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FINITELY GENERATED SEMI-CONES

IN PRODUCT RINGS

By

Yoshimi Kitamura and Yoshio Tanaka

Abstract. Semi-cones of rings determine the partial orders in the

rings. We consider semi-cones in the direct product rings and the

product extension rings, inducing finitely generated semi-cones. In

particular, we give characterizations for semi-cones of the direct

product rings and the basic product extension rings of the ring of

integers.

1. Introduction

As a generalization of positive cones of integral domains, we introduced

semi-cones of rings which determine partial orders in the rings ([4, 6]). In this

paper, we consider semi-cones in the direct product rings and the product

extension rings, inducing finitely generated semi-cones. In particular, we give

characterizations for semi-cones of the direct product rings and the basic product

extension rings of the ring of integers.

The symbol R means a non-zero commutative ring with the identity element

denoted by 1.

The symbol Z means the ring of integers. Define N ¼ f1; 2; . . .g, and Z� ¼
N [ f0g.

Let A, B be subsets of R. Define �A ¼ f�x j x A Ag, Aþ B ¼ fxþ y j x A A;

y A Bg, AB ¼ fxy j x A A; y A Bg, aB ¼ fagB for a A R, and Anf0g ¼ fx j x A A;

x0 0g. Also, define the direct product set A� B ¼ fðx; yÞ j x A A; y A Bg.
The single set f0g (or fð0; 0ÞgÞ is often denoted by 0.

As is well-known, for a partial ordera on R, ðR;aÞ is a partially ordered ring

([1]) if R satisfies the following conditions:
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(i) aa b implies aþ xa bþ x for all x, and

(ii) aa b and 0a x implies axa bx.

For a subset S of (a ring) R, let us call S a semi-cone (resp. cone) of R if

it satisfies (i), (ii), and (iii) (resp. (i), (ii), (iii), and (iv)) below; see [4, 6].

(i) S þ S � S, that is, S is additive.

(ii) SS � S, that is, S is multiplicative.

(iii) S \ ð�SÞ ¼ 0.

(iv) R ¼ S [ ð�SÞ.
A subset S of R satisfying (i), (ii) is called a positive cone ([8] (or [2])) if

Rnf0g ¼ S [ ð�SÞ.
We note that for a semi-cone S of R, we induce a partially ordered ring

ðR;aSÞ, defining xaS y by y� x A S. Conversely, for a partially ordered ring

ðR;aÞ, putting S ¼ fx A R j 0a xg, S is a semi-cone of R, and a¼aS.

In view of the above, a ring R is a partially ordered ring; ordered ring;

ordered integral domain i¤ it has a semi-cone; cone; positive cone, respectively.

For a ring R, let us recall the following product rings (I) and (II) on R� R.

(I) The usual direct product R� R equipped with component-wise addition

and multiplication (that is, for ðx; yÞ; ðx 0; y 0Þ A R� R, ðx; yÞ þ ðx 0; y 0Þ ¼ ðxþ x 0;

yþ y 0Þ, and ðx; yÞ � ðx 0; y 0Þ ¼ ðxx 0; yy 0Þ).
Let us call such a ring the direct product ring of R, and denote it the symbol

RnR (as in [5, 6]).

(II) Let ða; bÞ A R� R. The ring R� R equipped with addition and multi-

plication by ðx; yÞ þ ðx 0; y 0Þ ¼ ðxþ x 0; yþ y 0Þ and ðx; yÞ � ðx 0; y 0Þ ¼ ðxx 0 þ ayy 0;

xy 0 þ yx 0 þ byy 0Þ.
Let us call such an extension ring of R the product extension ring of R,

and denote it the symbol ðRyR; a; bÞ (as in [5, 6]). For example, an extension

ring ðRyR;�1; 0Þ of the real number field R is isomorphic to the complex

number field. (Algebraic structures of the rings ðRyR; a; bÞ and their ideals

are observed in [5]). Especially, a basic ring ðRyR; 0; 0Þ is called the trivial

extension of R by itself, denoted by RyR. As is well-known, this ring gives

useful examples related to ring structures and order structures, or extensions ([9],

for example).

2. Semi-cones

Lemma 2.1. Let A, A 0 be subsets of R with A;A 0 C 0. If A� A 0 is multi-

plicative in ðRyR; a; bÞ, then AA � A, AA 0 � A 0, aA 0A 0 � A, and bA 0A 0 � A 0.

The converse holds if A and A 0 are additive.
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Proof. The first half holds, noting ð0; x 0Þ � ð0; y 0Þ ¼ ðax 0y 0; bx 0y 0Þ and

ðx; x 0Þ � ðy; 0Þ ¼ ðxy; x 0yÞ in ðRyR; a; bÞ. The latter part is routine. r

Proposition 2.2. Let A and A 0 be subsets of R. Then the following hold.

(1) A� A 0 is a semi-cone of RnR i¤ A and A 0 are semi-cones of R.

(2) A� A 0 is a semi-cone of ðRyR; a; bÞ i¤ A is a semi-cone of R, and A 0

is an additive set such that A 0 \ �A 0 ¼ 0, AA 0 � A 0, aA 0A 0 � A, and

bA 0A 0 � A 0. In particular, A� A 0 is a semi-cone of RyR i¤ A is a semi-

cone of R, and A 0 is additive with A 0 \ �A 0 ¼ 0 and AA 0 � A 0.

