FINITELY GENERATED SEMI-CONES IN PRODUCT RINGS

By
Yoshimi Kitamura and Yoshio Tanaka

Abstract

Semi-cones of rings determine the partial orders in the rings. We consider semi-cones in the direct product rings and the product extension rings, inducing finitely generated semi-cones. In particular, we give characterizations for semi-cones of the direct product rings and the basic product extension rings of the ring of integers.

1. Introduction

As a generalization of positive cones of integral domains, we introduced semi-cones of rings which determine partial orders in the rings ([4, 6]). In this paper, we consider semi-cones in the direct product rings and the product extension rings, inducing finitely generated semi-cones. In particular, we give characterizations for semi-cones of the direct product rings and the basic product extension rings of the ring of integers.

The symbol R means a non-zero commutative ring with the identity element denoted by 1 .

The symbol \mathbf{Z} means the ring of integers. Define $\mathbf{N}=\{1,2, \ldots\}$, and $\mathbf{Z}^{*}=$ $\mathbf{N} \cup\{0\}$.

Let A, B be subsets of R. Define $-A=\{-x \mid x \in A\}, A+B=\{x+y \mid x \in A$, $y \in B\}, A B=\{x y \mid x \in A, y \in B\}, a B=\{a\} B$ for $a \in R$, and $A \backslash\{0\}=\{x \mid x \in A$, $x \neq 0\}$. Also, define the direct product set $A \times B=\{(x, y) \mid x \in A, y \in B\}$.

The single set $\{0\}$ (or $\{(0,0)\}$) is often denoted by 0 .
As is well-known, for a partial order \leq on $R,(R, \leq)$ is a partially ordered ring ([1]) if R satisfies the following conditions:

[^0](i) $a \leq b$ implies $a+x \leq b+x$ for all x, and
(ii) $a \leq b$ and $0 \leq x$ implies $a x \leq b x$.

For a subset S of (a ring) R, let us call S a semi-cone (resp. cone) of R if it satisfies (i), (ii), and (iii) (resp. (i), (ii), (iii), and (iv)) below; see [4, 6].
(i) $S+S \subset S$, that is, S is additive.
(ii) $S S \subset S$, that is, S is multiplicative.
(iii) $S \cap(-S)=0$.
(iv) $R=S \cup(-S)$.

A subset S of R satisfying (i), (ii) is called a positive cone ([8] (or [2])) if $R \backslash\{0\}=S \cup(-S)$.

We note that for a semi-cone S of R, we induce a partially ordered ring $\left(R, \leq_{S}\right)$, defining $x \leq_{S} y$ by $y-x \in S$. Conversely, for a partially ordered ring (R, \leq), putting $S=\{x \in R \mid 0 \leq x\}, S$ is a semi-cone of R, and $\leq=\leq_{S}$.

In view of the above, a ring R is a partially ordered ring; ordered ring; ordered integral domain iff it has a semi-cone; cone; positive cone, respectively.

For a ring R, let us recall the following product rings (I) and (II) on $R \times R$.
(I) The usual direct product $R \times R$ equipped with component-wise addition and multiplication (that is, for $(x, y),\left(x^{\prime}, y^{\prime}\right) \in R \times R,(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}\right.$, $\left.y+y^{\prime}\right)$, and $\left.(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)\right)$.

Let us call such a ring the direct product ring of R, and denote it the symbol $R \otimes R$ (as in [5, 6]).
(II) Let $(a, b) \in R \times R$. The ring $R \times R$ equipped with addition and multiplication by $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}+a y y^{\prime}\right.$, $\left.x y^{\prime}+y x^{\prime}+b y y^{\prime}\right)$.

Let us call such an extension ring of R the product extension ring of R, and denote it the symbol ($R \ltimes R ; a, b$) (as in [5, 6]). For example, an extension ring $(\mathbf{R} \ltimes \mathbf{R} ;-1,0)$ of the real number field \mathbf{R} is isomorphic to the complex number field. (Algebraic structures of the rings $(R \ltimes R ; a, b)$ and their ideals are observed in [5]). Especially, a basic ring ($R \ltimes R ; 0,0$) is called the trivial extension of R by itself, denoted by $R \ltimes R$. As is well-known, this ring gives useful examples related to ring structures and order structures, or extensions ([9], for example).

2. Semi-cones

Lemma 2.1. Let A, A^{\prime} be subsets of R with $A, A^{\prime} \ni 0$. If $A \times A^{\prime}$ is multiplicative in $(R \ltimes R ; a, b)$, then $A A \subset A, A A^{\prime} \subset A^{\prime}, a A^{\prime} A^{\prime} \subset A$, and $b A^{\prime} A^{\prime} \subset A^{\prime}$. The converse holds if A and A^{\prime} are additive.

Proof. The first half holds, noting $\left(0, x^{\prime}\right) *\left(0, y^{\prime}\right)=\left(a x^{\prime} y^{\prime}, b x^{\prime} y^{\prime}\right)$ and $\left(x, x^{\prime}\right) *(y, 0)=\left(x y, x^{\prime} y\right)$ in $(R \ltimes R ; a, b)$. The latter part is routine.

Proposition 2.2. Let A and A^{\prime} be subsets of R. Then the following hold.
(1) $A \times A^{\prime}$ is a semi-cone of $R \otimes R$ iff A and A^{\prime} are semi-cones of R.
(2) $A \times A^{\prime}$ is a semi-cone of $(R \ltimes R ; a, b)$ iff A is a semi-cone of R, and A^{\prime} is an additive set such that $A^{\prime} \cap-A^{\prime}=0, A A^{\prime} \subset A^{\prime}, a A^{\prime} A^{\prime} \subset A$, and $b A^{\prime} A^{\prime} \subset A^{\prime}$. In particular, $A \times A^{\prime}$ is a semi-cone of $R \ltimes R$ iff A is a semicone of R, and A^{\prime} is additive with $A^{\prime} \cap-A^{\prime}=0$ and $A A^{\prime} \subset A^{\prime}$.

