

In view of the above, a ring R is a partially ordered ring; ordered ring; ordered integral domain iff it has a semi-cone; cone; positive cone, respectively.

For a ring R, let us recall the following product rings (I) and (II) on $R \times R$.

(I) The usual direct product $R \times R$ equipped with component-wise addition and multiplication (that is, for $(x, y), (x', y') \in R \times R$, (x, y) + (x', y') = (x + x', y + y'), and $(x, y) \cdot (x', y') = (xx', yy')$).

Let us call such a ring the *direct product ring* of R, and denote it the symbol $R \otimes R$ (as in [5, 6]).

(II) Let $(a, b) \in R \times R$. The ring $R \times R$ equipped with addition and multiplication by (x, y) + (x', y') = (x + x', y + y') and (x, y) * (x', y') = (xx' + ayy', xy' + yx' + byy').

Let us call such an extension ring of R the product extension ring of R, and denote it the symbol $(R \ltimes R; a, b)$ (as in [5, 6]). For example, an extension ring $(\mathbf{R} \ltimes \mathbf{R}; -1, 0)$ of the real number field \mathbf{R} is isomorphic to the complex number field. (Algebraic structures of the rings $(R \ltimes R; a, b)$ and their ideals are observed in [5]). Especially, a basic ring $(R \ltimes R; 0, 0)$ is called the *trivial extension* of R by itself, denoted by $R \ltimes R$. As is well-known, this ring gives useful examples related to ring structures and order structures, or extensions ([9], for example).

2. Semi-cones

LEMMA 2.1. Let A, A' be subsets of R with $A, A' \ni 0$. If $A \times A'$ is multiplicative in $(R \ltimes R; a, b)$, then $AA \subset A$, $AA' \subset A'$, $aA'A' \subset A$, and $bA'A' \subset A'$. The converse holds if A and A' are additive.

PROOF. The first half holds, noting (0, x') * (0, y') = (ax'y', bx'y') and (x, x') * (y, 0) = (xy, x'y) in $(R \ltimes R; a, b)$. The latter part is routine.

PROPOSITION 2.2. Let A and A' be subsets of R. Then the following hold. (1) $A \times A'$ is a semi-cone of $R \otimes R$ iff A and A' are semi-cones of R.

(2) $A \times A'$ is a semi-cone of $(R \ltimes R; a, b)$ iff A is a semi-cone of R, and A' is an additive set such that $A' \cap -A' = 0$, $AA' \subset A'$, $aA'A' \subset A$, and $bA'A' \subset A'$. In particular, $A \times A'$ is a semi-cone of $R \ltimes R$ iff A is a semi-cone of R, and $A' \subset A'$.

PROOF. (1) is routine. (2) is routinely shown, using Lemma 2.1. \Box

REMARK 2.3. (1) In the only if part of Proposition 2.2(2), (i) for every $(R \ltimes R; a, b)$, A' need not be a semi-cone of R; while (ii) for $a \neq 0$, $A' \cap -A' = 0$ can be deleted under R being an integral domain. (Indeed, for (i), let $R = \mathbb{Z}$, and $A = \mathbb{Z}^*$ and $A' = -\mathbb{Z}^*$ in R. Then, for $a \ge 0$ and $b \le 0$, $A \times A'$ is a semi-cone of $(R \ltimes R; a, b)$ by Proposition 2.2(2), but A' is not a semi-cone of R by $A'A' \not\subset A'$. For (ii), let $x \in A' \cap -A'$. Then $ax^2, -ax^2 \in A$ by $aA'A' \subset A$. Thus, $ax^2 = 0$ by $A \cap -A = 0$, thus x = 0. Hence $A' \cap -A' = 0$.

(2) For a semi-cone S of R with $SS \neq 0$, let $S_1 = S \times 0$ and $S_2 = 0 \times S$ be semi-cones of $R' = R \ltimes R$. Then $S_1 \times S_2$ is a semi-cone of $R' \ltimes R'$, but $S_2 \times S_1$ is not a semi-cone by Proposition 2.2(2), noting $S_1 * S_2 \subset S_2$, but $S_2 * S_1 \not\subset S_1$.

Let $p_1, p_2 : R \times R \to R$ be the projections defined by $p_1(x, y) = x$, and $p_2(x, y) = y$, unless otherwise stated.

For a semi-cone A of $R \otimes R$ or $R \ltimes R$, $p_i(A)$ need not be a semi-cone of R for each i = 1, 2; see Remark 2.7 later. But, we have the following proposition which is routinely shown, here (2)(b) holds by Proposition 2.2(2).

PROPOSITION 2.4. The following hold.

- (1) For a semi-cone A of $R \otimes R$, (a) and (b) below hold.
 - (a) $p_i(A)$ is a semi-cone of R iff $p_i(A) \cap p_i(-A) = 0$ for each i = 1, 2.
 - (b) p₁(A) × p₂(A) is a semi-cone of R ⊗ R iff p_i(A) are semi-cones of R (equivalently, p_i(A) ∩ p_i(−A) = 0) for i = 1,2.
- (2) For a semi-cone A of $R \ltimes R$, (a) and (b) below hold.
 - (a) $p_1(A)$ is additive and multiplicative, and $p_2(A)$ is additive. In particular, $p_1(A)$ is a semi-cone of R iff $p_1(A) \cap p_1(-A) = 0$. While, $p_2(A)$ is a semi-cone of R iff $p_2(A) \cap p_2(-A) = 0$, and $p_2(A)p_2(A) \subset$ $p_2(A)$.

Yoshimi KITAMURA and Yoshio TANAKA

(b) $p_1(A) \times p_2(A)$ is a semi-cone of $R \ltimes R$ iff $p_i(A) \cap p_i(-A) = 0$ (i = 1, 2), and $p_1(A)p_2(A) \subset p_2(A)$.

REMARK 2.5. In Proposition 2.4(2), if $p_2(A) \cap p_2(-A) = 0$ (resp. $p_2(A)p_2(A) \subset p_2(A)$) is deleted in (a), $p_2(A)$ need not be a semi-cone of R (by a cone $A = (\mathbf{N} \times \mathbf{Z}) \cup (0 \times \mathbf{Z}^*)$ (resp. a semi-cone $A = \mathbf{Z}^* \times -\mathbf{Z}^*$) of $\mathbf{Z} \ltimes \mathbf{Z}$. Also, if $p_2(A) \cap p_2(-A) = 0$ is deleted in (b), $p_1(A) \times p_2(A)$ need not be a semi-cone of $R \ltimes R$ (by the above cone A).