Proof. (1) is routine. (2) is routinely shown, using Lemma 2.1. r

Remark 2.3. (1) In the only if part of Proposition 2.2(2), (i) for every

ðRyR; a; bÞ, A 0 need not be a semi-cone of R; while (ii) for a0 0, A 0 \ �A 0 ¼ 0

can be deleted under R being an integral domain. (Indeed, for (i), let R ¼ Z, and

A ¼ Z� and A 0 ¼ �Z� in R. Then, for ab 0 and ba 0, A� A 0 is a semi-cone of

ðRyR; a; bÞ by Proposition 2.2(2), but A 0 is not a semi-cone of R by A 0A 0 6� A 0.

For (ii), let x A A 0 \ �A 0. Then ax2;�ax2 A A by aA 0A 0 � A. Thus, ax2 ¼ 0 by

A \ �A ¼ 0, thus x ¼ 0. Hence A 0 \ �A 0 ¼ 0).

(2) For a semi-cone S of R with SS0 0, let S1 ¼ S � 0 and S2 ¼ 0� S be

semi-cones of R 0 ¼ RyR. Then S1 � S2 is a semi-cone of R 0 yR 0, but S2 � S1 is

not a semi-cone by Proposition 2.2(2), noting S1 � S2 � S2, but S2 � S1 6� S1.

Let p1; p2 : R� R ! R be the projections defined by p1ðx; yÞ ¼ x, and

p2ðx; yÞ ¼ y, unless otherwise stated.

For a semi-cone A of RnR or RyR, piðAÞ need not be a semi-cone of R

for each i ¼ 1; 2; see Remark 2.7 later. But, we have the following proposition

which is routinely shown, here (2)(b) holds by Proposition 2.2(2).

Proposition 2.4. The following hold.

(1) For a semi-cone A of RnR, (a) and (b) below hold.

(a) piðAÞ is a semi-cone of R i¤ piðAÞ \ pið�AÞ ¼ 0 for each i ¼ 1; 2.

(b) p1ðAÞ � p2ðAÞ is a semi-cone of RnR i¤ piðAÞ are semi-cones of R

(equivalently, piðAÞ \ pið�AÞ ¼ 0) for i ¼ 1; 2.

(2) For a semi-cone A of RyR, (a) and (b) below hold.

(a) p1ðAÞ is additive and multiplicative, and p2ðAÞ is additive. In par-

ticular, p1ðAÞ is a semi-cone of R i¤ p1ðAÞ \ p1ð�AÞ ¼ 0. While,

p2ðAÞ is a semi-cone of R i¤ p2ðAÞ \ p2ð�AÞ ¼ 0, and p2ðAÞp2ðAÞ �
p2ðAÞ.

237Finitely generated semi-cones in product rings



(b) p1ðAÞ � p2ðAÞ is a semi-cone of RyR i¤ piðAÞ \ pið�AÞ ¼ 0 ði ¼
1; 2Þ, and p1ðAÞp2ðAÞ � p2ðAÞ.

Remark 2.5. In Proposition 2.4(2), if p2ðAÞ \ p2ð�AÞ ¼ 0 (resp. p2ðAÞp2ðAÞ
� p2ðAÞÞ is deleted in (a), p2ðAÞ need not be a semi-cone of R (by a cone A ¼
ðN� ZÞ [ ð0� Z�Þ (resp. a semi-cone A ¼ Z� � �Z�) of ZyZ. Also, if p2ðAÞ \
p2ð�AÞ ¼ 0 is deleted in (b), p1ðAÞ � p2ðAÞ need not be a semi-cone of RyR

(by the above cone A).

For a subset X of RnR (resp. RyR), the symbol annðX Þ means the set

fa A R j ða; aÞX ¼ 0g (resp. fa A R j ða; 0Þ � X ¼ 0g).

Proposition 2.6. Let A � R� R and A 0 ¼ A \ ð0� RÞ. The following hold.

(1) If A is a semi-cone of RnR or RyR, and A 0 ¼ 0, then p1ðAÞ is a semi-

cone of R.

(2) If A is a semi-cone of RnR (resp. RyR), and A 0 0 0, then p2ðAÞ (resp.

p1ðAÞ) is a semi-cone under annðA 0Þ ¼ 0.

Proof. For (1), by Proposition 2.4, it su‰ces to show p1ðAÞ \ �p1ðAÞ ¼ 0,

so let x ¼ p1ðx; yÞ ¼ �p1ðx 0; y 0Þ with ðx; yÞ; ðx 0; y 0Þ A A. Then ðx; yÞ þ ðx 0; y 0Þ ¼
ðxþ x 0; yþ y 0Þ ¼ ð0; yþ y 0Þ A A \ ð0� RÞ. Thus yþ y 0 ¼ 0 by A 0 ¼ 0. Hence

ðx; yÞ ¼ ð�x 0;�y 0Þ A A \ �A, so ðx; yÞ ¼ ð0; 0Þ by A \ �A ¼ 0. Then x ¼ 0.

For (2), we show p1ðAÞ is a semi-cone in RyR (similarly, p2ðAÞ is a

semi-cone in RnR). Similarly as in (1), it su‰ces to show p1ðAÞ \ �p1ðAÞ ¼ 0,

so let x ¼ p1ðx; yÞ ¼ �p1ðx 0; y 0Þ with ðx; yÞ; ðx 0; y 0Þ A A. For any ð0; zÞ A A 0,

ðx; yÞ � ð0; zÞ ¼ ð0; xzÞ A A, ðx 0; y 0Þ � ð0; zÞ ¼ ð0; x 0zÞ A A, and hence ð0; xzÞ ¼
ð0;�x 0zÞ ¼ �ð0; x 0zÞ A A \ �A, which yields ð0; xzÞ ¼ ð0; 0Þ. Then ðx; 0Þ � A 0 ¼
ð0; 0Þ. Thus x ¼ 0 by annðA 0Þ ¼ 0 with A 0 0 0. r

Remark 2.7. Related to Proposition 2.6, we have (1) and (2) below.