Proof. (1) is routine. (2) is routinely shown, using Lemma 2.1.
Remark 2.3. (1) In the only if part of Proposition 2.2(2), (i) for every $(R \ltimes R ; a, b), A^{\prime}$ need not be a semi-cone of R; while (ii) for $a \neq 0, A^{\prime} \cap-A^{\prime}=0$ can be deleted under R being an integral domain. (Indeed, for (i), let $R=\mathbf{Z}$, and $A=\mathbf{Z}^{*}$ and $A^{\prime}=-\mathbf{Z}^{*}$ in R. Then, for $a \geq 0$ and $b \leq 0, A \times A^{\prime}$ is a semi-cone of ($R \ltimes R ; a, b$) by Proposition 2.2(2), but A^{\prime} is not a semi-cone of R by $A^{\prime} A^{\prime} \not \subset A^{\prime}$. For (ii), let $x \in A^{\prime} \cap-A^{\prime}$. Then $a x^{2},-a x^{2} \in A$ by $a A^{\prime} A^{\prime} \subset A$. Thus, $a x^{2}=0$ by $A \cap-A=0$, thus $x=0$. Hence $A^{\prime} \cap-A^{\prime}=0$).
(2) For a semi-cone S of R with $S S \neq 0$, let $S_{1}=S \times 0$ and $S_{2}=0 \times S$ be semi-cones of $R^{\prime}=R \ltimes R$. Then $S_{1} \times S_{2}$ is a semi-cone of $R^{\prime} \ltimes R^{\prime}$, but $S_{2} \times S_{1}$ is not a semi-cone by Proposition 2.2(2), noting $S_{1} * S_{2} \subset S_{2}$, but $S_{2} * S_{1} \not \subset S_{1}$.

Let $p_{1}, p_{2}: R \times R \rightarrow R$ be the projections defined by $p_{1}(x, y)=x$, and $p_{2}(x, y)=y$, unless otherwise stated.

For a semi-cone A of $R \otimes R$ or $R \ltimes R, p_{i}(A)$ need not be a semi-cone of R for each $i=1,2$; see Remark 2.7 later. But, we have the following proposition which is routinely shown, here (2)(b) holds by Proposition 2.2(2).

Proposition 2.4. The following hold.
(1) For a semi-cone A of $R \otimes R$, (a) and (b) below hold.
(a) $p_{i}(A)$ is a semi-cone of R iff $p_{i}(A) \cap p_{i}(-A)=0$ for each $i=1,2$.
(b) $p_{1}(A) \times p_{2}(A)$ is a semi-cone of $R \otimes R$ iff $p_{i}(A)$ are semi-cones of R (equivalently, $p_{i}(A) \cap p_{i}(-A)=0$) for $i=1,2$.
(2) For a semi-cone A of $R \ltimes R$, (a) and (b) below hold.
(a) $p_{1}(A)$ is additive and multiplicative, and $p_{2}(A)$ is additive. In particular, $p_{1}(A)$ is a semi-cone of R iff $p_{1}(A) \cap p_{1}(-A)=0$. While, $p_{2}(A)$ is a semi-cone of R iff $p_{2}(A) \cap p_{2}(-A)=0$, and $p_{2}(A) p_{2}(A) \subset$ $p_{2}(A)$.
(b) $p_{1}(A) \times p_{2}(A)$ is a semi-cone of $R \ltimes R$ iff $p_{i}(A) \cap p_{i}(-A)=0 \quad(i=$ $1,2)$, and $p_{1}(A) p_{2}(A) \subset p_{2}(A)$.

Remark 2.5. In Proposition 2.4(2), if $p_{2}(A) \cap p_{2}(-A)=0$ (resp. $p_{2}(A) p_{2}(A)$ $\left.\subset p_{2}(A)\right)$ is deleted in (a), $p_{2}(A)$ need not be a semi-cone of R (by a cone $A=$ $(\mathbf{N} \times \mathbf{Z}) \cup\left(0 \times \mathbf{Z}^{*}\right)\left(\right.$ resp. a semi-cone $\left.A=\mathbf{Z}^{*} \times-\mathbf{Z}^{*}\right)$ of $\mathbf{Z} \ltimes \mathbf{Z}$. Also, if $p_{2}(A) \cap$ $p_{2}(-A)=0$ is deleted in (b), $p_{1}(A) \times p_{2}(A)$ need not be a semi-cone of $R \ltimes R$ (by the above cone A).

For a subset X of $R \otimes R$ (resp. $R \ltimes R$), the symbol ann (X) means the set $\{a \in R \mid(a, a) X=0\}$ (resp. $\{a \in R \mid(a, 0) * X=0\}$).

Proposition 2.6. Let $A \subset R \times R$ and $A^{\prime}=A \cap(0 \times R)$. The following hold.
(1) If A is a semi-cone of $R \otimes R$ or $R \ltimes R$, and $A^{\prime}=0$, then $p_{1}(A)$ is a semicone of R.
(2) If A is a semi-cone of $R \otimes R$ (resp. $R \ltimes R$), and $A^{\prime} \neq 0$, then $p_{2}(A)$ (resp. $\left.p_{1}(A)\right)$ is a semi-cone under $\operatorname{ann}\left(A^{\prime}\right)=0$.