For a subset X of $R \otimes R$ (resp. $R \ltimes R$), the symbol ann(X) means the set $\{a \in R \mid (a, a)X = 0\}$ (resp. $\{a \in R \mid (a, 0) * X = 0\}$).

PROPOSITION 2.6. Let $A \subset R \times R$ and $A' = A \cap (0 \times R)$. The following hold. (1) If A is a semi-cone of $R \otimes R$ or $R \ltimes R$, and A' = 0, then $p_1(A)$ is a semi-cone of R.

(2) If A is a semi-cone of $R \otimes R$ (resp. $R \ltimes R$), and $A' \neq 0$, then $p_2(A)$ (resp. $p_1(A)$) is a semi-cone under $\operatorname{ann}(A') = 0$.

PROOF. For (1), by Proposition 2.4, it suffices to show $p_1(A) \cap -p_1(A) = 0$, so let $x = p_1(x, y) = -p_1(x', y')$ with $(x, y), (x', y') \in A$. Then $(x, y) + (x', y') = (x + x', y + y') = (0, y + y') \in A \cap (0 \times R)$. Thus y + y' = 0 by A' = 0. Hence $(x, y) = (-x', -y') \in A \cap -A$, so (x, y) = (0, 0) by $A \cap -A = 0$. Then x = 0.

For (2), we show $p_1(A)$ is a semi-cone in $R \ltimes R$ (similarly, $p_2(A)$ is a semi-cone in $R \otimes R$). Similarly as in (1), it suffices to show $p_1(A) \cap -p_1(A) = 0$, so let $x = p_1(x, y) = -p_1(x', y')$ with $(x, y), (x', y') \in A$. For any $(0, z) \in A'$, $(x, y) * (0, z) = (0, xz) \in A$, $(x', y') * (0, z) = (0, x'z) \in A$, and hence $(0, xz) = (0, -x'z) = -(0, x'z) \in A \cap -A$, which yields (0, xz) = (0, 0). Then (x, 0) * A' = (0, 0). Thus x = 0 by $\operatorname{ann}(A') = 0$ with $A' \neq 0$.

REMARK 2.7. Related to Proposition 2.6, we have (1) and (2) below.

(1) For a semi-cone A of $R \otimes R$ and $R \ltimes R$ with $A'(=A \cap (0 \times R)) = 0$, $p_2(A)$ need not be a semi-cone of R (by a semi-cone $A = (\mathbf{N} \times \mathbf{Z}) \cup 0$ of $\mathbf{Z} \otimes \mathbf{Z}$ and $\mathbf{Z} \ltimes \mathbf{Z}$).

(2) For a semi-cone A of $R \otimes R$ (resp. $R \ltimes R$) with $A' \neq 0$, we have the following (a) (resp. (b)).

(a) (i) $p_1(A)$ need not be a semi-cone of R under $\operatorname{ann}(A') = 0$ (by a semicone $A = (\mathbb{Z} \times \mathbb{N}) \cup 0$ of $\mathbb{Z} \otimes \mathbb{Z}$). Also, (ii) $p_2(A)$ need not be a semi-cone of R(indeed, let $R = \mathbb{Z} \ltimes \mathbb{Z}$, and let $A_1 = 0 \times \mathbb{N}$, $A_2 = 0 \times \mathbb{Z}$. Then $A = (A_1 \times A_2) \cup$

 $(0 \times (0 \times \mathbb{Z}^*))$ is a semi-cone of $R \otimes R$ with $\operatorname{ann}(A') \neq 0$, but $p_2(A)$ is not a semi-cone of R).

(b) (i) $p_1(A)$ need not be a semi-cone of R (indeed, let R, and A_1 , A_2 be the same as (a)(ii). Then $A = (A_2 \times A_1) \cup 0$ is a semi-cone of $R \ltimes R$ with $\operatorname{ann}(A') \neq 0$, but $p_1(A)$ is not a semi-cone of R). Also, (ii) $p_2(A)$ need not be a semi-cone of R under $\operatorname{ann}(A') = 0$ (by the cone (or semi-cone) A of $\mathbb{Z} \ltimes \mathbb{Z}$ in Remark 2.5).

PROPOSITION 2.8. For a subset A of \mathbf{Z} , the following are equivalent.

- (1) A is additive, and $A \cap -A = 0$.
- (2) A is additive with $A \ni 0$, and $A \subset \mathbb{Z}^*$ or $A \subset -\mathbb{Z}^*$.
- (3) $A = a_1 \mathbf{Z}^* + \dots + a_m \mathbf{Z}^*$ for some a_1, \dots, a_m with all $a_i \in \mathbf{Z}^*$ or all $a_i \in -\mathbf{Z}^*$.

PROOF. For $(1) \Rightarrow (2)$, suppose (2) doesn't hold. Then $m, -n \in A$ for some $m, n \in \mathbb{N}$, thus $A \cap -A \ni mn \neq 0$, a contradiction.

For (2) \Rightarrow (3), for $A \subset \mathbb{Z}^*$, (3) holds in view of the proof of [3, Proposition 2.9], and thus (3) also holds for $A \subset -\mathbb{Z}^*$, putting A' = -A. (3) \Rightarrow (1) is obvious.

COROLLARY 2.9. For a subset A of Z, the following are equivalent (cf. [3]).

(1) A is a semi-cone of \mathbf{Z} .

(2) A is additive with $0 \in A \subset \mathbb{Z}^*$.

(3) $A = a_1 \mathbf{Z}^* + \cdots + a_m \mathbf{Z}^*$ for some $a_1, \ldots, a_m \in \mathbf{Z}^*$.

The following holds by Proposition 2.6 with Corollary 2.9.

PROPOSITION 2.10. Let R be an integral domain, and let A be a semi-cone of $R \otimes R$ (resp. $R \ltimes R$). Then $p_1(A)$ or $p_2(A)$ (resp. $p_1(A)$) is a semi-cone of R. In particular, for $R = \mathbb{Z}$, $p_1(A) \subset \mathbb{Z}^*$ or $p_2(A) \subset \mathbb{Z}^*$ (resp. $p_1(A) \subset \mathbb{Z}^*$).

The following holds by Propositions 2.2 and 2.8.

PROPOSITION 2.11. Let A and A' be subsets of Z with $A' \ni 0$. For $A' \neq 0$, $A \times A'$ is a semi-cone of $(\mathbb{Z} \ltimes \mathbb{Z}; a, b)$ iff A is a semi-cone of Z, and A' is an additive set such that $aA'A' \subset A$, and $A' \subset \mathbb{Z}^*$ with $b \in \mathbb{Z}^*$ or $A' \subset -\mathbb{Z}^*$ with $b \in -\mathbb{Z}^*$. (For A' = 0, $A \times 0$ is a semi-cone of $(\mathbb{Z} \ltimes \mathbb{Z}; a, b)$ iff so is A of Z).

