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FINITELY GENERATED SEMI-CONES
IN PRODUCT RINGS

By

Yoshimi KitTaAMURA and Yoshio TANAKA

Abstract. Semi-cones of rings determine the partial orders in the
rings. We consider semi-cones in the direct product rings and the
product extension rings, inducing finitely generated semi-cones. In
particular, we give characterizations for semi-cones of the direct
product rings and the basic product extension rings of the ring of
integers.

1. Introduction

As a generalization of positive cones of integral domains, we introduced
semi-cones of rings which determine partial orders in the rings ([4, 6]). In this
paper, we consider semi-cones in the direct product rings and the product
extension rings, inducing finitely generated semi-cones. In particular, we give
characterizations for semi-cones of the direct product rings and the basic product
extension rings of the ring of integers.

The symbol R means a non-zero commutative ring with the identity element
denoted by 1.

The symbol Z means the ring of integers. Define N = {1,2,...}, and Z* =
Nu{0}.

Let A, B be subsets of R. Define —4 = {—x|xe A}, A+ B={x+ y|x€ A4,
yeB}, AB={xy|xe A, ye B}, aB={a}B for ae R, and A\{0} = {x|x€ 4,
x # 0}. Also, define the direct product set 4 x B={(x,y)|x€ A, y € B}.

The single set {0} (or {(0,0)}) is often denoted by 0.

As is well-known, for a partial order < on R, (R, <) is a partially ordered ring
([1]) if R satisfies the following conditions:
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(i) a < b implies a4+ x < b+ x for all x, and

(i) a < b and 0 < x implies ax < bx.

For a subset S of (a ring) R, let us call S a semi-cone (resp. cone) of R if
it satisfies (i), (ii), and (iii) (resp. (i), (ii), (iii), and (iv)) below; see [4, 6].

(i) S+ S cC S, that is, S is additive.

(i) SS C S, that is, S is multiplicative.

(ili) SN(=S)=0.

(iv) R=SU(-9).

A subset S of R satisfying (i), (ii) is called a positive cone ([8] (or [2])) if
R\{0} =SU(-9).

We note that for a semi-cone S of R, we induce a partially ordered ring
(R,<s), defining x <gy by y —xeS. Conversely, for a partially ordered ring
(R,<), putting S={xe R|0<x}, S is a semi-cone of R, and < = <g.

In view of the above, a ring R is a partially ordered ring; ordered ring;
ordered integral domain iff it has a semi-cone; cone; positive cone, respectively.

For a ring R, let us recall the following product rings (I) and (II) on R x R.

(I) The usual direct product R x R equipped with component-wise addition
and multiplication (that is, for (x,y),(x’,»")e Rx R, (x,y) + (X, y") = (x + x/,
Y427, and (x,3) - (<, ) = (xx', 20").

Let us call such a ring the direct product ring of R, and denote it the symbol
R®R (as in [5, 6]).

(IT) Let (a,b) € R x R. The ring R x R equipped with addition and multi-
plication by (x,y) + (x',») = (x+x",y+ ') and (x,y) * (x',y’) = (xx" + ayy’,
xy' + yx"+ byy').

Let us call such an extension ring of R the product extension ring of R,
and denote it the symbol (R X R;a,b) (as in [5, 6]). For example, an extension
ring (R X R;—1,0) of the real number field R is isomorphic to the complex
number field. (Algebraic structures of the rings (R X R;a,b) and their ideals
are observed in [5]). Especially, a basic ring (R X R;0,0) is called the trivial
extension of R by itself, denoted by R X R. As is well-known, this ring gives
useful examples related to ring structures and order structures, or extensions ([9],
for example).

2. Semi-cones

LEmMMA 2.1. Let A, A’ be subsets of R with A,A'50. If Ax A" is multi-
plicative in (R R;a,b), then AA C A, AA' C A', aA’A’ C A, and bA’A' C 4'.
The converse holds if A and A' are additive.
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Proor. The first half holds, noting (0,x)« (0,y") = (ax’y’,bx’y’) and
(x,x") % (,0) = (xy,x’y) in (R X R;a,b). The latter part is routine. O

PROPOSITION 2.2. Let A and A’ be subsets of R. Then the following hold.

(1) Ax A" is a semi-cone of R® R iff A and A' are semi-cones of R.