(1) For a semi-cone A of RnR and RyR with A 0ð¼ A \ ð0� RÞÞ ¼ 0,

p2ðAÞ need not be a semi-cone of R (by a semi-cone A ¼ ðN� ZÞ [ 0 of ZnZ

and ZyZ).

(2) For a semi-cone A of RnR (resp. RyR) with A 0 0 0, we have the

following (a) (resp. (b)).

(a) (i) p1ðAÞ need not be a semi-cone of R under annðA 0Þ ¼ 0 (by a semi-

cone A ¼ ðZ�NÞ [ 0 of ZnZ). Also, (ii) p2ðAÞ need not be a semi-cone of R

(indeed, let R ¼ ZyZ, and let A1 ¼ 0�N, A2 ¼ 0� Z. Then A ¼ ðA1 � A2Þ [
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ð0� ð0� Z�ÞÞ is a semi-cone of RnR with annðA 0Þ0 0, but p2ðAÞ is not a

semi-cone of R).

(b) (i) p1ðAÞ need not be a semi-cone of R (indeed, let R, and A1, A2 be

the same as (a)(ii). Then A ¼ ðA2 � A1Þ [ 0 is a semi-cone of RyR with

annðA 0Þ0 0, but p1ðAÞ is not a semi-cone of R). Also, (ii) p2ðAÞ need not be a

semi-cone of R under annðA 0Þ ¼ 0 (by the cone (or semi-cone) A of ZyZ in

Remark 2.5).

Proposition 2.8. For a subset A of Z, the following are equivalent.

(1) A is additive, and A \ �A ¼ 0.

(2) A is additive with A C 0, and A � Z� or A � �Z�.

(3) A ¼ a1Z
� þ � � � þ amZ

� for some a1; . . . ; am with all ai A Z� or all

ai A �Z�.

Proof. For (1) ) (2), suppose (2) doesn’t hold. Then m;�n A A for some

m; n A N, thus A \ �A C mn0 0, a contradiction.

For (2) ) (3), for A � Z�, (3) holds in view of the proof of [3, Proposition

2.9], and thus (3) also holds for A � �Z�, putting A 0 ¼ �A. (3) ) (1) is obvious.

r

Corollary 2.9. For a subset A of Z, the following are equivalent

(cf. [3]).

(1) A is a semi-cone of Z.

(2) A is additive with 0 A A � Z�.

(3) A ¼ a1Z
� þ � � � þ amZ

� for some a1; . . . ; am A Z�.

The following holds by Proposition 2.6 with Corollary 2.9.

Proposition 2.10. Let R be an integral domain, and let A be a semi-cone of

RnR (resp. RyR). Then p1ðAÞ or p2ðAÞ (resp. p1ðAÞ) is a semi-cone of R. In

particular, for R ¼ Z, p1ðAÞ � Z� or p2ðAÞ � Z� (resp. p1ðAÞ � Z�).

The following holds by Propositions 2.2 and 2.8.

Proposition 2.11. Let A and A 0 be subsets of Z with A 0 C 0. For A 0 0 0,

A� A 0 is a semi-cone of ðZyZ; a; bÞ i¤ A is a semi-cone of Z, and A 0 is an

additive set such that aA 0A 0 � A, and A 0 � Z� with b A Z� or A 0 � �Z� with

b A �Z�. (For A 0 ¼ 0, A� 0 is a semi-cone of ðZyZ; a; bÞ i¤ so is A of Z).
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Corollary 2.12. The following hold.

(1) For subsets A and A 0 of Z with A 0 C 0, A� A 0 is a semi-cone of ZyZ

i¤ (i) A is a semi-cone (equivalently, A is additive with 0 A A � Z�), and

(ii) A 0 is additive with A 0 � Z� or A 0 � �Z�.

(2) For a semi-cone A of ZyZ, p1ðAÞ � p2ðAÞ is a semi-cone of ZyZ i¤

p2ðAÞ � Z� or p2ðAÞ � �Z�.

The following holds by Propositions 2.11, and 2.8 with Corollary 2.9.

Corollary 2.13. For subsets A and A 0 of Z, A� A 0 is a semi-cone of ZyZ

i¤ A ¼ a1Z
� þ � � � þ amZ

� for some a1; . . . ; am A Z�, and A 0 ¼ b1Z
� þ � � � þ bnZ

�

for some b1; . . . ; bn with all bi A Z� or all bi A �Z�.

Corollary 2.14. Corollaries 2.12 and 2.13 remain true in ZnZ, but delete

the part of ‘‘�Z�’’ in these corollaries.

3. Finitely Generated Semi-cones

We shall introduce the concept of finitely generated semi-cones. We note that

arbitrary intersections of semi-cones are semi-cones. Let X be a subset of R.

When X is contained in some semi-cone, the intersection of all semi-cones which

contain X is evidently the smallest semi-cone containing X . If there exists the

smallest semi-cone containing X , then we shall call it the semi-cone generated by

X , denoted by hXi. Obviously, hXi ¼ hX [ 0i.