Proof. For (1), by Proposition 2.4, it suffices to show $p_{1}(A) \cap-p_{1}(A)=0$, so let $x=p_{1}(x, y)=-p_{1}\left(x^{\prime}, y^{\prime}\right)$ with $(x, y),\left(x^{\prime}, y^{\prime}\right) \in A$. Then $(x, y)+\left(x^{\prime}, y^{\prime}\right)=$ $\left(x+x^{\prime}, y+y^{\prime}\right)=\left(0, y+y^{\prime}\right) \in A \cap(0 \times R)$. Thus $y+y^{\prime}=0$ by $A^{\prime}=0$. Hence $(x, y)=\left(-x^{\prime},-y^{\prime}\right) \in A \cap-A$, so $(x, y)=(0,0)$ by $A \cap-A=0$. Then $x=0$.

For (2), we show $p_{1}(A)$ is a semi-cone in $R \ltimes R$ (similarly, $p_{2}(A)$ is a semi-cone in $R \otimes R$). Similarly as in (1), it suffices to show $p_{1}(A) \cap-p_{1}(A)=0$, so let $x=p_{1}(x, y)=-p_{1}\left(x^{\prime}, y^{\prime}\right)$ with $(x, y),\left(x^{\prime}, y^{\prime}\right) \in A$. For any $(0, z) \in A^{\prime}$, $(x, y) *(0, z)=(0, x z) \in A, \quad\left(x^{\prime}, y^{\prime}\right) *(0, z)=\left(0, x^{\prime} z\right) \in A, \quad$ and hence $\quad(0, x z)=$ $\left(0,-x^{\prime} z\right)=-\left(0, x^{\prime} z\right) \in A \cap-A$, which yields $(0, x z)=(0,0)$. Then $(x, 0) * A^{\prime}=$ $(0,0)$. Thus $x=0$ by $\operatorname{ann}\left(A^{\prime}\right)=0$ with $A^{\prime} \neq 0$.

Remark 2.7. Related to Proposition 2.6, we have (1) and (2) below.
(1) For a semi-cone A of $R \otimes R$ and $R \ltimes R$ with $A^{\prime}(=A \cap(0 \times R))=0$, $p_{2}(A)$ need not be a semi-cone of R (by a semi-cone $A=(\mathbf{N} \times \mathbf{Z}) \cup 0$ of $\mathbf{Z} \otimes \mathbf{Z}$ and $\mathbf{Z} \ltimes \mathbf{Z})$.
(2) For a semi-cone A of $R \otimes R$ (resp. $R \ltimes R$) with $A^{\prime} \neq 0$, we have the following (a) (resp. (b)).
(a) (i) $p_{1}(A)$ need not be a semi-cone of R under $\operatorname{ann}\left(A^{\prime}\right)=0$ (by a semicone $A=(\mathbf{Z} \times \mathbf{N}) \cup 0$ of $\mathbf{Z} \otimes \mathbf{Z})$. Also, (ii) $p_{2}(A)$ need not be a semi-cone of R (indeed, let $R=\mathbf{Z} \ltimes \mathbf{Z}$, and let $A_{1}=0 \times \mathbf{N}, A_{2}=0 \times \mathbf{Z}$. Then $A=\left(A_{1} \times A_{2}\right) \cup$
$\left(0 \times\left(0 \times \mathbf{Z}^{*}\right)\right)$ is a semi-cone of $R \otimes R$ with $\operatorname{ann}\left(A^{\prime}\right) \neq 0$, but $p_{2}(A)$ is not a semi-cone of R).
(b) (i) $p_{1}(A)$ need not be a semi-cone of R (indeed, let R, and A_{1}, A_{2} be the same as (a)(ii). Then $A=\left(A_{2} \times A_{1}\right) \cup 0$ is a semi-cone of $R \ltimes R$ with $\operatorname{ann}\left(A^{\prime}\right) \neq 0$, but $p_{1}(A)$ is not a semi-cone of R). Also, (ii) $p_{2}(A)$ need not be a semi-cone of R under $\operatorname{ann}\left(A^{\prime}\right)=0$ (by the cone (or semi-cone) A of $\mathbf{Z} \ltimes \mathbf{Z}$ in Remark 2.5).

Proposition 2.8. For a subset A of \mathbf{Z}, the following are equivalent.
(1) A is additive, and $A \cap-A=0$.
(2) A is additive with $A \ni 0$, and $A \subset \mathbf{Z}^{*}$ or $A \subset-\mathbf{Z}^{*}$.
(3) $A=a_{1} \mathbf{Z}^{*}+\cdots+a_{m} \mathbf{Z}^{*}$ for some a_{1}, \ldots, a_{m} with all $a_{i} \in \mathbf{Z}^{*}$ or all $a_{i} \in-\mathbf{Z}^{*}$.

Proof. For (1) \Rightarrow (2), suppose (2) doesn't hold. Then $m,-n \in A$ for some $m, n \in \mathbf{N}$, thus $A \cap-A \ni m n \neq 0$, a contradiction.

For (2) $\Rightarrow(3)$, for $A \subset \mathbf{Z}^{*},(3)$ holds in view of the proof of [3, Proposition 2.9], and thus (3) also holds for $A \subset-\mathbf{Z}^{*}$, putting $A^{\prime}=-A$. (3) \Rightarrow (1) is obvious.

Corollary 2.9. For a subset A of \mathbf{Z}, the following are equivalent (cf. [3]).
(1) A is a semi-cone of \mathbf{Z}.
(2) A is additive with $0 \in A \subset \mathbf{Z}^{*}$.
(3) $A=a_{1} \mathbf{Z}^{*}+\cdots+a_{m} \mathbf{Z}^{*}$ for some $a_{1}, \ldots, a_{m} \in \mathbf{Z}^{*}$.

The following holds by Proposition 2.6 with Corollary 2.9.
Proposition 2.10. Let R be an integral domain, and let A be a semi-cone of $R \otimes R($ resp. $R \ltimes R)$. Then $p_{1}(A)$ or $p_{2}(A)\left(\right.$ resp. $\left.p_{1}(A)\right)$ is a semi-cone of R. In particular, for $R=\mathbf{Z}, p_{1}(A) \subset \mathbf{Z}^{*}$ or $p_{2}(A) \subset \mathbf{Z}^{*}\left(\right.$ resp. $\left.p_{1}(A) \subset \mathbf{Z}^{*}\right)$.