(2) Ax A" is a semi-cone of (R R;a,b) iff A is a semi-cone of R, and A’
is an additive set such that A’N—A' =0, AA' C A', aA’A’ C A, and
bA'A’ C A'. In particular, A x A’ is a semi-cone of R R iff A is a semi-
cone of R, and A’ is additive with A'N—A" =0 and AA' C A’

Proor. (1) is routine. (2) is routinely shown, using Lemma 2.1. O

ReMaArRk 2.3. (1) In the only if part of Proposition 2.2(2), (i) for every
(R R;a,b), A’ need not be a semi-cone of R; while (ii) fora #0, A’'N—4"=0
can be deleted under R being an integral domain. (Indeed, for (i), let R = Z, and
A=7Z"and A'=—Z" in R. Then, fora >0 and » <0, 4 x A’ is a semi-cone of
(R X R;a,b) by Proposition 2.2(2), but 4’ is not a semi-cone of R by 4’4" ¢ A4'.
For (ii), let xe A’ N —A’. Then ax?,—ax*e A by ad’A’ C A. Thus, ax*> =0 by
AN—-A4=0, thus x=0. Hence 4'N—-4"=0).

(2) For a semi-cone S of R with SS#0, let S; =S x0 and S, =0x S be
semi-cones of R’ = R X R. Then S| x S, is a semi-cone of R’ X R’ but S, x S is
not a semi-cone by Proposition 2.2(2), noting S} * Sy C S, but S, *S; ¢ 5.

Let pi,po: RXx R— R be the projections defined by p;(x,y)=x, and
pa2(x,y) = y, unless otherwise stated.

For a semi-cone 4 of R® R or R X R, p;(4) need not be a semi-cone of R
for each i =1,2; see Remark 2.7 later. But, we have the following proposition
which is routinely shown, here (2)(b) holds by Proposition 2.2(2).

ProposITION 2.4.  The following hold.
(1) For a semi-cone A of R® R, (a) and (b) below hold.
(@) pi(A) is a semi-cone of R iff pi(A)N pi(—A) =0 for each i =1,2.
(b) p1(A4) x p2(A) is a semi-cone of R@ R iff pi(A) are semi-cones of R
(equivalently, p:(A)N pi(—A)=0) for i=1,2.
(2) For a semi-cone A of RX R, (a) and (b) below hold.
(@) p1(A) is additive and multiplicative, and p,(A) is additive. In par-
ticular, pi(A) is a semi-cone of R iff p1(A)Npi(—A) =0. While,
p2(A) is a semi-cone of R iff p2(A) N pa(—A) =0, and pr(A)p2(A4) C
p2(A).
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(b) pi(A) X pa(A) is a semi-cone of RX R iff pi(A)Npi(—A4)=0 (i=
1,2), and pi(4)pa(A4) C pa(A).

REMARK 2.5. In Proposition 2.4(2), if p2(A4) N pa(—A) = 0 (resp. p2(A4)p2(A4)
C pa2(A4)) is deleted in (a), p»(A) need not be a semi-cone of R (by a cone 4 =
(NxZ)U(0xZ") (resp. a semi-cone 4 = Z* x —Z") of Z X Z. Also, if p(4) N
pa(—A) =0 is deleted in (b), p1(A4) x pa(A) need not be a semi-cone of R X R
(by the above cone A).

For a subset X of R® R (resp. R X R), the symbol ann(X) means the set
{ae R|(a,a)X =0} (resp. {a e R|(a,0)x X =0}).

PrOPOSITION 2.6. Let A C RX R and A' = AN (0 x R). The following hold.

(1) If A is a semi-cone of R® R or RX R, and A" =0, then pi(A4) is a semi-
cone of R.

(2) If A is a semi-cone of R® R (resp. R X R), and A" # 0, then p,(A) (resp.
pi1(A)) is a semi-cone under ann(A4’) = 0.

Proor. For (1), by Proposition 2.4, it suffices to show p;(4) N —p;(4) =0,
so let x = pi(x,y) = —p1(x’, »’) with (x, ), (x',»") € 4. Then (x,y)+ (x',y’) =
(x+x,y+y)=0,y+y)eAN(0x R). Thus y+y' =0 by 4’ =0. Hence
(x,y)=(=x",—y)Yedn—A4, so (x,y)=(0,0) by AN—4=0. Then x =0.

For (2), we show p;(4) is a semi-cone in R X R (similarly, p»(A4) is a
semi-cone in R ® R). Similarly as in (1), it suffices to show p;(4) N —p;(4) =0,
so let x=pi(x,y) =—pi(x',y") with (x,y),(x’,y") e 4. For any (0,z)€ A4’,
(x, )% (0,z) = (0,xz) e 4, (x',¥")%(0,z) =(0,x'z) € A, and hence (0,xz)=
(0, —x'z) = —(0,x'z) e AN —A, which yields (0,xz) =(0,0). Then (x,0)x A’ =
(0,0). Thus x =0 by ann(4’) =0 with 4’ # 0. O

REMARK 2.7. Related to Proposition 2.6, we have (1) and (2) below.