COROLLARY 2.12. The following hold.

- (1) For subsets A and A' of Z with A' ∋ 0, A × A' is a semi-cone of Z × Z iff (i) A is a semi-cone (equivalently, A is additive with 0 ∈ A ⊂ Z*), and (ii) A' is additive with A' ⊂ Z* or A' ⊂ -Z*.
- (2) For a semi-cone A of $\mathbb{Z} \ltimes \mathbb{Z}$, $p_1(A) \times p_2(A)$ is a semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ iff $p_2(A) \subset \mathbb{Z}^*$ or $p_2(A) \subset -\mathbb{Z}^*$.

The following holds by Propositions 2.11, and 2.8 with Corollary 2.9.

COROLLARY 2.13. For subsets A and A' of Z, $A \times A'$ is a semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ iff $A = a_1 \mathbb{Z}^* + \cdots + a_m \mathbb{Z}^*$ for some $a_1, \ldots, a_m \in \mathbb{Z}^*$, and $A' = b_1 \mathbb{Z}^* + \cdots + b_n \mathbb{Z}^*$ for some b_1, \ldots, b_n with all $b_i \in \mathbb{Z}^*$ or all $b_i \in -\mathbb{Z}^*$.

COROLLARY 2.14. Corollaries 2.12 and 2.13 remain true in $\mathbb{Z} \otimes \mathbb{Z}$, but delete the part of " $-\mathbb{Z}^*$ " in these corollaries.

3. Finitely Generated Semi-cones

We shall introduce the concept of finitely generated semi-cones. We note that arbitrary intersections of semi-cones are semi-cones. Let X be a subset of R. When X is contained in some semi-cone, the intersection of all semi-cones which contain X is evidently the smallest semi-cone containing X. If there exists the smallest semi-cone containing X, then we shall call it the *semi-cone generated by* X, denoted by $\langle X \rangle$. Obviously, $\langle X \rangle = \langle X \cup 0 \rangle$.

For a finite subset $\{x_1, \ldots, x_n\}$ of *R* contained in some semi-cone, the symbol $\langle x_1, \ldots, x_n \rangle$ means $\langle \{x_1, \ldots, x_n\} \rangle$.

Let A be a semi-cone of R. We shall say that A is *finitely generated* if $A = \langle F \rangle$ for some finite subset F in A.

We note that every finitely generated semi-cone of R must be countable in view of Proposition 3.1 below. Also, note that every semi-cone A of R need not be finitely generated even if A is contained in a finitely generated semi-cone of R; see Proposition 3.8 (or Example 3.9) later.

The following basic proposition is routinely shown.

PROPOSITION 3.1. Let $F = \{x_1, \ldots, x_n\}$ be a finite subset of some semi-cone in R with all $x_i \neq 0$, and let $x_i^0 = 1$. Let \overline{F} be the set of all finite sums of elements of the form $cx_1^{v_1} \cdots x_n^{v_n}$, where $c, v_1, \ldots, v_n \in \mathbb{Z}^*$ with some $v_i > 0$. Then $\langle F \rangle = \overline{F}$. For an element of the set \overline{F} in the previous proposition, we will use a brief symbol

$$\sum c x_1^{\nu_1} \cdots x_n^{\nu_n}$$

under $c, v_1, \ldots, v_n \in \mathbb{Z}^*$ with some $v_i > 0$.

PROPOSITION 3.2. For a non-zero subset A of R, A is a semi-cone of R iff A has a cover \mathscr{C} (i.e., $A = \bigcup \{X \mid X \in \mathscr{C}\}$) of semi-cones generated by any finitely many elements (or two elements) of A. In particular, for A being countable, we can take \mathscr{C} to be an increasing countable cover of semi-cones generated by finitely many elements (or, a countable cover of semi-cones generated by any two elements) of A.

PROOF. For the only if part, let \mathscr{F} be the collection of all finite sets (or two elements) in a semi-cone A. Let $\mathscr{C} = \{\langle F \rangle | F \in \mathscr{F}\}$. Then \mathscr{C} is a cover of A, and each $\langle F \rangle$ is a finitely generated semi-cone. For the if part, note that any two elements x, y in A are contained in some semi-cone in A. Thus, A is a semi-cone. For A being countable, let $A = \{a_i | i \in \mathbb{N}\}$, and $F_n = \{a_1, a_2, \ldots, a_n\}$. Then $\mathscr{C} = \{\langle F_n \rangle | n \in \mathbb{N}\}$ is a desired increasing cover.

REMARK 3.3. Every union of two semi-cones generated by finitely many elements need not be a semi-cone (indeed, for finitely generated semi-cones $\mathbf{Z}^* \times \mathbf{0}$ and $\mathbf{0} \times \mathbf{Z}^*$ in $\mathbf{Z} \ltimes \mathbf{Z}$ (by Corollary 3.5 later), their union is not a semi-cone).

THEOREM 3.4. Let S, T be semi-cones of R. Then the following hold.

- (1) $S \times T$ is a finitely generated semi-cone of $R \otimes R$ iff so are S and T of R.
- (2) $S \times T$ is a finitely generated semi-cone of $R \ltimes R$ iff (i) S is finitely generated and (ii) $T = (Sy_1 + \dots + Sy_n) + (\mathbf{Z}^*y_1 + \dots + \mathbf{Z}^*y_n)$ for some $y_1, \dots, y_n \in T$.

PROOF. For (1), it is routinely shown (as in the proof below).

For (2), note $S \times T$ is a semi-cone of $R \ltimes R$ iff $ST \subset T$ by Proposition 2.2(2). For the only if part of (2), let $S \times T = \langle (x_1, y_1), \dots, (x_n, y_n) \rangle$ with all $(x_i, y_i) \neq 0$. Obviously, $S = \langle x_1, \dots, x_n \rangle$, hence (i) holds. To see (ii), let $T' = Sy_1 + \dots + Sy_n + \mathbb{Z}^*y_1 + \dots + \mathbb{Z}^*y_n$. Let $y \in T$. Then $(0, y) \in S \times T$, so let $(0, y) = \sum c(x_1, y_1)^{v_1} * \dots * (x_n, y_n)^{v_n} \in S \times T$ by Proposition 3.1. Note that for