The following holds by Propositions 2.2 and 2.8.
Proposition 2.11. Let A and A^{\prime} be subsets of \mathbf{Z} with $A^{\prime} \ni 0$. For $A^{\prime} \neq 0$, $A \times A^{\prime}$ is a semi-cone of $(\mathbf{Z} \ltimes \mathbf{Z} ; a, b)$ iff A is a semi-cone of \mathbf{Z}, and A^{\prime} is an additive set such that $a A^{\prime} A^{\prime} \subset A$, and $A^{\prime} \subset \mathbf{Z}^{*}$ with $b \in \mathbf{Z}^{*}$ or $A^{\prime} \subset-\mathbf{Z}^{*}$ with $b \in-\mathbf{Z}^{*}$. (For $A^{\prime}=0, A \times 0$ is a semi-cone of $(\mathbf{Z} \ltimes \mathbf{Z} ; a, b)$ iff so is A of $\left.\mathbf{Z}\right)$.

Corollary 2.12. The following hold.
(1) For subsets A and A^{\prime} of \mathbf{Z} with $A^{\prime} \ni 0, A \times A^{\prime}$ is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff (i) A is a semi-cone (equivalently, A is additive with $0 \in A \subset \mathbf{Z}^{*}$), and (ii) A^{\prime} is additive with $A^{\prime} \subset \mathbf{Z}^{*}$ or $A^{\prime} \subset-\mathbf{Z}^{*}$.
(2) For a semi-cone A of $\mathbf{Z} \ltimes \mathbf{Z}, p_{1}(A) \times p_{2}(A)$ is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff $p_{2}(A) \subset \mathbf{Z}^{*}$ or $p_{2}(A) \subset-\mathbf{Z}^{*}$.

The following holds by Propositions 2.11, and 2.8 with Corollary 2.9.
Corollary 2.13. For subsets A and A^{\prime} of $\mathbf{Z}, A \times A^{\prime}$ is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff $A=a_{1} \mathbf{Z}^{*}+\cdots+a_{m} \mathbf{Z}^{*}$ for some $a_{1}, \ldots, a_{m} \in \mathbf{Z}^{*}$, and $A^{\prime}=b_{1} \mathbf{Z}^{*}+\cdots+b_{n} \mathbf{Z}^{*}$ for some b_{1}, \ldots, b_{n} with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.

Corollary 2.14. Corollaries 2.12 and 2.13 remain true in $\mathbf{Z} \otimes \mathbf{Z}$, but delete the part of " $-\mathbf{Z}$ "" in these corollaries.

3. Finitely Generated Semi-cones

We shall introduce the concept of finitely generated semi-cones. We note that arbitrary intersections of semi-cones are semi-cones. Let X be a subset of R. When X is contained in some semi-cone, the intersection of all semi-cones which contain X is evidently the smallest semi-cone containing X. If there exists the smallest semi-cone containing X, then we shall call it the semi-cone generated by X, denoted by $\langle X\rangle$. Obviously, $\langle X\rangle=\langle X \cup 0\rangle$.

For a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of R contained in some semi-cone, the symbol $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ means $\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$.

Let A be a semi-cone of R. We shall say that A is finitely generated if $A=\langle F\rangle$ for some finite subset F in A.

We note that every finitely generated semi-cone of R must be countable in view of Proposition 3.1 below. Also, note that every semi-cone A of R need not be finitely generated even if A is contained in a finitely generated semi-cone of R; see Proposition 3.8 (or Example 3.9) later.

The following basic proposition is routinely shown.
Proposition 3.1. Let $F=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite subset of some semi-cone in R with all $x_{i} \neq 0$, and let $x_{i}^{0}=1$. Let \bar{F} be the set of all finite sums of elements of the form $c x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}$, where $c, v_{1}, \ldots, v_{n} \in \mathbf{Z}^{*}$ with some $v_{i}>0$. Then $\langle F\rangle=\bar{F}$.

For an element of the set \bar{F} in the previous proposition, we will use a brief symbol

$$
\sum c x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}
$$

under $c, v_{1}, \ldots, v_{n} \in \mathbf{Z}^{*}$ with some $v_{i}>0$.
Proposition 3.2. For a non-zero subset A of R, A is a semi-cone of R iff A has a cover \mathscr{C} (i.e., $A=\bigcup\{X \mid X \in \mathscr{C}\}$) of semi-cones generated by any finitely many elements (or two elements) of A. In particular, for A being countable, we can take \mathscr{C} to be an increasing countable cover of semi-cones generated by finitely many elements (or, a countable cover of semi-cones generated by any two elements) of A.

Proof. For the only if part, let \mathscr{F} be the collection of all finite sets (or two elements) in a semi-cone A. Let $\mathscr{C}=\{\langle F\rangle \mid F \in \mathscr{F}\}$. Then \mathscr{C} is a cover of A, and each $\langle F\rangle$ is a finitely generated semi-cone. For the if part, note that any two elements x, y in A are contained in some semi-cone in A. Thus, A is a semi-cone. For A being countable, let $A=\left\{a_{i} \mid i \in \mathbf{N}\right\}$, and $F_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then $\mathscr{C}=$ $\left\{\left\langle F_{n}\right\rangle \mid n \in \mathbf{N}\right\}$ is a desired increasing cover.

Remark 3.3. Every union of two semi-cones generated by finitely many elements need not be a semi-cone (indeed, for finitely generated semi-cones $\mathbf{Z}^{*} \times 0$ and $0 \times \mathbf{Z}^{*}$ in $\mathbf{Z} \ltimes \mathbf{Z}$ (by Corollary 3.5 later), their union is not a semi-cone).