(1) For a semi-cone 4 of R® R and R X R with 4'(=A4N(0x R)) =0,
p2(A) need not be a semi-cone of R (by a semi-cone A = (NxZ)UO of Z® Z
and Z X Z).

(2) For a semi-cone 4 of R® R (resp. R R) with A’ # 0, we have the
following (a) (resp. (b)).

(a) (i) pi1(A4) need not be a semi-cone of R under ann(4’) =0 (by a semi-
cone A =(ZxN)UO of Z® Z). Also, (ii) p2(A4) need not be a semi-cone of R
(indeed, let R=Z X Z, and let 41 =0xN, A, =0xZ. Then 4 = (4, x 4;) U



Finitely generated semi-cones in product rings 239

(0x (0xZ")) is a semi-cone of R® R with ann(4’) # 0, but p,(4) is not a
semi-cone of R).

(b) (i) p1(A) need not be a semi-cone of R (indeed, let R, and A4;, A, be
the same as (a)(ii). Then 4 = (4, x A;)U0 is a semi-cone of R X R with
ann(A4’) # 0, but p;(A4) is not a semi-cone of R). Also, (ii) p2(A4) need not be a
semi-cone of R under ann(4’) =0 (by the cone (or semi-cone) A of Z X Z in
Remark 2.5).

ProOPOSITION 2.8. For a subset A of Z, the following are equivalent.

(1) A is additive, and AN —A4 =0.

(2) A4 is additive with A30, and A CZ* or A C 71"

B)A=aZ" +---+a,Z" for some ay,...,a, with all a;eZ” or all
aje -71".

Proor. For (1) = (2), suppose (2) doesn’t hold. Then m,—n e A for some

m,neN, thus AN —A>mn #0, a contradiction.
For (2) = (3), for A C Z*, (3) holds in view of the proof of [3, Proposition
2.9], and thus (3) also holds for 4 C —Z", putting 4’ = —A4. (3) = (1) is obvious.
O

COROLLARY 2.9. For a subset A of Z, the following are equivalent
(¢ [3])

(1) 4 is a semi-cone of Z.

(2) A4 is additive with 0 e A C Z".

B)A=aZ" + -+ anZ” for some ay,...,a, €L

The following holds by Proposition 2.6 with Corollary 2.9.

ProposITION 2.10.  Let R be an integral domain, and let A be a semi-cone of
RQ®R (resp. R X R). Then pi(A) or p(A) (resp. pi(A)) is a semi-cone of R. In
particular, for R=17, p1(A) CZ" or py(A) CZ"* (resp. p1(A) C Z").

The following holds by Propositions 2.2 and 2.8.

PROPOSITION 2.11. Let A and A’ be subsets of Z. with A' 0. For A’ # 0,
A x A" is a semi-cone of (Z X Z;a,b) iff A is a semi-cone of Z, and A’ is an
additive set such that aA’A' C A, and A' C Z* with be Z* or A’ C —Z* with
be—-Z* (For A'=0, Ax0 is a semi-cone of (Z X Z;a,b) iff so is A of Z).
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COROLLARY 2.12. The following hold.

(1) For subsets A and A’ of Z with A' 50, A x A’ is a semi-cone of Z < Z
iff () A is a semi-cone (equivalently, A is additive with 0 € A C Z"), and
(ii) A’ is additive with A’ CZ* or A' C —Z".

(2) For a semi-cone A of Z < Z, p1(A) x pr(A) is a semi-cone of Z X Z iff
p2(A) CZ" or pr(A) C -7~

The following holds by Propositions 2.11, and 2.8 with Corollary 2.9.

COROLLARY 2.13.  For subsets A and A’ of Z, A x A’ is a semi-cone of 1. <X Z.
iff A=aZ* + -+ a,L" for some ay,...,a,€Z”, and A' =b\ZL" +--- + b, L~
for some by,...,b, with all b; e Z* or all b; e —Z".

COROLLARY 2.14. Corollaries 2.12 and 2.13 remain true in Z. ® Z, but delete
the part of “—Z"” in these corollaries.

3. Finitely Generated Semi-cones

We shall introduce the concept of finitely generated semi-cones. We note that
arbitrary intersections of semi-cones are semi-cones. Let X be a subset of R.
When X is contained in some semi-cone, the intersection of all semi-cones which
contain X is evidently the smallest semi-cone containing X. If there exists the
smallest semi-cone containing X, then we shall call it the semi-cone generated by
X, denoted by <X). Obviously, (X> =<X UO0).