For a finite subset fx1; . . . ; xng of R contained in some semi-cone, the symbol

hx1; . . . ; xni means hfx1; . . . ; xngi.
Let A be a semi-cone of R. We shall say that A is finitely generated if

A ¼ hFi for some finite subset F in A.

We note that every finitely generated semi-cone of R must be countable in

view of Proposition 3.1 below. Also, note that every semi-cone A of R need not

be finitely generated even if A is contained in a finitely generated semi-cone of R;

see Proposition 3.8 (or Example 3.9) later.

The following basic proposition is routinely shown.

Proposition 3.1. Let F ¼ fx1; . . . ; xng be a finite subset of some semi-cone

in R with all xi 0 0, and let x0
i ¼ 1. Let F be the set of all finite sums of ele-

ments of the form cxn1
1 � � � xnn

n , where c; n1; . . . ; nn A Z� with some ni > 0. Then

hFi ¼ F.
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For an element of the set F in the previous proposition, we will use a brief

symbol

X
cxn1

1 � � � xnn
n

under c; n1; . . . ; nn A Z� with some ni > 0.

Proposition 3.2. For a non-zero subset A of R, A is a semi-cone of R i¤ A

has a cover C (i.e., A ¼
S
fX jX A Cg) of semi-cones generated by any finitely

many elements (or two elements) of A. In particular, for A being countable, we

can take C to be an increasing countable cover of semi-cones generated by finitely

many elements (or, a countable cover of semi-cones generated by any two elements)

of A.

Proof. For the only if part, let F be the collection of all finite sets (or two

elements) in a semi-cone A. Let C ¼ fhFi jF A Fg. Then C is a cover of A, and

each hFi is a finitely generated semi-cone. For the if part, note that any two

elements x, y in A are contained in some semi-cone in A. Thus, A is a semi-cone.

For A being countable, let A ¼ fai j i A Ng, and Fn ¼ fa1; a2; . . . ; ang. Then C ¼
fhFni j n A Ng is a desired increasing cover. r

Remark 3.3. Every union of two semi-cones generated by finitely many

elements need not be a semi-cone (indeed, for finitely generated semi-cones

Z� � 0 and 0� Z� in ZyZ (by Corollary 3.5 later), their union is not a

semi-cone).

Theorem 3.4. Let S, T be semi-cones of R. Then the following hold.

(1) S � T is a finitely generated semi-cone of RnR i¤ so are S and T of R.

(2) S � T is a finitely generated semi-cone of RyR i¤ (i) S is finitely

generated and (ii) T ¼ ðSy1 þ � � � þ SynÞ þ ðZ�y1 þ � � � þ Z�ynÞ for some

y1; . . . ; yn A T.

Proof. For (1), it is routinely shown (as in the proof below).

For (2), note S � T is a semi-cone of RyR i¤ ST � T by Proposition

2.2(2). For the only if part of (2), let S � T ¼ hðx1; y1Þ; . . . ; ðxn; ynÞi with

all ðxi; yiÞ0 0. Obviously, S ¼ hx1; . . . ; xni, hence (i) holds. To see (ii), let

T 0 ¼ Sy1 þ � � � þ Syn þ Z�y1 þ � � � þ Z�yn. Let y A T . Then ð0; yÞ A S � T , so let

ð0; yÞ ¼
P

cðx1; y1Þn1 � � � � � ðxn; ynÞnn A S � T by Proposition 3.1. Note that for

241Finitely generated semi-cones in product rings



a A Z� and ðs; tÞ; ðs 0; t 0Þ A S � T , aðs; tÞ ¼ ðas; atÞ A S � Z�t, and ðs; tÞ � ðs 0; t 0Þ ¼
ðss 0; st 0 þ s 0tÞ A S � ðStþ St 0Þ. Then we show that ð0; yÞ A S � T 0, so y A T 0. Thus

T � T 0. While, T 0 � T by ST � T . Hence T 0 ¼ T . For the if part of (2), assume

(i) and (ii) hold. Since ST � T , S � T is a semi-cone of RyR. Let S ¼
hx1; . . . ; xmi. Let F ¼ fðx1; 0Þ; . . . ; ðxm; 0Þ; ð0; y1Þ; . . . ; ð0; ynÞg. To see S � T ¼
hFi, let ðx; yÞ A S � T . Let x ¼

P
cxn1

1 � � � xnm
m , and let y ¼

Pn
j¼1 sj yj þ

Pn
j¼1 cj yj

ðsj A S; cj A Z�Þ. Then,

ðx; 0Þ ¼
X

cxn1
1 � � � xnm

m ; 0
� �

¼
X

cðxn1
1 � � � xnm

m ; 0Þ

¼
X

cðx1; 0Þn1 � � � � � ðxm; 0Þnm A hFi

ð0; yÞ ¼ 0;
Xn
j¼1

sj yj

 !
þ 0;

Xn
j¼1

cj yj

 !

¼
Xn
j¼1

ð0; sj yjÞ þ
Xn
j¼1

cjð0; yjÞ

¼
Xn
j¼1

ðsj ; 0Þ � ð0; yjÞ þ
Xn
j¼1

cjð0; yjÞ A hFi;

noting each ðsj ; 0Þ A hFi by the above. Hence ðx; yÞ ¼ ðx; 0Þ þ ð0; yÞ A hFi. Thus

S � T ¼ hFi. r

Corollary 3.5. Let S be a semi-cone of R. Then the following hold.