 $a \in \mathbb{Z}^*$ and $(s,t), (s',t') \in S \times T$, $a(s,t) = (as,at) \in S \times \mathbb{Z}^* t$, and $(s,t) * (s',t') = (ss', st' + s't) \in S \times (St + St')$. Then we show that $(0, y) \in S \times T'$, so $y \in T'$. Thus $T \subset T'$. While, $T' \subset T$ by $ST \subset T$. Hence T' = T. For the if part of (2), assume (i) and (ii) hold. Since $ST \subset T$, $S \times T$ is a semi-cone of $R \ltimes R$. Let $S = \langle x_1, \ldots, x_m \rangle$. Let $F = \{(x_1, 0), \ldots, (x_m, 0), (0, y_1), \ldots, (0, y_n)\}$. To see $S \times T = \langle F \rangle$, let $(x, y) \in S \times T$. Let $x = \sum cx_1^{v_1} \cdots x_m^{v_m}$, and let $y = \sum_{j=1}^n s_j y_j + \sum_{j=1}^n c_j y_j$ $(s_j \in S, c_j \in \mathbb{Z}^*)$. Then,

$$(x,0) = \left(\sum cx_1^{v_1} \cdots x_m^{v_m}, 0\right) = \sum c(x_1^{v_1} \cdots x_m^{v_m}, 0)$$

= $\sum c(x_1, 0)^{v_1} * \cdots * (x_m, 0)^{v_m} \in \langle F \rangle$
 $(0, y) = \left(0, \sum_{j=1}^n s_j y_j\right) + \left(0, \sum_{j=1}^n c_j y_j\right)$
= $\sum_{j=1}^n (0, s_j y_j) + \sum_{j=1}^n c_j (0, y_j)$
= $\sum_{j=1}^n (s_j, 0) * (0, y_j) + \sum_{j=1}^n c_j (0, y_j) \in \langle F \rangle,$

noting each $(s_j, 0) \in \langle F \rangle$ by the above. Hence $(x, y) = (x, 0) + (0, y) \in \langle F \rangle$. Thus $S \times T = \langle F \rangle$.

COROLLARY 3.5. Let S be a semi-cone of R. Then the following hold.

- (1) $S \times 0$ is a finitely generated semi-cone of $R \ltimes R$ iff so is S of R.
- (2) $0 \times S$ is a finitely generated semi-cone of $R \ltimes R$ iff $S = \mathbb{Z}^* x_1 + \cdots + \mathbb{Z}^* x_n$ for some x_1, \ldots, x_n in S.
- (3) $S \times S$ is a finitely generated semi-cone of $R \ltimes R$ iff so is S of R.

PROOF. (1), (2), and (3) hold by Theorem 3.4. But, for (3), note $S = \sum_{i=1}^{n} Sx_i + \sum_{i=1}^{n} \mathbb{Z}^* x_i$ if $S = \langle x_1, \dots, x_n \rangle$.

COROLLARY 3.6. Let S and T be semi-cones of R with $S \subset T$ (or, $1 \in T$). If $S \times T$ is a finitely generated semi-cone of $R \ltimes R$, then so are S and T of R.

PROOF. Let $S \times T = \langle (x_1, y_1), \dots, (x_n, y_n) \rangle$ with all $(x_i, y_i) \in S \times T$. Let $F = \{x_i, y_j \mid i, j = 1, \dots, n\}$. Since $S \subset T$ (especially, $1 \in T$ by use of Lemma 2.1), $T = \langle F \rangle$ in view of the proof of Theorem 3.4(2).

In the previous corollary, the converse need not hold (even if $S = 0, 1 \in T$); see Example 3.9 later.

We will consider finitely generated semi-cones in $\mathbb{Z} \ltimes \mathbb{Z}$ (or $\mathbb{Z} \otimes \mathbb{Z}$).

Let us recall (lexicographic) sets $L = (\mathbf{N} \times \mathbf{Z}) \cup (\mathbf{0} \times \mathbf{Z}^*)$ and $L^* = (\mathbf{N} \times \mathbf{Z}) \cup (\mathbf{0} \times -\mathbf{Z}^*)$ in $\mathbf{Z} \times \mathbf{Z}$. We note that the cones of $\mathbf{Z} \ltimes \mathbf{Z}$ are precisely the sets L and L^* ([6]). While, $R \otimes R$ has no cones ([4]).

PROPOSITION 3.7. The following hold.

(1) All semi-cones of Z are finitely generated.

(2) The cones L and L^* of $\mathbb{Z} \ltimes \mathbb{Z}$ are finitely generated.

PROOF. (1) holds by Corollary 2.9. For (2), note $L = \langle (1, -1), (0, 1) \rangle$ and $L^* = \langle (1, 1), (0, -1) \rangle$ by the proof of [6, Proposition 2.12].

For a non-zero semi-cone S of R, let us define $S_0 = S \setminus \{0\}$, unless otherwise stated.

PROPOSITION 3.8. Let S and T be non-zero semi-cones of Z. Then the following hold in $\mathbb{Z} \otimes \mathbb{Z}$ as well as $\mathbb{Z} \ltimes \mathbb{Z}$.

- (1) $S \times T$ is a finitely generated semi-cone, while its subset
- (2) $A = (S_0 \times T_0) \cup 0$ is a semi-cone, but A is not finitely generated.

PROOF. For (1), $S \times T$ is a semi-cone of $\mathbb{Z} \otimes \mathbb{Z}$ and $\mathbb{Z} \ltimes \mathbb{Z}$, and it is finitely generated by Theorem 3.4 with Corollary 2.9.

For (2), *A* is a semi-cone in $\mathbb{Z} \otimes \mathbb{Z}$ and $\mathbb{Z} \ltimes \mathbb{Z}$. To see the latter part in $\mathbb{Z} \otimes \mathbb{Z}$, suppose $A = \langle (a_1, b_1), \dots, (a_n, b_n) \rangle$ with all $(a_i, b_i) \in S_0 \times T_0$. Let *p* be a prime number with $p > \max(a_1, \dots, a_n)$. Take $a \in S_0$ and let s = pa. Then $s \in S_0$. Let $t = \min T_0 \in T_0$. Then $(s, t) \in A$, so let $(s, t) = \sum c(a_1, b_1)^{v_1} \cdots (a_n, b_n)^{v_n}$ by Proposition 3.1. Noting x + y > t for all $x, y \in T_0$, $(s, t) = (a_1, b_1)^{v_1} \cdots (a_n, b_n)^{v_n}$ for some v_1, \dots, v_n with c = 1. Then $s = a_1^{v_1} \cdots a_n^{v_n}$, thus *p* is a divisor of some a_i , a contradiction. Hence *A* is not finitely generated. In $\mathbb{Z} \ltimes \mathbb{Z}$, *A* is also not finitely generated by the same way (or, taking $s \in S_0$ distinct from any a_i).