Theorem 3.4. Let S, T be semi-cones of R. Then the following hold.
(1) $S \times T$ is a finitely generated semi-cone of $R \otimes R$ iff so are S and T of R.
(2) $S \times T$ is a finitely generated semi-cone of $R \ltimes R$ iff (i) S is finitely generated and (ii) $T=\left(S y_{1}+\cdots+S y_{n}\right)+\left(\mathbf{Z}^{*} y_{1}+\cdots+\mathbf{Z}^{*} y_{n}\right)$ for some $y_{1}, \ldots, y_{n} \in T$.

Proof. For (1), it is routinely shown (as in the proof below).
For (2), note $S \times T$ is a semi-cone of $R \ltimes R$ iff $S T \subset T$ by Proposition 2.2(2). For the only if part of (2), let $S \times T=\left\langle\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\rangle$ with all $\left(x_{i}, y_{i}\right) \neq 0$. Obviously, $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$, hence (i) holds. To see (ii), let $T^{\prime}=S y_{1}+\cdots+S y_{n}+\mathbf{Z}^{*} y_{1}+\cdots+\mathbf{Z}^{*} y_{n}$. Let $y \in T$. Then $(0, y) \in S \times T$, so let $(0, y)=\sum c\left(x_{1}, y_{1}\right)^{v_{1}} * \cdots *\left(x_{n}, y_{n}\right)^{v_{n}} \in S \times T$ by Proposition 3.1. Note that for
$a \in \mathbf{Z}^{*}$ and $(s, t),\left(s^{\prime}, t^{\prime}\right) \in S \times T, a(s, t)=(a s, a t) \in S \times \mathbf{Z}^{*} t$, and $(s, t) *\left(s^{\prime}, t^{\prime}\right)=$ $\left(s s^{\prime}, s t^{\prime}+s^{\prime} t\right) \in S \times\left(S t+S t^{\prime}\right)$. Then we show that $(0, y) \in S \times T^{\prime}$, so $y \in T^{\prime}$. Thus $T \subset T^{\prime}$. While, $T^{\prime} \subset T$ by $S T \subset T$. Hence $T^{\prime}=T$. For the if part of (2), assume (i) and (ii) hold. Since $S T \subset T, S \times T$ is a semi-cone of $R \ltimes R$. Let $S=$ $\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Let $F=\left\{\left(x_{1}, 0\right), \ldots,\left(x_{m}, 0\right),\left(0, y_{1}\right), \ldots,\left(0, y_{n}\right)\right\}$. To see $S \times T=$ $\langle F\rangle$, let $(x, y) \in S \times T$. Let $x=\sum c x_{1}^{v_{1}} \cdots x_{m}^{v_{m}}$, and let $y=\sum_{j=1}^{n} s_{j} y_{j}+\sum_{j=1}^{n} c_{j} y_{j}$ $\left(s_{j} \in S, c_{j} \in \mathbf{Z}^{*}\right)$. Then,

$$
\begin{aligned}
(x, 0) & =\left(\sum c x_{1}^{v_{1}} \cdots x_{m}^{v_{m}}, 0\right)=\sum c\left(x_{1}^{v_{1}} \cdots x_{m}^{v_{m}}, 0\right) \\
& =\sum c\left(x_{1}, 0\right)^{v_{1}} * \cdots *\left(x_{m}, 0\right)^{v_{m}} \in\langle F\rangle \\
(0, y) & =\left(0, \sum_{j=1}^{n} s_{j} y_{j}\right)+\left(0, \sum_{j=1}^{n} c_{j} y_{j}\right) \\
& =\sum_{j=1}^{n}\left(0, s_{j} y_{j}\right)+\sum_{j=1}^{n} c_{j}\left(0, y_{j}\right) \\
& =\sum_{j=1}^{n}\left(s_{j}, 0\right) *\left(0, y_{j}\right)+\sum_{j=1}^{n} c_{j}\left(0, y_{j}\right) \in\langle F\rangle,
\end{aligned}
$$

noting each $\left(s_{j}, 0\right) \in\langle F\rangle$ by the above. Hence $(x, y)=(x, 0)+(0, y) \in\langle F\rangle$. Thus $S \times T=\langle F\rangle$.

Corollary 3.5. Let S be a semi-cone of R. Then the following hold.
(1) $S \times 0$ is a finitely generated semi-cone of $R \ltimes R$ iff so is S of R.
(2) $0 \times S$ is a finitely generated semi-cone of $R \ltimes R$ iff $S=\mathbf{Z}^{*} x_{1}+\cdots+\mathbf{Z}^{*} x_{n}$ for some x_{1}, \ldots, x_{n} in S.
(3) $S \times S$ is a finitely generated semi-cone of $R \ltimes R$ iff so is S of R.

Proof. (1), (2), and (3) hold by Theorem 3.4. But, for (3), note $S=$ $\sum_{i=1}^{n} S x_{i}+\sum_{i=1}^{n} \mathbf{Z}^{*} x_{i}$ if $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Corollary 3.6. Let S and T be semi-cones of R with $S \subset T(o r, 1 \in T)$. If $S \times T$ is a finitely generated semi-cone of $R \ltimes R$, then so are S and T of R.

Proof. Let $S \times T=\left\langle\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\rangle$ with all $\left(x_{i}, y_{i}\right) \in S \times T$. Let $F=\left\{x_{i}, y_{j} \mid i, j=1, \ldots, n\right\}$. Since $S \subset T$ (especially, $1 \in T$ by use of Lemma 2.1), $T=\langle F\rangle$ in view of the proof of Theorem 3.4(2).

In the previous corollary, the converse need not hold (even if $S=0,1 \in T$); see Example 3.9 later.