(1) S � 0 is a finitely generated semi-cone of RyR i¤ so is S of R.

(2) 0� S is a finitely generated semi-cone of RyR i¤ S ¼ Z�x1 þ � � � þ Z�xn
for some x1; . . . ; xn in S.

(3) S � S is a finitely generated semi-cone of RyR i¤ so is S of R.

Proof. (1), (2), and (3) hold by Theorem 3.4. But, for (3), note S ¼Pn
i¼1 Sxi þ

Pn
i¼1 Z

�xi if S ¼ hx1; . . . ; xni. r

Corollary 3.6. Let S and T be semi-cones of R with S � T (or, 1 A T). If

S � T is a finitely generated semi-cone of RyR, then so are S and T of R.

Proof. Let S � T ¼ hðx1; y1Þ; . . . ; ðxn; ynÞi with all ðxi; yiÞ A S � T . Let

F ¼ fxi; yj j i; j ¼ 1; . . . ; ng. Since S � T (especially, 1 A T by use of Lemma 2.1),

T ¼ hFi in view of the proof of Theorem 3.4(2). r
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In the previous corollary, the converse need not hold (even if S ¼ 0, 1 A T);

see Example 3.9 later.

We will consider finitely generated semi-cones in ZyZ (or ZnZ).

Let us recall (lexicographic) sets L ¼ ðN� ZÞ [ ð0� Z�Þ and L� ¼ ðN� ZÞ [
ð0��Z�Þ in Z� Z. We note that the cones of ZyZ are precisely the sets L

and L� ([6]). While, RnR has no cones ([4]).

Proposition 3.7. The following hold.

(1) All semi-cones of Z are finitely generated.

(2) The cones L and L� of ZyZ are finitely generated.

Proof. (1) holds by Corollary 2.9. For (2), note L ¼ hð1;�1Þ; ð0; 1Þi and

L� ¼ hð1; 1Þ; ð0;�1Þi by the proof of [6, Proposition 2.12]. r

For a non-zero semi-cone S of R, let us define S0 ¼ Snf0g, unless otherwise

stated.

Proposition 3.8. Let S and T be non-zero semi-cones of Z. Then the

following hold in ZnZ as well as ZyZ.

(1) S � T is a finitely generated semi-cone, while its subset

(2) A ¼ ðS0 � T0Þ [ 0 is a semi-cone, but A is not finitely generated.

Proof. For (1), S � T is a semi-cone of ZnZ and ZyZ, and it is finitely

generated by Theorem 3.4 with Corollary 2.9.

For (2), A is a semi-cone in ZnZ and ZyZ. To see the latter part in

ZnZ, suppose A ¼ hða1; b1Þ; . . . ; ðan; bnÞi with all ðai; biÞ A S0 � T0. Let p be a

prime number with p > maxða1; . . . ; anÞ. Take a A S0 and let s ¼ pa. Then s A S0.

Let t ¼ min T0 A T0. Then ðs; tÞ A A, so let ðs; tÞ ¼
P

cða1; b1Þn1 � � � ðan; bnÞnn by

Proposition 3.1. Noting xþ y > t for all x; y A T0, ðs; tÞ ¼ ða1; b1Þn1 � � � ðan; bnÞnn
for some n1; . . . ; nn with c ¼ 1. Then s ¼ an1

1 � � � ann
n , thus p is a divisor of some ai,

a contradiction. Hence A is not finitely generated. In ZyZ, A is also not finitely

generated by the same way (or, taking s A S0 distinct from any ai). r

As is seen above, every semi-cone which is a subset of a finitely generated

semi-cone need not be finitely generated in ZnZ or ZyZ. Also, let us give

a finitely generated semi-cone S of R such that (i) S � S is a finitely generated

semi-cone of RyR, but (ii) a semi-cone 0� S of RyR is not finitely generated.

(In RnR, such a semi-cone S of R does not exist in view of Theorem 3.4(1)).
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Example 3.9. For the cone Lð¼ ðN� ZÞ [ ð0� Z�ÞÞ of R ¼ ZyZ, the

above (i) and (ii) hold in RyR. Similarly, for the cone L�, (i) and (ii) also

hold.

Indeed, (i) holds by Proposition 3.7(2) and Corollary 3.5(3). To see (ii),

suppose that a semi-cone 0� L is finitely generated. Then, by Corollary 3.5(2),

L ¼ Z�ðx1; y1Þ þ � � � þ Z�ðxn; ynÞ for some ðx1; y1Þ; . . . ; ðxn; ynÞ in L. Take y0 A Z

with y0 < yi for all yi. Then ð1; y0Þ A L, but ð1; y0Þ B Z�ðx1; y1Þ þ � � � þ
Z�ðxn; ynÞ, a contradiction. To see this, assume ð1; y0Þ ¼ a1ðx1; y1Þ þ � � � þ
anðxn; ynÞ for some a1; . . . ; an A Z�. Then ð1; y0Þ ¼ ða1x1 þ � � � þ anxn; a1 y1 þ � � � þ
an ynÞ. Since all xi b 0, all aixi b 0. Thus aixi ¼ 1 for some i. Hence, for j0 i,

ajxj ¼ 0, thus aj yj ¼ 0 for aj ¼ 0, or yj b 0 for aj 0 0 (by ð0; yjÞ A 0� Z�).

Hence, y0 ¼ a1 y1 þ � � � þ an yn b yi > y0. This is a contradiction. Then (ii) holds.