As is seen above, every semi-cone which is a subset of a finitely generated semi-cone need not be finitely generated in $\mathbb{Z} \otimes \mathbb{Z}$ or $\mathbb{Z} \ltimes \mathbb{Z}$. Also, let us give a finitely generated semi-cone S of R such that (i) $S \times S$ is a finitely generated semi-cone of $R \ltimes R$, but (ii) a semi-cone $0 \times S$ of $R \ltimes R$ is not finitely generated. (In $R \otimes R$, such a semi-cone S of R does not exist in view of Theorem 3.4(1)).

EXAMPLE 3.9. For the cone $L(=(\mathbf{N} \times \mathbf{Z}) \cup (\mathbf{0} \times \mathbf{Z}^*))$ of $R = \mathbf{Z} \ltimes \mathbf{Z}$, the above (i) and (ii) hold in $R \ltimes R$. Similarly, for the cone L^* , (i) and (ii) also hold.

Indeed, (i) holds by Proposition 3.7(2) and Corollary 3.5(3). To see (ii), suppose that a semi-cone $0 \times L$ is finitely generated. Then, by Corollary 3.5(2), $L = \mathbb{Z}^*(x_1, y_1) + \cdots + \mathbb{Z}^*(x_n, y_n)$ for some $(x_1, y_1), \ldots, (x_n, y_n)$ in L. Take $y_0 \in \mathbb{Z}$ with $y_0 < y_i$ for all y_i . Then $(1, y_0) \in L$, but $(1, y_0) \notin \mathbb{Z}^*(x_1, y_1) + \cdots + \mathbb{Z}^*(x_n, y_n)$, a contradiction. To see this, assume $(1, y_0) = a_1(x_1, y_1) + \cdots + a_n(x_n, y_n)$ for some $a_1, \ldots, a_n \in \mathbb{Z}^*$. Then $(1, y_0) = (a_1x_1 + \cdots + a_nx_n, a_1y_1 + \cdots + a_ny_n)$. Since all $x_i \ge 0$, all $a_ix_i \ge 0$. Thus $a_ix_i = 1$ for some *i*. Hence, for $j \ne i$, $a_jx_j = 0$, thus $a_jy_j = 0$ for $a_j = 0$, or $y_j \ge 0$ for $a_j \ne 0$ (by $(0, y_j) \in 0 \times \mathbb{Z}^*$). Hence, $y_0 = a_1y_1 + \cdots + a_ny_n \ge y_i > y_0$. This is a contradiction. Then (ii) holds.

For a non-zero semi-cone *S* of *R*, recall the following subsets of $R \times R$ ([6]). $D_0 = \{(x, x) | x \in S\}; D_1 = \{(x + y, x) | x, y \in S\}; D_2 = \{(x, x + y) | x, y \in S\};$ and $L = (S_0 \times R) \cup (0 \times S); L' = (R \times S_0) \cup (S \times 0).$

In $R \otimes R$, D_0 , D_1 , D_2 (except L, L') are semi-cones. In $R \ltimes R$, D_2 is a semicone, and L (except D_0 , D_1) is a semi-cone under R being an integral domain. But, L' is not a semi-cone in $R \ltimes R$. (For these, see [6]).

PROPOSITION 3.10. Let S be a non-zero semi-cone of \mathbb{Z} . Then the following hold.

- (1) D_0 , D_1 , D_2 are finitely generated semi-cones in $\mathbb{Z} \otimes \mathbb{Z}$, and so is D_2 in $\mathbb{Z} \ltimes \mathbb{Z}$.
- (2) *L* is a finitely generated semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ iff $1 \in S$ (i.e., L = L).

PROOF. For (1), let $S = \sum_i \mathbb{Z}^* x_i$ with $x_1, \ldots, x_n \in S$ by Corollary 2.9. We show D_2 is finitely generated in $\mathbb{Z} \otimes \mathbb{Z}$ (or $\mathbb{Z} \ltimes \mathbb{Z}$), for example. Let $x, y \in S$ with $x = \sum_i c_i x_i$, $y = \sum_i d_i x_i$ $(c_i, d_i \in \mathbb{Z}^*)$. Then $(x, x + y) = (x, x) + (0, y) = \sum_i c_i(x_i, x_i) + \sum_i d_i(0, x_i)$. Thus D_2 is generated by $\{(x_i, x_i), (0, x_i) \mid i = 1, \ldots, n\}$. For (2), to see the if part, let $1 \in S$. Then $S = \mathbb{Z}^*$, so $L = \mathbb{L}$. Hence, L is finitely generated by Proposition 3.7(2). For the only if part, let $L = \langle F \rangle$ for some finite set $F = \{(a_1, b_1), \ldots, (a_k, b_k), (0, b_{k+1}), \ldots, (0, b_n)\}$ with a_1, \ldots, a_k , $b_{k+1}, \ldots, b_n \in S_0$. Suppose $1 \notin S$. Let $a = \min(a_1, \ldots, a_k)$. Then $1 < a \le a_i$ with $a \in S_0$. Take $b \in \mathbb{Z}$ with $b < b_i$ for all b_i . Then $(a, b) \in L$. But, $(a, b) \notin \langle F \rangle$

by Proposition 3.1, noting that $(a_i, b_i) * (a_j, b_j) = (a_i a_j, a_i b_j + b_i a_j) \neq (a, b)$ (by $a_i a_j > a$); and $(a_i, b_i) + (0, b_j) \neq (a, b)$, etc. This is a contradiction. Then $1 \in S$.

4. Characterizations of Semi-cones in $Z \otimes Z$

The following lemma holds in view of the proof of Proposition 2.6, and Corollary 2.9.

LEMMA 4.1. For a semi-cone A of $\mathbf{Z} \otimes \mathbf{Z}$, let $A' = A \cap (0 \times \mathbf{Z})$ and $A'' = A \cap (\mathbf{Z} \times 0)$. Then the following hold.

- (1) If A' = 0, then $p_1(A)$ is a semi-cone of \mathbb{Z} with $p_1(A) \subset \mathbb{Z}^*$. Also, if $A' \neq 0$, then $p_2(A)$ is a semi-cone of \mathbb{Z} with $p_2(A) \subset \mathbb{Z}^*$.
- (2) If A'' = 0, then $p_2(A)$ is a semi-cone of \mathbb{Z} with $p_2(A) \subset \mathbb{Z}^*$. Also, if $A'' \neq 0$, then $p_1(A)$ is a semi-cone of \mathbb{Z} with $p_1(A) \subset \mathbb{Z}^*$.

Let \mathscr{C} be the collection of all semi-cones of $\mathbb{Z} \otimes \mathbb{Z}$, and define the following subcollections \mathscr{C}_i (i = 1, 2, 3, 4) of \mathscr{C} satisfying $\mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2 \cup \mathscr{C}_3 \cup \mathscr{C}_4$.