We will consider finitely generated semi-cones in $\mathbf{Z} \ltimes \mathbf{Z}($ or $\mathbf{Z} \otimes \mathbf{Z})$.
Let us recall (lexicographic) sets $\boldsymbol{L}=(\mathbf{N} \times \mathbf{Z}) \cup\left(0 \times \mathbf{Z}^{*}\right)$ and $\boldsymbol{L}^{*}=(\mathbf{N} \times \mathbf{Z}) \cup$ $\left(0 \times-\mathbf{Z}^{*}\right)$ in $\mathbf{Z} \times \mathbf{Z}$. We note that the cones of $\mathbf{Z} \ltimes \mathbf{Z}$ are precisely the sets \boldsymbol{L} and $\boldsymbol{L}^{*}([6])$. While, $R \otimes R$ has no cones ([4]).

Proposition 3.7. The following hold.
(1) All semi-cones of \mathbf{Z} are finitely generated.
(2) The cones \boldsymbol{L} and \boldsymbol{L}^{*} of $\mathbf{Z} \ltimes \mathbf{Z}$ are finitely generated.

Proof. (1) holds by Corollary 2.9. For (2), note $\boldsymbol{L}=\langle(1,-1),(0,1)\rangle$ and $\boldsymbol{L}^{*}=\langle(1,1),(0,-1)\rangle$ by the proof of [6, Proposition 2.12].

For a non-zero semi-cone S of R, let us define $S_{0}=S \backslash\{0\}$, unless otherwise stated.

Proposition 3.8. Let S and T be non-zero semi-cones of \mathbf{Z}. Then the following hold in $\mathbf{Z} \otimes \mathbf{Z}$ as well as $\mathbf{Z} \ltimes \mathbf{Z}$.
(1) $S \times T$ is a finitely generated semi-cone, while its subset
(2) $A=\left(S_{0} \times T_{0}\right) \cup 0$ is a semi-cone, but A is not finitely generated.

Proof. For (1), $S \times T$ is a semi-cone of $\mathbf{Z} \otimes \mathbf{Z}$ and $\mathbf{Z} \ltimes \mathbf{Z}$, and it is finitely generated by Theorem 3.4 with Corollary 2.9.

For (2), A is a semi-cone in $\mathbf{Z} \otimes \mathbf{Z}$ and $\mathbf{Z} \ltimes \mathbf{Z}$. To see the latter part in $\mathbf{Z} \otimes \mathbf{Z}$, suppose $A=\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$ with all $\left(a_{i}, b_{i}\right) \in S_{0} \times T_{0}$. Let p be a prime number with $p>\max \left(a_{1}, \ldots, a_{n}\right)$. Take $a \in S_{0}$ and let $s=p a$. Then $s \in S_{0}$. Let $t=\min T_{0} \in T_{0}$. Then $(s, t) \in A$, so let $(s, t)=\sum c\left(a_{1}, b_{1}\right)^{v_{1}} \cdots\left(a_{n}, b_{n}\right)^{v_{n}}$ by Proposition 3.1. Noting $x+y>t$ for all $x, y \in T_{0},(s, t)=\left(a_{1}, b_{1}\right)^{v_{1}} \cdots\left(a_{n}, b_{n}\right)^{v_{n}}$ for some v_{1}, \ldots, v_{n} with $c=1$. Then $s=a_{1}^{v_{1}} \cdots a_{n}^{v_{n}}$, thus p is a divisor of some a_{i}, a contradiction. Hence A is not finitely generated. In $\mathbf{Z} \ltimes \mathbf{Z}, A$ is also not finitely generated by the same way (or, taking $s \in S_{0}$ distinct from any a_{i}).

As is seen above, every semi-cone which is a subset of a finitely generated semi-cone need not be finitely generated in $\mathbf{Z} \otimes \mathbf{Z}$ or $\mathbf{Z} \ltimes \mathbf{Z}$. Also, let us give a finitely generated semi-cone S of R such that (i) $S \times S$ is a finitely generated semi-cone of $R \ltimes R$, but (ii) a semi-cone $0 \times S$ of $R \ltimes R$ is not finitely generated. (In $R \otimes R$, such a semi-cone S of R does not exist in view of Theorem 3.4(1)).

Example 3.9. For the cone $\boldsymbol{L}\left(=(\mathbf{N} \times \mathbf{Z}) \cup\left(0 \times \mathbf{Z}^{*}\right)\right)$ of $R=\mathbf{Z} \ltimes \mathbf{Z}$, the above (i) and (ii) hold in $R \ltimes R$. Similarly, for the cone \boldsymbol{L}^{*}, (i) and (ii) also hold.

Indeed, (i) holds by Proposition 3.7(2) and Corollary 3.5(3). To see (ii), suppose that a semi-cone $0 \times \boldsymbol{L}$ is finitely generated. Then, by Corollary 3.5(2), $\boldsymbol{L}=\mathbf{Z}^{*}\left(x_{1}, y_{1}\right)+\cdots+\mathbf{Z}^{*}\left(x_{n}, y_{n}\right)$ for some $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in \boldsymbol{L}. Take $y_{0} \in \mathbf{Z}$ with $y_{0}<y_{i}$ for all y_{i}. Then $\left(1, y_{0}\right) \in \boldsymbol{L}$, but $\left(1, y_{0}\right) \notin \mathbf{Z}^{*}\left(x_{1}, y_{1}\right)+\cdots+$ $\mathbf{Z}^{*}\left(x_{n}, y_{n}\right)$, a contradiction. To see this, assume $\left(1, y_{0}\right)=a_{1}\left(x_{1}, y_{1}\right)+\cdots+$ $a_{n}\left(x_{n}, y_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in \mathbf{Z}^{*}$. Then ($1, y_{0}$) $=\left(a_{1} x_{1}+\cdots+a_{n} x_{n}, a_{1} y_{1}+\cdots+\right.$ $a_{n} y_{n}$). Since all $x_{i} \geq 0$, all $a_{i} x_{i} \geq 0$. Thus $a_{i} x_{i}=1$ for some i. Hence, for $j \neq i$, $a_{j} x_{j}=0$, thus $a_{j} y_{j}=0$ for $a_{j}=0$, or $y_{j} \geq 0$ for $a_{j} \neq 0$ (by $\left(0, y_{j}\right) \in 0 \times \mathbf{Z}^{*}$). Hence, $y_{0}=a_{1} y_{1}+\cdots+a_{n} y_{n} \geq y_{i}>y_{0}$. This is a contradiction. Then (ii) holds.