For a non-zero semi-cone S of R, recall the following subsets of R� R ([6]).

D0 ¼ fðx; xÞ j x A Sg; D1 ¼ fðxþ y; xÞ j x; y A Sg; D2 ¼ fðx; xþ yÞ j x; y A Sg;
and L ¼ ðS0 � RÞ [ ð0� SÞ; L 0 ¼ ðR� S0Þ [ ðS � 0Þ.

In RnR, D0, D1, D2 (except L, L 0) are semi-cones. In RyR, D2 is a semi-

cone, and L (except D0, D1) is a semi-cone under R being an integral domain.

But, L 0 is not a semi-cone in RyR. (For these, see [6]).

Proposition 3.10. Let S be a non-zero semi-cone of Z. Then the following

hold.

(1) D0, D1, D2 are finitely generated semi-cones in ZnZ, and so is D2 in

ZyZ.

(2) L is a finitely generated semi-cone of ZyZ i¤ 1 A S (i.e., L ¼ L).

Proof. For (1), let S ¼
P

i Z
�xi with x1; . . . ; xn A S by Corollary 2.9.

We show D2 is finitely generated in ZnZ (or ZyZ), for example. Let x; y A S

with x ¼
P

i cixi, y ¼
P

i dixi ðci; di A Z�Þ. Then ðx; xþ yÞ ¼ ðx; xÞ þ ð0; yÞ ¼P
i ciðxi; xiÞ þ

P
i dið0; xiÞ. Thus D2 is generated by fðxi; xiÞ; ð0; xiÞ j i ¼ 1; . . . ; ng.

For (2), to see the if part, let 1 A S. Then S ¼ Z�, so L ¼ L. Hence, L

is finitely generated by Proposition 3.7(2). For the only if part, let L ¼ hFi

for some finite set F ¼ fða1; b1Þ; . . . ; ðak; bkÞ; ð0; bkþ1Þ; . . . ; ð0; bnÞg with a1; . . . ; ak,

bkþ1; . . . ; bn A S0. Suppose 1 B S. Let a ¼ minða1; . . . ; akÞ. Then 1 < aa ai with

a A S0. Take b A Z with b < bi for all bi. Then ða; bÞ A L. But, ða; bÞ B hFi

by Proposition 3.1, noting that ðai; biÞ � ðaj; bjÞ ¼ ðaiaj; aibj þ biajÞ0 ða; bÞ (by

aiaj > a); and ðai; biÞ þ ð0; bjÞ0 ða; bÞ, etc. This is a contradiction. Then 1 A S.

r
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4. Characterizations of Semi-cones in ZnZ

The following lemma holds in view of the proof of Proposition 2.6, and

Corollary 2.9.

Lemma 4.1. For a semi-cone A of ZnZ, let A 0 ¼ A \ ð0� ZÞ and A 00 ¼
A \ ðZ� 0Þ. Then the following hold.

(1) If A 0 ¼ 0, then p1ðAÞ is a semi-cone of Z with p1ðAÞ � Z�. Also, if

A 0 0 0, then p2ðAÞ is a semi-cone of Z with p2ðAÞ � Z�.

(2) If A 00 ¼ 0, then p2ðAÞ is a semi-cone of Z with p2ðAÞ � Z�. Also, if

A 00 0 0, then p1ðAÞ is a semi-cone of Z with p1ðAÞ � Z�.

Let C be the collection of all semi-cones of ZnZ, and define the following

subcollections Ci ði ¼ 1; 2; 3; 4Þ of C satisfying C ¼ C1 [ C2 [ C3 [ C4.

C1 ¼ fA A C jA \ ð0� ZÞ0 0; A \ ðZ� 0Þ0 0g,
C2 ¼ fA A C jA \ ð0� ZÞ0 0; A \ ðZ� 0Þ ¼ 0g,
C3 ¼ fA A C jA \ ð0� ZÞ ¼ 0; A \ ðZ� 0Þ0 0g,
C4 ¼ fA A C jA \ ð0� ZÞ ¼ 0; A \ ðZ� 0Þ ¼ 0g.

Theorem 4.2. Let A be an additive and multiplicative subset of ZnZ with

A C 0. Then the following hold.

(1) A A C1 , A � Z� � Z�, but A 6� ðZ�NÞ [ 0 and A 6� ðN� ZÞ [ 0.

(2) A A C2 , A � ðZ�NÞ [ 0, but A 6� ðN�NÞ [ 0.

(3) A A C3 , A � ðN� ZÞ [ 0, but A 6� ðN�NÞ [ 0.

(4) A A C4 , A � ðN�NÞ [ 0.

Proof. In view of Lemma 4.1, A A C1; A A C2; A A C3; A A C4 implies

A � Z� � Z�; A � ðZ�NÞ [ 0; A � ðN� ZÞ [ 0; A � ðN�NÞ [ 0, respectively.

Also, any case implies A is a semi-cone by A \ �A ¼ 0.

For (1), to see ð)Þ, by A \ ð0� ZÞ0 0, there exists some ðx; yÞ A A \
ð0� ZÞ with ðx; yÞ0 ð0; 0Þ. Then x ¼ 0 and y > 0. Thus ð0; yÞ B ðN� ZÞ [ 0,

which yields A 6� ðN� ZÞ [ 0. Similarly, A 6� ðZ�NÞ [ 0 by A \ ðZ� 0Þ0 0.