 $\begin{aligned} & \mathscr{C}_1 = \{ A \in \mathscr{C} \mid A \cap (0 \times \mathbf{Z}) \neq 0, A \cap (\mathbf{Z} \times 0) \neq 0 \}, \\ & \mathscr{C}_2 = \{ A \in \mathscr{C} \mid A \cap (0 \times \mathbf{Z}) \neq 0, A \cap (\mathbf{Z} \times 0) = 0 \}, \\ & \mathscr{C}_3 = \{ A \in \mathscr{C} \mid A \cap (0 \times \mathbf{Z}) = 0, A \cap (\mathbf{Z} \times 0) \neq 0 \}, \\ & \mathscr{C}_4 = \{ A \in \mathscr{C} \mid A \cap (0 \times \mathbf{Z}) = 0, A \cap (\mathbf{Z} \times 0) = 0 \}. \end{aligned}$

THEOREM 4.2. Let A be an additive and multiplicative subset of $\mathbb{Z} \otimes \mathbb{Z}$ with $A \ni 0$. Then the following hold.

- (1) $A \in \mathscr{C}_1 \Leftrightarrow A \subset \mathbb{Z}^* \times \mathbb{Z}^*$, but $A \not\subset (\mathbb{Z} \times \mathbb{N}) \cup 0$ and $A \not\subset (\mathbb{N} \times \mathbb{Z}) \cup 0$.
- (2) $A \in \mathscr{C}_2 \Leftrightarrow A \subset (\mathbf{Z} \times \mathbf{N}) \cup 0$, but $A \not\subset (\mathbf{N} \times \mathbf{N}) \cup 0$.
- (3) $A \in \mathscr{C}_3 \Leftrightarrow A \subset (\mathbf{N} \times \mathbf{Z}) \cup 0$, but $A \not\subset (\mathbf{N} \times \mathbf{N}) \cup 0$.
- (4) $A \in \mathscr{C}_4 \Leftrightarrow A \subset (\mathbf{N} \times \mathbf{N}) \cup 0.$

PROOF. In view of Lemma 4.1, $A \in \mathscr{C}_1$; $A \in \mathscr{C}_2$; $A \in \mathscr{C}_3$; $A \in \mathscr{C}_4$ implies $A \subset \mathbb{Z}^* \times \mathbb{Z}^*$; $A \subset (\mathbb{Z} \times \mathbb{N}) \cup 0$; $A \subset (\mathbb{N} \times \mathbb{Z}) \cup 0$; $A \subset (\mathbb{N} \times \mathbb{N}) \cup 0$, respectively. Also, any case implies A is a semi-cone by $A \cap -A = 0$.

For (1), to see (\Rightarrow) , by $A \cap (0 \times \mathbb{Z}) \neq 0$, there exists some $(x, y) \in A \cap (0 \times \mathbb{Z})$ with $(x, y) \neq (0, 0)$. Then x = 0 and y > 0. Thus $(0, y) \notin (\mathbb{N} \times \mathbb{Z}) \cup 0$, which yields $A \not\subset (\mathbb{N} \times \mathbb{Z}) \cup 0$. Similarly, $A \not\subset (\mathbb{Z} \times \mathbb{N}) \cup 0$ by $A \cap (\mathbb{Z} \times 0) \neq 0$. For (\Leftarrow) , by $A \not\subset (\mathbb{Z} \times \mathbb{N}) \cup 0$, there exists some $(x, y) \in A$ with $(x, y) \notin (\mathbb{Z} \times \mathbb{N}) \cup 0$. Then y = 0 and hence $x \neq 0$. Thus $(x, 0) \in A$ with $x \neq 0$. Hence $A \cap (\mathbb{Z} \times 0) \neq 0$. Similarly, $A \cap (0 \times \mathbb{Z}) \neq 0$ by $A \not\subset (\mathbb{N} \times \mathbb{Z}) \cup 0$. Hence $A \in \mathscr{C}_1$.

For (2), to see (\Rightarrow) , by $A \cap (0 \times \mathbb{Z}) \neq 0$, there exists some $(x, y) \in A \cap (0 \times \mathbb{Z})$ with $(x, y) \neq (0, 0)$. Then $(x, y) = (0, y) \notin (\mathbb{N} \times \mathbb{N}) \cup 0$. Thus $A \not\subset (\mathbb{N} \times \mathbb{N}) \cup 0$. For (\Leftarrow) , by $A \not\subset (\mathbb{N} \times \mathbb{N}) \cup 0$, there exists some $(x, y) \in A$ with

 $(x, y) \notin \mathbf{N} \times \mathbf{N}, (x, y) \neq (0, 0)$. Then $x \le 0$ and y > 0. Since $(x, y)^2, -x(x, y) \in A$, $(x, y)^2 + (-x)(x, y) = (0, y^2 - xy) \in A$ with $y^2 - xy \ne 0$. Then $A \cap (0 \times \mathbf{Z}) \ne 0$. Hence $A \in \mathscr{C}_2$.

(3) is similarly shown as (2), and (4) is obvious.

COROLLARY 4.3. A subset A of $\mathbb{Z} \otimes \mathbb{Z}$ with $A \ni 0$ is a semi-cone iff it is additive and multiplicative, and (i) $A \subset \mathbb{Z}^* \times \mathbb{Z}^*$, (ii) $A \subset (\mathbb{Z} \times \mathbb{N}) \cup 0$, or (iii) $A \subset (\mathbb{N} \times \mathbb{Z}) \cup 0$.

A semi-cone S of R is maximal if for any semi-cone T of R with $S \subset T$, T = S.

COROLLARY 4.4. The maximal semi-cones of $\mathbb{Z} \otimes \mathbb{Z}$ are precisely the sets $\mathbb{Z}^* \times \mathbb{Z}^*$, $(\mathbb{Z} \times \mathbb{N}) \cup 0$, and $(\mathbb{N} \times \mathbb{Z}) \cup 0$.

THEOREM 4.5. For a subset A of $\mathbf{Z} \otimes \mathbf{Z}$, the following are equivalent.

- (1) A is a semi-cone of $\mathbf{Z} \otimes \mathbf{Z}$.
- (2) A has an increasing cover {S_n | n ∈ N} of finitely generated semi-cones with types ⟨(a₁, b₁),..., (a_i, b_i)⟩, but all of these types satisfy one of the following: (i) all a_j, b_j ∈ Z*, (ii) all a_j ∈ N, and (iii) all b_j ∈ N.
- (3) A has an increasing cover $\{S_n | n \in \mathbb{N}\}$ of finitely generated semi-cones.