For a non-zero semi-cone S of R, recall the following subsets of $R \times R$ ([6]).
$D_{0}=\{(x, x) \mid x \in S\} ; D_{1}=\{(x+y, x) \mid x, y \in S\} ; D_{2}=\{(x, x+y) \mid x, y \in S\} ;$ and $L=\left(S_{0} \times R\right) \cup(0 \times S) ; L^{\prime}=\left(R \times S_{0}\right) \cup(S \times 0)$.

In $R \otimes R, D_{0}, D_{1}, D_{2}$ (except L, L^{\prime}) are semi-cones. In $R \ltimes R, D_{2}$ is a semicone, and L (except D_{0}, D_{1}) is a semi-cone under R being an integral domain. But, L^{\prime} is not a semi-cone in $R \ltimes R$. (For these, see [6]).

Proposition 3.10. Let S be a non-zero semi-cone of \mathbf{Z}. Then the following hold.
(1) D_{0}, D_{1}, D_{2} are finitely generated semi-cones in $\mathbf{Z} \otimes \mathbf{Z}$, and so is D_{2} in $\mathbf{Z} \ltimes \mathbf{Z}$.
(2) L is a finitely generated semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff $1 \in S$ (i.e., $L=\boldsymbol{L}$).

Proof. For (1), let $S=\sum_{i} \mathbf{Z}^{*} x_{i}$ with $x_{1}, \ldots, x_{n} \in S$ by Corollary 2.9. We show D_{2} is finitely generated in $\mathbf{Z} \otimes \mathbf{Z}$ (or $\mathbf{Z} \ltimes \mathbf{Z}$), for example. Let $x, y \in S$ with $x=\sum_{i} c_{i} x_{i}, \quad y=\sum_{i} d_{i} x_{i}\left(c_{i}, d_{i} \in \mathbf{Z}^{*}\right)$. Then $(x, x+y)=(x, x)+(0, y)=$ $\sum_{i} c_{i}\left(x_{i}, x_{i}\right)+\sum_{i} d_{i}\left(0, x_{i}\right)$. Thus D_{2} is generated by $\left\{\left(x_{i}, x_{i}\right),\left(0, x_{i}\right) \mid i=1, \ldots, n\right\}$.

For (2), to see the if part, let $1 \in S$. Then $S=\mathbf{Z}^{*}$, so $L=\boldsymbol{L}$. Hence, L is finitely generated by Proposition 3.7(2). For the only if part, let $L=\langle F\rangle$ for some finite set $F=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right),\left(0, b_{k+1}\right), \ldots,\left(0, b_{n}\right)\right\}$ with a_{1}, \ldots, a_{k}, $b_{k+1}, \ldots, b_{n} \in S_{0}$. Suppose $1 \notin S$. Let $a=\min \left(a_{1}, \ldots, a_{k}\right)$. Then $1<a \leq a_{i}$ with $a \in S_{0}$. Take $b \in \mathbf{Z}$ with $b<b_{i}$ for all b_{i}. Then $(a, b) \in L$. But, $(a, b) \notin\langle F\rangle$ by Proposition 3.1, noting that $\left(a_{i}, b_{i}\right) *\left(a_{j}, b_{j}\right)=\left(a_{i} a_{j}, a_{i} b_{j}+b_{i} a_{j}\right) \neq(a, b)$ (by $\left.a_{i} a_{j}>a\right)$; and $\left(a_{i}, b_{i}\right)+\left(0, b_{j}\right) \neq(a, b)$, etc. This is a contradiction. Then $1 \in S$.

4. Characterizations of Semi-cones in $\mathbf{Z} \otimes \mathbf{Z}$

The following lemma holds in view of the proof of Proposition 2.6, and Corollary 2.9.

Lemma 4.1. For a semi-cone A of $\mathbf{Z} \otimes \mathbf{Z}$, let $A^{\prime}=A \cap(0 \times \mathbf{Z})$ and $A^{\prime \prime}=$ $A \cap(\mathbf{Z} \times 0)$. Then the following hold.
(1) If $A^{\prime}=0$, then $p_{1}(A)$ is a semi-cone of \mathbf{Z} with $p_{1}(A) \subset \mathbf{Z}^{*}$. Also, if $A^{\prime} \neq 0$, then $p_{2}(A)$ is a semi-cone of \mathbf{Z} with $p_{2}(A) \subset \mathbf{Z}^{*}$.
(2) If $A^{\prime \prime}=0$, then $p_{2}(A)$ is a semi-cone of \mathbf{Z} with $p_{2}(A) \subset \mathbf{Z}^{*}$. Also, if $A^{\prime \prime} \neq 0$, then $p_{1}(A)$ is a semi-cone of \mathbf{Z} with $p_{1}(A) \subset \mathbf{Z}^{*}$.