For ð(Þ, by A 6� ðZ�NÞ [ 0, there exists some ðx; yÞ A A with ðx; yÞ B
ðZ�NÞ [ 0. Then y ¼ 0 and hence x0 0. Thus ðx; 0Þ A A with x0 0. Hence

A \ ðZ� 0Þ0 0. Similarly, A \ ð0� ZÞ0 0 by A 6� ðN� ZÞ [ 0. Hence A A C1.

For (2), to see ð)Þ, by A \ ð0� ZÞ0 0, there exists some ðx; yÞ A
A \ ð0� ZÞ with ðx; yÞ0 ð0; 0Þ. Then ðx; yÞ ¼ ð0; yÞ B ðN�NÞ [ 0. Thus A 6�
ðN�NÞ [ 0. For ð(Þ, by A 6� ðN�NÞ [ 0, there exists some ðx; yÞ A A with
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ðx; yÞ B N�N, ðx; yÞ0 ð0; 0Þ. Then xa 0 and y > 0. Since ðx; yÞ2;�xðx; yÞ A A,

ðx; yÞ2 þ ð�xÞðx; yÞ ¼ ð0; y2 � xyÞ A A with y2 � xy0 0. Then A \ ð0� ZÞ0 0.

Hence A A C2.

(3) is similarly shown as (2), and (4) is obvious. r

Corollary 4.3. A subset A of ZnZ with A C 0 is a semi-cone i¤ it is

additive and multiplicative, and (i) A � Z� � Z�, (ii) A � ðZ�NÞ [ 0, or (iii)

A � ðN� ZÞ [ 0.

A semi-cone S of R is maximal if for any semi-cone T of R with S � T ,

T ¼ S.

Corollary 4.4. The maximal semi-cones of ZnZ are precisely the sets

Z� � Z�, ðZ�NÞ [ 0, and ðN� ZÞ [ 0.

Theorem 4.5. For a subset A of ZnZ, the following are equivalent.

(1) A is a semi-cone of ZnZ.

(2) A has an increasing cover fSn j n A Ng of finitely generated semi-cones with

types hða1; b1Þ; . . . ; ðai; biÞi, but all of these types satisfy one of the fol-

lowing: (i) all aj; bj A Z�, (ii) all aj A N, and (iii) all bj A N.

(3) A has an increasing cover fSn j n A Ng of finitely generated semi-cones.

Proof. (1) , (3) holds by Proposition 3.2. (2) ) (3) is clear, and (3) ) (2)

holds by Corollary 4.3. r

5. Characterizations of Semi-cones in ZyZ

Lemma 5.1. For an additive subset A of ZyZ with A C 0, let A 0 ¼ A \
ð0� ZÞ. If A 0 \ �A 0 ¼ 0, then A 0 ¼

Pn
i¼1 Z

�ð0; biÞ for some b1; . . . ; bn A Z with all

bi A Z� or all bi A �Z�.

Proof. The lemma follows from Proposition 2.8, noting ZG0�ZðHZyZÞ
by x 7! ð0; xÞ, as additive groups. r

Proposition 5.2. The following hold.

(1) If A is a semi-cone of ZyZ, then A 0 ¼ A \ ð0� ZÞ and A 00 ¼
ðA \ ðN� ZÞÞ [ 0 are semi-cones of ZyZ with A ¼ A 0 [ A 00 ¼ A 0 þ A 00,

and A 0 ¼
Pn

i¼1 Z
�ð0; biÞ for some b1; . . . ; bn A Z with all bi A Z� or all

bi A �Z�.
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(2) If A 0 is an additive subset of 0� Z� or 0��Z� with A 0 C 0, and A 00 is an

additive and multiplicative subset of ðN� ZÞ [ 0 with A 00 C 0, then A 0, A 00

and A ¼ A 0 þ A 00 are semi-cones of ZyZ with A ¼ A 0 [ A 00.

Proof. For (1), A 0 and A 00 are routinely semi-cones of ZyZ. Noting

A � Z� � Z by Proposition 2.10, A ¼ A 0 [ A 00 ¼ A 0 þ A 00. The later part holds by

Lemma 5.1.

For (2), routinely, A 0, A 00 are semi-cones, and A is additive. Obviously, A is

multiplicative by A 0 � A 00 � A 0. Also, A \ �A ¼ 0 since A is a subset of the cone

L or L�. Hence A is a semi-cone with A ¼ A 0 [ A 00. r

Corollary 5.3. The maximal semi-cones in ZyZ are precisely the cones L

and L�.

Corollary 5.4. A subset A of ZyZ is a semi-cone of ZyZ i¤ A ¼
Bþ

Pn
i¼1 Z

�ð0; biÞ for some additive and multiplicative subset B of ðN� ZÞ [ 0

with B C 0 and some b1; . . . ; bn with all bi A Z� or all bi A �Z�.

For non-zero elements ða1; b1Þ; . . . ; ðan; bnÞ in ZyZ, let us define a condition

(C): (i) a1; . . . ; ak A N, akþ1 ¼ � � � ¼ an ¼ 0 and (ii) bkþ1; . . . ; bn A N or

bkþ1; . . . ; bn A �N, where 0a ka n (possibly, k ¼ 0 or k ¼ n).

Lemma 5.5. Let F ¼ fða1; b1Þ; . . . ; ðan; bnÞg be a finite subset of ZyZ. Then

the following hold.