For a finite subset {xj,...,x,} of R contained in some semi-cone, the symbol
{Xpyeey Xy means {{xp, ..., X, ).

Let A be a semi-cone of R. We shall say that A is finitely generated if
A = (F) for some finite subset F in A.

We note that every finitely generated semi-cone of R must be countable in
view of Proposition 3.1 below. Also, note that every semi-cone 4 of R need not
be finitely generated even if A4 is contained in a finitely generated semi-cone of R;
see Proposition 3.8 (or Example 3.9) later.

The following basic proposition is routinely shown.

ProposITION 3.1. Let F ={xy,...,x,} be a finite subset of some semi-cone
in R with all x; #0, and let x" = 1. Let F be the set of all finite sums of ele-
ments of the form cx|'---x), where c,vi,...,v, € Z* with some v; >0. Then

(FY=F.
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For an element of the set F in the previous proposition, we will use a brief
symbol

Vl DR V
E Xy X"

under ¢, vy,...,v, € Z* with some v; > 0.

PROPOSITION 3.2.  For a non-zero subset A of R, A is a semi-cone of R iff A
has a cover € (ie., A=\J{X|X €%}) of semi-cones generated by any finitely
many elements (or two elements) of A. In particular, for A being countable, we
can take € to be an increasing countable cover of semi-cones generated by finitely

many elements (or, a countable cover of semi-cones generated by any two elements)
of A.

Proor. For the only if part, let # be the collection of all finite sets (or two
elements) in a semi-cone A. Let € = {<F)|F € #}. Then ¥ is a cover of 4, and
each (F) is a finitely generated semi-cone. For the if part, note that any two
elements x, y in 4 are contained in some semi-cone in 4. Thus, 4 is a semi-cone.
For A being countable, let 4 = {a;|i e N}, and F, = {ay,as,...,a,}. Then € =
{{F,»>|neN} is a desired increasing cover. O

ReEmaArRk 3.3. Every union of two semi-cones generated by finitely many
elements need not be a semi-cone (indeed, for finitely generated semi-cones
Z"x0 and 0xZ"* in Z < Z (by Corollary 3.5 later), their union is not a
semi-cone).

THEOREM 3.4. Let S, T be semi-cones of R. Then the following hold.

(1) S x T is a finitely generated semi-cone of R® R iff so are S and T of R.

(2) Sx T is a finitely generated semi-cone of RX R iff (1) S is finitely
generated and (i) T = (Sy1+ -+ Syu) + (Z"y1+---+Z"y,) for some
Y1y, meT.

Proor. For (1), it is routinely shown (as in the proof below).

For (2), note Sx T is a semi-cone of R R iff ST C T by Proposition
2.2(2). For the only if part of (2), let Sx T =<(x1,)1),...,(Xn, yu)y with
all (x;, y;) #0. Obviously, S = {xj,...,x,», hence (i) holds. To see (ii), let
T'=Sy1+-+Sy,+Zy1+---+Z"y,. Let ye T. Then (0,y)e S x T, so let
(0,y) =>c(x1,y1)" # - % (x4, yn)" € S x T by Proposition 3.1. Note that for
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aeZ” and (s,1),(s',') e Sx T, a(s,t) = (as,at) e S x Z"t, and (s,1) = (s',1') =
(ss',st’ +s't) € S x (St + St’). Then we show that (0, y) € S x T’, so y € T’. Thus
T CT' While, T"C T by ST C T. Hence T’ = T. For the if part of (2), assume
(1) and (i) hold. Since ST C T, Sx T is a semi-cone of RX R. Let S =
X1y ey Xmy. Let F={(x1,0),...,(x,0),(0,y1),...,(0,y,)}. To see SxT =
(F), let (x,y) e Sx T. Let x =73 cxy"---xyr, and let y =37 53+ > ¢y
(sje S, cjeZ”). Then,

0) = (D exi e+ x, 0) = D"+ 3y, 0)
:Zc(xl,O)v‘*-~->k(xm,0)v’”e<F>

(0 Zs,y,) + (O Zc,y,)

n

= Z(Ovsjy/ +Z‘/ (0, )
=

j=1

n

Zslv 0 yj ch(ovyj)e<F>v

J=1 J=1
noting each (s;,0) € {(F) by the above. Hence (x, y) = (x,0) + (0, y) € <F). Thus
Sx T = (F>. ]

COROLLARY 3.5. Let S be a semi-cone of R. Then the following hold.