PROOF. (1) \Leftrightarrow (3) holds by Proposition 3.2. (2) \Rightarrow (3) is clear, and (3) \Rightarrow (2) holds by Corollary 4.3.

5. Characterizations of Semi-cones in $Z \ltimes Z$

LEMMA 5.1. For an additive subset A of $\mathbf{Z} \ltimes \mathbf{Z}$ with $A \ni 0$, let $A' = A \cap (0 \times \mathbf{Z})$. If $A' \cap -A' = 0$, then $A' = \sum_{i=1}^{n} \mathbf{Z}^{*}(0, b_i)$ for some $b_1, \ldots, b_n \in \mathbf{Z}$ with all $b_i \in \mathbf{Z}^{*}$ or all $b_i \in -\mathbf{Z}^{*}$.

PROOF. The lemma follows from Proposition 2.8, noting $\mathbf{Z} \cong 0 \times \mathbf{Z} (\subset \mathbf{Z} \ltimes \mathbf{Z})$ by $x \mapsto (0, x)$, as additive groups.

PROPOSITION 5.2. The following hold.

(1) If A is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$, then $A' = A \cap (0 \times \mathbf{Z})$ and $A'' = (A \cap (\mathbf{N} \times \mathbf{Z})) \cup 0$ are semi-cones of $\mathbf{Z} \ltimes \mathbf{Z}$ with $A = A' \cup A'' = A' + A''$, and $A' = \sum_{i=1}^{n} \mathbf{Z}^{*}(0, b_{i})$ for some $b_{1}, \ldots, b_{n} \in \mathbf{Z}$ with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in -\mathbf{Z}^{*}$.

(2) If A' is an additive subset of 0 × Z* or 0 × -Z* with A' ∋ 0, and A" is an additive and multiplicative subset of (N × Z) ∪ 0 with A" ∋ 0, then A', A" and A = A' + A" are semi-cones of Z ⊨ Z with A = A' ∪ A".

PROOF. For (1), A' and A'' are routinely semi-cones of $\mathbb{Z} \ltimes \mathbb{Z}$. Noting $A \subset \mathbb{Z}^* \times \mathbb{Z}$ by Proposition 2.10, $A = A' \cup A'' = A' + A''$. The later part holds by Lemma 5.1.

For (2), routinely, A', A'' are semi-cones, and A is additive. Obviously, A is multiplicative by $A' * A'' \subset A'$. Also, $A \cap -A = 0$ since A is a subset of the cone L or L^* . Hence A is a semi-cone with $A = A' \cup A''$.

COROLLARY 5.3. The maximal semi-cones in $\mathbb{Z} \ltimes \mathbb{Z}$ are precisely the cones L and L^* .

COROLLARY 5.4. A subset A of $\mathbf{Z} \ltimes \mathbf{Z}$ is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff $A = B + \sum_{i=1}^{n} \mathbf{Z}^{*}(0, b_{i})$ for some additive and multiplicative subset B of $(\mathbf{N} \times \mathbf{Z}) \cup 0$ with $B \ni 0$ and some b_{1}, \ldots, b_{n} with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in -\mathbf{Z}^{*}$.

For non-zero elements $(a_1, b_1), \ldots, (a_n, b_n)$ in $\mathbb{Z} \ltimes \mathbb{Z}$, let us define a condition (C): (i) $a_1, \ldots, a_k \in \mathbb{N}$, $a_{k+1} = \cdots = a_n = 0$ and (ii) $b_{k+1}, \ldots, b_n \in \mathbb{N}$ or $b_{k+1}, \ldots, b_n \in -\mathbb{N}$, where $0 \le k \le n$ (possibly, k = 0 or k = n).

LEMMA 5.5. Let $F = \{(a_1, b_1), \dots, (a_n, b_n)\}$ be a finite subset of $\mathbb{Z} \ltimes \mathbb{Z}$. Then the following hold.

- (1) For $a_1, \ldots, a_n \in \mathbb{N}$ and $b_1, \ldots, b_n \in \mathbb{Z}$, the set A of all finite sums of elements of the form $c(a_1, b_1)^{\nu_1} * \cdots * (a_n, b_n)^{\nu_n}$ $(c, \nu_1, \ldots, \nu_n \in \mathbb{Z}^*$ with some $\nu_i > 0$ is the semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ generated by F.
- (2) For $a_1 = \cdots = a_n = 0$ and $b_1, \ldots, b_n \in \mathbb{Z}$ with all $b_i \in \mathbb{Z}^*$ or all $b_i \in -\mathbb{Z}^*$, $A = \sum_{i=1}^n \mathbb{Z}^*(0, b_i)$ is the semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ generated by F.
- (3) For $(a_1, b_1), \dots, (a_n, b_n)$ satisfying (C), $A = \langle (a_1, b_1), \dots, (a_k, b_k) \rangle + \sum_{i=k+1}^{n} \mathbb{Z}^*(0, b_i)$ is the semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ generated by F.

PROOF. For a case (1), (2), or (3), A is a semi-cone of $\mathbb{Z} \ltimes \mathbb{Z}$ by Proposition 5.2(2) (indeed, for (1), put A'' = A. For (2), put A' = A. For (3), let $A' = \sum_{j=k+1}^{n} \mathbb{Z}^*(0, b_j)$, and define A'' as A in (1), but n = k, then A = A' + A''). Thus, for each case, $A = \langle F \rangle$ by Proposition 3.1.

PROPOSITION 5.6. For a finite subset $F = \{(a_1, b_1), \ldots, (a_n, b_n)\}$ of $\mathbb{Z} \ltimes \mathbb{Z}$, *F* is contained in some semi-cone *A* of $\mathbb{Z} \ltimes \mathbb{Z}$ iff all $a_i \in \mathbb{Z}^*$, and $\{b_i | a_i = 0\}$ is a subset of \mathbb{Z}^* or $-\mathbb{Z}^*$. PROOF. The if part holds by Lemma 5.5(3). The only if part holds, modifying the proof of Proposition 5.2(1). \Box