(1) For a1; . . . ; an A N and b1; . . . ; bn A Z, the set A of all finite sums of

elements of the form cða1; b1Þn1 � � � � � ðan; bnÞnn (c; n1; . . . ; nn A Z� with

some ni > 0) is the semi-cone of ZyZ generated by F.

(2) For a1 ¼ � � � ¼ an ¼ 0 and b1; . . . ; bn A Z with all bi A Z� or all bi A �Z�,

A ¼
Pn

i¼1 Z
�ð0; biÞ is the semi-cone of ZyZ generated by F.

(3) For ða1; b1Þ; . . . ; ðan; bnÞ satisfying (C), A ¼ hða1; b1Þ; . . . ; ðak; bkÞiþPn
j¼kþ1 Z

�ð0; bjÞ is the semi-cone of ZyZ generated by F.

Proof. For a case (1), (2), or (3), A is a semi-cone of ZyZ by Proposition

5.2(2) (indeed, for (1), put A 00 ¼ A. For (2), put A 0 ¼ A. For (3), let A 0 ¼Pn
j¼kþ1 Z

�ð0; bjÞ, and define A 00 as A in (1), but n ¼ k, then A ¼ A 0 þ A 00). Thus,

for each case, A ¼ hFi by Proposition 3.1. r

Proposition 5.6. For a finite subset F ¼ fða1; b1Þ; . . . ; ðan; bnÞg of ZyZ,

F is contained in some semi-cone A of ZyZ i¤ all ai A Z�, and fbi j ai ¼ 0g is a

subset of Z� or �Z�.
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Proof. The if part holds by Lemma 5.5(3). The only if part holds,

modifying the proof of Proposition 5.2(1). r

Let F be the collection of all finitely generated semi-cones of ZyZ. Let

F1 ¼ fA A F jA \ ðN� ZÞ0qg; F2 ¼ fA A F jA \ ðN� ZÞ ¼ qg; and,

F�
1 ¼ fA A F jA \ ð0� ZÞ0 0g; F�

2 ¼ fA A F jA \ ð0� ZÞ ¼ 0g.
Clearly, F ¼ F1 [F2 ¼ F�

1 [F�
2 . Note that F1 ¼ fA A F j p1ðAÞ0 0g;

F2 ¼ fA A F j p1ðAÞ ¼ 0g (by p1ðAÞ � Z� in Proposition 2.10).

For A A F with A0 0, let A0 ¼ Anf0g. Then F�
1 ¼ fA A F j p1ðA0Þ C 0g;

F�
2 ¼ fA A F j p1ðA0Þ d 0 or A ¼ 0g.

The following holds by Lemma 5.5 and Proposition 5.6.

Proposition 5.7. Let A be a subset of ZyZ. Then the following hold.

(1) (a) A A F1 i¤ A ¼ hða1; b1Þ; . . . ; ðak; bkÞiþ
Pn

j¼kþ1 Z
�ð0; bjÞ for some

ða1; b1Þ; . . . ; ðan; bnÞ in ZyZ satisfying (C), but 1a ka n.

(b) A A F2 i¤ A ¼
Pn

i¼1 Z
�ð0; biÞ for some b1; . . . ; bn with all bi A Z� or

all bi A �Z�.

(2) (a) A A F�
1 i¤ A is the same as in (1)(a), but 0a k < n.

(b) A A F�
2 i¤ A ¼ hða1; b1Þ; . . . ; ðan; bnÞi for some ða1; b1Þ; . . . ; ðan; bnÞ in

NyZ, or A ¼ 0.

For a semi-cone A ¼ hða1; b1Þ; . . . ; ðak; bkÞiþ
Pn

j¼kþ1 Z
�ð0; bjÞ of ZyZ with

aj A N and 0a k < n, let us say that A is positive (resp. negative) if all bkþ1; . . . ;

bn are positive (resp. negative), for convenience.

Theorem 5.8. For a subset A of ZyZ, the following are equivalent.

(1) A is a semi-cone of ZyZ.

(2) A ¼
S

n AN An þ
Pr

i¼1 Z
�ð0; biÞ for some An A F�

2 ðn A NÞ with An � Anþ1,

and some b1; . . . ; br with all bi A Z� or all bi A �Z�.

(3) A has an increasing cover fSn j n A Ng with all Sn A F�
1 or all Sn A F�

2 ,

here for Sn A F�
1 , all Sn are positive or all are negative.

(4) A has an increasing cover fSn j n A Ng of finitely generated semi-cones.

Proof. For (1) ) (2), let A 0, A 00 be same as in Proposition 5.2(1). Then

A 0, A 00 are semi-cones and A ¼ A 0 [ A 00 ¼ A 0 þ A 00. Also, there exists a finite

subset fb1; . . . ; brg with all bi A Z� or all bi A �Z� such that A 0 ¼
Pr

i¼1 Z
�ð0; biÞ.

If A 00 ¼ 0, (2) holds, so assume A 00 0 0. Let A 00 ¼ fz1; z2; . . .g [ 0 with all zi A

N� Z, and put An ¼ hz1; . . . ; zni. Then fAn j n A Ng is an increasing cover of A 00
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by finitely generated semi-cones in F�
2 (by Proposition 5.7(2)). This suggests (2)

holds.

For (2) ) (3), put Sn ¼ An þ
Pr

i¼1 Z
�ð0; biÞ ðn A NÞ in (2). Then fSn j n A Ng

is a desired cover of A in (3) in terms of Proposition 5.7(2).

(3) ) (4) is clear, and (4) ) (1) holds by Proposition 3.2. r
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