(1) S x 0 is a finitely generated semi-cone of RX R iff so is S of R.

(2) 0 x S is a finitely generated semi-cone of RX R iff S=Z"x; + - -+ Z"x,
for some xy,...,x, in S.

(3) S x S is a finitely generated semi-cone of RX R iff so is S of R.

Proor. (1), (2), and (3) hold by Theorem 3.4. But, for (3), note S =
Z?:]SXI‘_FZ?:]Z*XI' if S=<X1,...,Xn>. ]

COROLLARY 3.6. Let S and T be semi-cones of R with S C T (or, 1€ T). If
S x T is a finitely generated semi-cone of R R, then so are S and T of R.

Proor. Let Sx T =<{(x1,»1),.-,(Xu, yn)y with all (x;,y;)eSxT. Let
F={x;,y|i,j=1,...,n}. Since S C T (especially, 1 € T by use of Lemma 2.1),
T =<F) in view of the proof of Theorem 3.4(2). O
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In the previous corollary, the converse need not hold (even if S=0, 1€ T);
see Example 3.9 later.

We will consider finitely generated semi-cones in Z X Z (or Z ® Z).

Let us recall (lexicographic) sets L= (N x Z)U (0 x Z*) and L* = (N x Z) U
(0 x =Z%) in Z x Z. We note that the cones of Z < Z are precisely the sets L
and L* ([6]). While, R® R has no cones ([4]).

ProposITION 3.7. The following hold.
(1) All semi-cones of Z are finitely generated.
(2) The cones L and L* of Z X Z are finitely generated.

Proor. (1) holds by Corollary 2.9. For (2), note L =<(1,-1),(0,1))> and
L*={(1,1),(0,—1))> by the proof of [6, Proposition 2.12]. O

For a non-zero semi-cone S of R, let us define Sy = S\{0}, unless otherwise
stated.

ProrosITION 3.8. Let S and T be non-zero semi-cones of Z. Then the
following hold in Z&® Z. as well as Z.< Z.

(1) Sx T is a finitely generated semi-cone, while its subset

(2) A= (So x To)UO0 is a semi-cone, but A is not finitely generated.

Proor. For (1), S x T is a semi-cone of Z ® Z and Z X Z, and it is finitely
generated by Theorem 3.4 with Corollary 2.9.

For (2), 4 is a semi-cone in Z® Z and Z X Z. To see the latter part in
Z ® Z, suppose A =<(ay,by),...,(an,by)> with all (a;,b;) € Sy x Ty. Let p be a
prime number with p > max(ay,...,a,). Take a € Sy and let s = pa. Then s € S.
Let t=min Ty e Ty. Then (s,7) € A, so let (s,7) = c(a;,b1)" -+ (an,by)"™ by
Proposition 3.1. Noting x + y > ¢ for all x,y e Ty, (s,7) = (a1, b1)" -+ (an, by) "™
for some vi,...,v, with ¢ = 1. Then s = a,' - --a,", thus p is a divisor of some «;,
a contradiction. Hence A is not finitely generated. In Z X Z, A is also not finitely
generated by the same way (or, taking se Sy distinct from any a;). O

As is seen above, every semi-cone which is a subset of a finitely generated
semi-cone need not be finitely generated in Z® Z or Z X Z. Also, let us give
a finitely generated semi-cone S of R such that (i) S x S is a finitely generated
semi-cone of R X R, but (ii) a semi-cone 0 x S of R X R is not finitely generated.
(In R® R, such a semi-cone S of R does not exist in view of Theorem 3.4(1)).
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ExaMpLE 3.9. For the cone L(= (NxZ)U(0xZ")) of R=ZXZ, the
above (i) and (ii) hold in R X R. Similarly, for the cone L*, (i) and (ii) also
hold.

Indeed, (i) holds by Proposition 3.7(2) and Corollary 3.5(3). To see (ii),
suppose that a semi-cone 0 x L is finitely generated. Then, by Corollary 3.5(2),
L=7"(xi,y1)+ -+ Z"(xy, yn) for some (x1, y1),...,(xn, yu) in L. Take yy € Z
with yy < y; for all y. Then (1,y)elL, but (1,y0)¢Z"(x1,y1)+ -+
Z(xu, yn), a contradiction. To see this, assume (1,yo) =ai(x1,y1)+ -+
an(xy, yn) for some ay,...,a, € Z*. Then (1, yo) = (a1x1 + -+ + ayXp, a1 y1 + -+
ayyy). Since all x; >0, all a;x; > 0. Thus a;x; =1 for some i. Hence, for j # i,
ajxj =0, thus a;y; =0 for ¢; =0, or y; >0 for a; #0 (by (0,y;) €0 xZ").
Hence, yo =ajy1 + -+ ay,yn = yi > yo. This is a contradiction. Then (ii) holds.