Let \mathscr{F} be the collection of all finitely generated semi-cones of $\mathbb{Z} \ltimes \mathbb{Z}$. Let $\mathscr{F}_1 = \{A \in \mathscr{F} \mid A \cap (\mathbb{N} \times \mathbb{Z}) \neq \emptyset\}; \ \mathscr{F}_2 = \{A \in \mathscr{F} \mid A \cap (\mathbb{N} \times \mathbb{Z}) = \emptyset\}; \ \text{and},$ $\mathscr{F}_1^* = \{A \in \mathscr{F} \mid A \cap (0 \times \mathbb{Z}) \neq 0\}; \ \mathscr{F}_2^* = \{A \in \mathscr{F} \mid A \cap (0 \times \mathbb{Z}) = 0\}.$ Clearly, $\mathscr{F} = \mathscr{F}_1 \cup \mathscr{F}_2 = \mathscr{F}_1^* \cup \mathscr{F}_2^*.$ Note that $\mathscr{F}_1 = \{A \in \mathscr{F} \mid p_1(A) \neq 0\};$ $\mathscr{F}_2 = \{A \in \mathscr{F} \mid p_1(A) = 0\} \text{ (by } p_1(A) \subset \mathbb{Z}^* \text{ in Proposition 2.10)}.$ For $A \in \mathscr{F}$ with $A \neq 0$, let $A_0 = A \setminus \{0\}.$ Then $\mathscr{F}_1^* = \{A \in \mathscr{F} \mid p_1(A_0) \neq 0\};$ $\mathscr{F}_2^* = \{A \in \mathscr{F} \mid p_1(A_0) \neq 0 \text{ or } A = 0\}.$

The following holds by Lemma 5.5 and Proposition 5.6.

PROPOSITION 5.7. Let A be a subset of $\mathbf{Z} \ltimes \mathbf{Z}$. Then the following hold. (1) (a) $A \in \mathscr{F}_1$ iff $A = \langle (a_1, b_1), \dots, (a_k, b_k) \rangle + \sum_{j=k+1}^{n} \mathbf{Z}^*(0, b_j)$ for some $(a_1, b_1), \dots, (a_n, b_n)$ in $\mathbf{Z} \ltimes \mathbf{Z}$ satisfying (C), but $1 \le k \le n$.

- (b) $A \in \mathscr{F}_2$ iff $A = \sum_{i=1}^n \mathbb{Z}^*(0, b_i)$ for some b_1, \ldots, b_n with all $b_i \in \mathbb{Z}^*$ or
- all $b_i \in -\mathbb{Z}^*$. (2) (a) $A \in \mathscr{F}_1^*$ iff A is the same as in (1)(a), but $0 \le k < n$.
 - (b) $A \in \mathscr{F}_2^*$ iff $A = \langle (a_1, b_1), \dots, (a_n, b_n) \rangle$ for some $(a_1, b_1), \dots, (a_n, b_n)$ in $\mathbf{N} \ltimes \mathbf{Z}$, or A = 0.

For a semi-cone $A = \langle (a_1, b_1), \dots, (a_k, b_k) \rangle + \sum_{j=k+1}^{n} \mathbf{Z}^*(0, b_j)$ of $\mathbf{Z} \ltimes \mathbf{Z}$ with $a_j \in \mathbf{N}$ and $0 \le k < n$, let us say that A is *positive* (resp. *negative*) if all b_{k+1}, \dots, b_n are positive (resp. negative), for convenience.

THEOREM 5.8. For a subset A of $\mathbf{Z} \ltimes \mathbf{Z}$, the following are equivalent.

- (1) A is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$.
- (2) $A = \bigcup_{n \in \mathbb{N}} A_n + \sum_{i=1}^r \mathbb{Z}^*(0, b_i)$ for some $A_n \in \mathscr{F}_2^*$ $(n \in \mathbb{N})$ with $A_n \subset A_{n+1}$, and some b_1, \ldots, b_r with all $b_i \in \mathbb{Z}^*$ or all $b_i \in -\mathbb{Z}^*$.
- (3) A has an increasing cover $\{S_n | n \in \mathbb{N}\}$ with all $S_n \in \mathscr{F}_1^*$ or all $S_n \in \mathscr{F}_2^*$, here for $S_n \in \mathscr{F}_1^*$, all S_n are positive or all are negative.
- (4) A has an increasing cover $\{S_n | n \in \mathbb{N}\}$ of finitely generated semi-cones.

PROOF. For $(1) \Rightarrow (2)$, let A', A'' be same as in Proposition 5.2(1). Then A', A'' are semi-cones and $A = A' \cup A'' = A' + A''$. Also, there exists a finite subset $\{b_1, \ldots, b_r\}$ with all $b_i \in \mathbb{Z}^*$ or all $b_i \in -\mathbb{Z}^*$ such that $A' = \sum_{i=1}^r \mathbb{Z}^*(0, b_i)$. If A'' = 0, (2) holds, so assume $A'' \neq 0$. Let $A'' = \{z_1, z_2, \ldots\} \cup 0$ with all $z_i \in \mathbb{N} \times \mathbb{Z}$, and put $A_n = \langle z_1, \ldots, z_n \rangle$. Then $\{A_n \mid n \in \mathbb{N}\}$ is an increasing cover of A''

by finitely generated semi-cones in \mathscr{F}_2^* (by Proposition 5.7(2)). This suggests (2) holds.

For (2) \Rightarrow (3), put $S_n = A_n + \sum_{i=1}^r \mathbb{Z}^*(0, b_i)$ $(n \in \mathbb{N})$ in (2). Then $\{S_n | n \in \mathbb{N}\}$ is a desired cover of A in (3) in terms of Proposition 5.7(2).

 $(3) \Rightarrow (4)$ is clear, and $(4) \Rightarrow (1)$ holds by Proposition 3.2.

References

- [1] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand Reinhold company, 1960.
- [2] Y. Kitamura and Y. Tanaka, Ordered rings and order-preservation, Bull. Tokyo Gakugei Univ., Nat. Sci., 64 (2012), 5–13.
- [3] Y. Kitamura and Y. Tanaka, Partially ordered rings, Tsukuba J. Math., 38 (2014), 39-58.
- [4] Y. Kitamura and Y. Tanaka, Partially ordered rings II, Tsukuba J. Math., 39 (2015), 181-198.
- [5] Y. Kitamura and Y. Tanaka, Product extensions of commutative rings, Bull. Tokyo Gakugei Univ., Nat. Sci., 67 (2015), 1–8.
- [6] Y. Kitamura and Y. Tanaka, Product extension rings and partially ordered rings, Bull. Tokyo Gakugei Univ., Nat. Sci., 68 (2016), 13–23.
- [7] Y. Kitamura and Y. Tanaka, Partially ordered additive groups and convex sets, Bull. Tokyo Gakugei Univ., Nat. Sci., 69 (2017), 11–22.
- [8] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 1991.
- [9] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1998.

Yoshimi Kitamura Department of Mathematics Tokyo Gakugei University Tokyo 184-8501, Japan (Professor Emeritus) E-mail: kitamura@u-gakugei.ac.jp

Yoshio Tanaka Department of Mathematics Tokyo Gakugei University Tokyo 184-8501, Japan (Professor Emeritus) E-mail: ytanaka@u-gakugei.ac.jp