For a non-zero semi-cone S of R, recall the following subsets of R x R ([6]).

Dy={(x,x)|xeS}; Di={(x+y,x)|x,yeS}; Dr={(x,x+y)|x,ye S}
and L= (So x R)U(0xS); L' = (R x Sp)U (S x0).

In R® R, Dy, D, D, (except L, L') are semi-cones. In R X R, D, is a semi-
cone, and L (except Dy, D;) is a semi-cone under R being an integral domain.
But, L’ is not a semi-cone in R X R. (For these, see [6]).

ProposITION 3.10. Let S be a non-zero semi-cone of Z. Then the following
hold.
(1) Do, D1, D, are finitely generated semi-cones in Z.® Z, and so is D in
7 % 7.
(2) L is a finitely generated semi-cone of ZXZ iff 1€ S (ie, L=1L).

Proor. For (1), let S=3,Z"x; with x,...,x,€S by Corollary 2.9.
We show D, is finitely generated in Z ® Z (or Z X Z), for example. Let x, y € S
with x =5, cxi, y=>,dixi (¢;;dieZ”). Then (x,x+y)=(x,x)+(0,y)=
>oicilxi,xi) +>,;di(0,x;). Thus D, is generated by {(x;,x;),(0,x;)|i=1,...,n}.

For (2), to see the if part, let 1eS. Then S=2Z" so L=L. Hence, L
is finitely generated by Proposition 3.7(2). For the only if part, let L =<(F)
for some finite set F = {(ay, b1),..., (ar,bx),(0,bks1),...,(0,b,)} with ay,...,ay,
bit1y---,bn €So. Suppose 1¢S. Let a =min(ay,...,ar). Then 1 < a < a; with
aeSy. Take beZ with b < b; for all b;.. Then (a,b)e L. But, (a,b) ¢ (F)
by Proposition 3.1, noting that (a;,b;) * (a;,b;) = (a;a;,a;b; + b;a;) # (a,b) (by
aia; > a); and (a;, b;) + (0,b;) # (a,b), etc. This is a contradiction. Then 1€ S.

O
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4. Characterizations of Semi-cones in Z ® Z

The following lemma holds in view of the proof of Proposition 2.6, and
Corollary 2.9.

LemMa 4.1. For a semi-cone A of ZRZ, let A’ =AN(0xZ) and A" =
AN(Z x0). Then the following hold.
(1) If A'=0, then pi(A) is a semi-cone of Z with p\(A) C Z*. Also, if
A’ #0, then p2(A) is a semi-cone of Z with py(A) C Z".
(2) If A" =0, then p2(A) is a semi-cone of Z with p,(A) C Z*. Also, if
A" #0, then pi(A) is a semi-cone of Z with p\(A) C Z".

Let % be the collection of all semi-cones of Z ® Z, and define the following
subcollections %; (i =1,2,3,4) of & satisfying ¢ = %, U %, U %3 U %4.

G ={Ae%|AN(0xZ)#0, AN (Z x 0) # 0},
G ={AeC|AN(0xZ)#0, AN (Z x 0) =0},
G ={Ae€|AN(0xZ)=0, AN (Z x 0) # 0},
G ={Ae€|AN(0xZ)=0, AN (Z x 0) =0}.

THEOREM 4.2. Let A be an additive and multiplicative subset of 7. &Q Z. with
A>0. Then the following hold.
(1) Ae6y = ACZ* xXZ", but A¢ (ZxN)UO and A ¢ (NxZ)UDO.
(2) Aebr = AC(ZxN)UO, but A ¢ (NxN)UO.
(3) Aebr = AC (NXxZ)U0, but AZ (NxN)UO.
4) Aebs=AC (NxN)UO.

PrOOF. In view of Lemma 4.1, 4€%; A€ %; Aec%b; Aec® implies
ACZ " xZ*; AC(ZxN)U0; A C (NxZ)u0; 4 C (NxN)UO, respectively.
Also, any case implies 4 is a semi-cone by 4N —A4 = 0.

For (1), to see (=), by AN (0x Z) #0, there exists some (x,y)€ AN
(0 x Z) with (x,y) # (0,0). Then x=0 and y > 0. Thus (0,y) ¢ (N x Z)UO0,
which yields 4 ¢ (N x Z)UO0. Similarly, 4 ¢ (ZxN)U0 by AN (Z x0) # 0.
For (<), by A¢ (ZxN)UO0, there exists some (x,y)ed with (x,y)¢
(Z xN)UO. Then y =0 and hence x # 0. Thus (x,0) € 4 with x # 0. Hence
AN(Z x0) #0. Similarly, AN(0xZ)#0 by 4 ¢ (NxZ)UO0. Hence 4 € %,.

For (2), to see (=), by AN(0xZ)#0, there exists some (x,y)e€
AN(0xZ) with (x,y) # (0,0). Then (x,y)=(0,y)¢ (N xN)UO. Thus 4 ¢
(NxN)UO. For (<), by 4 ¢ (NxN)UO, there exists some (x,y) e A with
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(x,¥) N x N, (x,¥) # (0,0). Then x <0 and y > 0. Since (x, y)?, —x(x, y) € 4,
(X, )2 4 (=x)(x, ¥) = (0, p2 —xp) € 4 with y? — xp #0. Then AN (0 x Z) # 0.
Hence A4 € %.

(3) is similarly shown as (2), and (4) is obvious. O

COROLLARY 4.3. A subset A of Z®Z with A>0 is a semi-cone iff it is
additive and multiplicative, and (1) A CZ* xZ*, (ii) A C (ZxN)UO0, or (iii)
AC(NxZ)Uo.

A semi-cone S of R is maximal if for any semi-cone 7 of R with S C 7T,
T=S.

COROLLARY 4.4. The maximal semi-cones of Z.® Z are precisely the sets
7" x 7, (ZxN)UO0, and (NxZ)UDO.

THEOREM 4.5. For a subset A of Z® Z, the following are equivalent.

(1) A is a semi-cone of Z® Z.

(2) A has an increasing cover {S, |n € N} of finitely generated semi-cones with
types {(ai,by),...,(a;,b;)>, but all of these types satisfy one of the fol-
lowing: (i) all a;,b; e Z", (ii) all a; e N, and (iii) all b; e N.

(3) A has an increasing cover {S,|n €N} of finitely generated semi-cones.

Proor. (1) < (3) holds by Proposition 3.2. (2) = (3) is clear, and (3) = (2)
holds by Corollary 4.3. O

5. Characterizations of Semi-cones in Z X Z

LemmA 5.1. For an additive subset A of Z < Z with A>30, let A’ =A4N
(0XZ). If A/'N—A"=0, then A" =", Z7(0,b;) for some by, ..., b, € Z with all
bieZ” or all b;e —Z1.".

ProoF. The lemma follows from Proposition 2.8, noting Z =0 x Z(c Z X Z)
by x — (0,x), as additive groups. O

PrOPOSITION 5.2. The following hold.

() If A is a semi-cone of LZXZ, then A'=AN0xZ) and A" =
(AN (N xZ))UO0 are semi-cones of Z<Z with A=A4"UA4A"=4"+ 4",
and A" =31 | Z"(0,b;) for some b,...,b,eZ with all bje Z* or all
bie —-Z1".
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(2) If A’ is an additive subset of 0 x Z" or 0 x —Z* with A’ 30, and A" is an
additive and multiplicative subset of (N x Z) U0 with A" 30, then A’, A”
and A= A"+ A" are semi-cones of LX< Z with A =A"UA".

Proor. For (1), A’ and A" are routinely semi-cones of Z < Z. Noting
A C Z* x Z by Proposition 2.10, A = A’ U A" = A’ + A”. The later part holds by
Lemma 5.1.

For (2), routinely, 4’, A” are semi-cones, and A is additive. Obviously, A4 is
multiplicative by 4’ « A” C A’. Also, AN —A =0 since A4 is a subset of the cone
L or L*. Hence A is a semi-cone with 4 = A" U A4”. O

COROLLARY 5.3.  The maximal semi-cones in Z. <X Z are precisely the cones L
and L.

COROLLARY 5.4. A subset A of Z X Z is a semi-cone of ZXZ iff A=
B+ > Z"(0,b;) for some additive and multiplicative subset B of (N x Z)U0
with B> 0 and some by,...,b, with all b; e Z" or all b; e —Z1".

For non-zero elements (ay,b1), ..., (a,,b,) in Z X Z, let us define a condition
(C): @) ai,-..,aqkeN, a1 =---=a,=0 and (ii) bgy1,...,b,€N or
bis1,-..,by e =N, where 0 < k <n (possibly, k =0 or k =n).

LemMa 5.5. Let F = {(a1,b1),...,(an,bn)} be a finite subset of Z < Z. Then
the following hold.

(1) For ay,...,a,eN and by,... b, €Z, the set A of all finite sums of
elements of the form c(ay,by)"™ * - * (ay,by)™ (¢c,v1,...,vy € L" with
some v; > 0) is the semi-cone of Z X Z generated by F.

(2) For ay=---=a,=0 and by,...,b,€Z with all b;e Z* or all b; e —-1",
A=>",Z27(0,b;) is the semi-cone of Z < Z generated by F.

(3) For (ay,by),...,(awb,) satisfying (C), A=<(ai,b1),...,(ar,br)>+
>k £7(0,by) is the semi-cone of Z < Z generated by F.

Proor. For a case (1), (2), or (3), 4 is a semi-cone of Z X Z by Proposition
5.2(2) (indeed, for (1), put A” = A. For (2), put A'’=A4. For (3), let 4’ =
> ki1 £7(0,b;), and define 4" as 4 in (1), but n =k, then 4 = A"+ A"). Thus,
for each case, 4 = {F) by Proposition 3.1. O

PROPOSITION 5.6.  For a finite subset F = {(a1,by),...,(an,bn)} of Z X Z,
F is contained in some semi-cone A of Z X Z iff all a;e Z*, and {b;|a; =0} is a
subset of L* or —Z1".
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Proor. The if part holds by Lemma 5.5(3). The only if part holds,
modifying the proof of Proposition 5.2(1). O

Let & be the collection of all finitely generated semi-cones of Z < Z. Let

F1={AeF|ANNXZL)# T}, F2={AeF|AN(NxZ)=J}; and,

FF={AeF|AN(0xZ)#0}; F ={deF|AN(0x Z)=0}.

Clearly, # =7 U% =%"UZ,. Note that F ={4e F|p(A4) #0};
Fr ={A e F|pi(4d) =0} (by pi(4) CZ" in Proposition 2.10).

For AeZ with 4 #0, let 4y = A\{0}. Then " ={4e 7 |pi(4y) 30}
Fy ={AeF |pi(4y)$0 or A=0}

The following holds by Lemma 5.5 and Proposition 5.6.

PROPOSITION 5.7. Let A be a subset of Z <X Z. Then the following hold.
(1) (@) AeF iff A=<L(a1,b1),...,(a,br)) + > Z27(0,b;) for some
(a1,b1),. .., (an,by) in ZXZ satisfying (C), but 1 <k <n.
(b) Ae F iff A= Z*(0,b;) for some by,...,b, with all bje Z" or
all bje —7.".
(2) (a) AeF" iff A is the same as in (1)(a), but 0 <k < n.
(b) Ae FF iff A= {(a1,b1),...,(an, by)) for some (ai,by),...,(an,by) in
NXZ, or A=0.

For a semi-cone 4 = {(a1,b1), ..., (ax, bx)> + > ;4 Z7(0, b)) of Z < Z with
a;eN and 0 < k < n, let us say that A is positive (resp. negative) if all by, ..
b, are positive (resp. negative), for convenience.

*

THEOREM 5.8. For a subset A of 1. X Z, the following are equivalent.

(1) 4 is a semi-cone of Z < Z.

(2) A=U,cn An + 211 Z7(0,b;) for some A, € F5' (neN) with A, C Apy1,
and some by, ..., b, with all b;e Z" or all bje —Z".

(3) A4 has an increasing cover {S,|ne N} with all S, € #" or all S, € F,
here for S, e #*, all S, are positive or all are negative.

(4) A has an increasing cover {S,|n €N} of finitely generated semi-cones.

Proor. For (1) = (2), let A’, A” be same as in Proposition 5.2(1). Then
A', A" are semi-cones and 4 =A'"UA" = A"+ A”. Also, there exists a finite
subset {bi,...,b,} with all b; e Z* or all b; e —Z" such that A’ =5 | Z"(0,b;).
If 47 =0, (2) holds, so assume A4” #0. Let A” = {z},22,...} U0 with all z; €
N x Z, and put 4, =<z1,...,z,y. Then {4, |n € N} is an increasing cover of 4"
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by finitely generated semi-cones in %," (by Proposition 5.7(2)). This suggests (2)

holds.
For (2) = (3), put S, =4, + >/, Z7(0,b;) (neN) in (2). Then {S,|n e N}

is a desired cover of 4 in (3) in terms of Proposition 5.7(2).

(3) = (4) is clear, and (4) = (1) holds by Proposition 3.2. O
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