Let \mathscr{C} be the collection of all semi-cones of $\mathbf{Z} \otimes \mathbf{Z}$, and define the following subcollections $\mathscr{C}_{i}(i=1,2,3,4)$ of \mathscr{C} satisfying $\mathscr{C}=\mathscr{C}_{1} \cup \mathscr{C}_{2} \cup \mathscr{C}_{3} \cup \mathscr{C}_{4}$.

$$
\begin{aligned}
& \mathscr{C}_{1}=\{A \in \mathscr{C} \mid A \cap(0 \times \mathbf{Z}) \neq 0, A \cap(\mathbf{Z} \times 0) \neq 0\} \\
& \mathscr{C}_{2}=\{A \in \mathscr{C} \mid A \cap(0 \times \mathbf{Z}) \neq 0, A \cap(\mathbf{Z} \times 0)=0\} \\
& \mathscr{C}_{3}=\{A \in \mathscr{C} \mid A \cap(0 \times \mathbf{Z})=0, A \cap(\mathbf{Z} \times 0) \neq 0\} \\
& \mathscr{C}_{4}=\{A \in \mathscr{C} \mid A \cap(0 \times \mathbf{Z})=0, A \cap(\mathbf{Z} \times 0)=0\}
\end{aligned}
$$

Theorem 4.2. Let A be an additive and multiplicative subset of $\mathbf{Z} \otimes \mathbf{Z}$ with $A \ni 0$. Then the following hold.
(1) $A \in \mathscr{C}_{1} \Leftrightarrow A \subset \mathbf{Z}^{*} \times \mathbf{Z}^{*}$, but $A \not \subset(\mathbf{Z} \times \mathbf{N}) \cup 0$ and $A \not \subset(\mathbf{N} \times \mathbf{Z}) \cup 0$.
(2) $A \in \mathscr{C}_{2} \Leftrightarrow A \subset(\mathbf{Z} \times \mathbf{N}) \cup 0$, but $A \not \subset(\mathbf{N} \times \mathbf{N}) \cup 0$.
(3) $A \in \mathscr{C}_{3} \Leftrightarrow A \subset(\mathbf{N} \times \mathbf{Z}) \cup 0$, but $A \not \subset(\mathbf{N} \times \mathbf{N}) \cup 0$.
(4) $A \in \mathscr{C}_{4} \Leftrightarrow A \subset(\mathbf{N} \times \mathbf{N}) \cup 0$.

Proof. In view of Lemma 4.1, $A \in \mathscr{C}_{1} ; A \in \mathscr{C}_{2} ; A \in \mathscr{C}_{3} ; A \in \mathscr{C}_{4}$ implies $A \subset \mathbf{Z}^{*} \times \mathbf{Z}^{*} ; A \subset(\mathbf{Z} \times \mathbf{N}) \cup 0 ; A \subset(\mathbf{N} \times \mathbf{Z}) \cup 0 ; A \subset(\mathbf{N} \times \mathbf{N}) \cup 0$, respectively. Also, any case implies A is a semi-cone by $A \cap-A=0$.

For (1), to see (\Rightarrow), by $A \cap(0 \times \mathbf{Z}) \neq 0$, there exists some $(x, y) \in A \cap$ $(0 \times \mathbf{Z})$ with $(x, y) \neq(0,0)$. Then $x=0$ and $y>0$. Thus $(0, y) \notin(\mathbf{N} \times \mathbf{Z}) \cup 0$, which yields $A \not \subset(\mathbf{N} \times \mathbf{Z}) \cup 0$. Similarly, $A \not \subset(\mathbf{Z} \times \mathbf{N}) \cup 0$ by $A \cap(\mathbf{Z} \times 0) \neq 0$. For (\Leftarrow), by $A \not \subset(\mathbf{Z} \times \mathbf{N}) \cup 0$, there exists some $(x, y) \in A$ with $(x, y) \notin$ $(\mathbf{Z} \times \mathbf{N}) \cup 0$. Then $y=0$ and hence $x \neq 0$. Thus $(x, 0) \in A$ with $x \neq 0$. Hence $A \cap(\mathbf{Z} \times 0) \neq 0$. Similarly, $A \cap(0 \times \mathbf{Z}) \neq 0$ by $A \not \subset(\mathbf{N} \times \mathbf{Z}) \cup 0$. Hence $A \in \mathscr{C}_{1}$.

For (2), to see (\Rightarrow), by $A \cap(0 \times \mathbf{Z}) \neq 0$, there exists some $(x, y) \in$ $A \cap(0 \times \mathbf{Z})$ with $(x, y) \neq(0,0)$. Then $(x, y)=(0, y) \notin(\mathbf{N} \times \mathbf{N}) \cup 0$. Thus $A \not \subset$ $(\mathbf{N} \times \mathbf{N}) \cup 0$. For (\Leftarrow), by $A \not \subset(\mathbf{N} \times \mathbf{N}) \cup 0$, there exists some $(x, y) \in A$ with
$(x, y) \notin \mathbf{N} \times \mathbf{N},(x, y) \neq(0,0)$. Then $x \leq 0$ and $y>0$. Since $(x, y)^{2},-x(x, y) \in A$, $(x, y)^{2}+(-x)(x, y)=\left(0, y^{2}-x y\right) \in A$ with $y^{2}-x y \neq 0$. Then $A \cap(0 \times \mathbf{Z}) \neq 0$. Hence $A \in \mathscr{C}_{2}$.
(3) is similarly shown as (2), and (4) is obvious.

Corollary 4.3. A subset A of $\mathbf{Z} \otimes \mathbf{Z}$ with $A \ni 0$ is a semi-cone iff it is additive and multiplicative, and (i) $A \subset \mathbf{Z}^{*} \times \mathbf{Z}^{*}$, (ii) $A \subset(\mathbf{Z} \times \mathbf{N}) \cup 0$, or (iii) $A \subset(\mathbf{N} \times \mathbf{Z}) \cup 0$.

A semi-cone S of R is maximal if for any semi-cone T of R with $S \subset T$, $T=S$.

Corollary 4.4. The maximal semi-cones of $\mathbf{Z} \otimes \mathbf{Z}$ are precisely the sets $\mathbf{Z}^{*} \times \mathbf{Z}^{*},(\mathbf{Z} \times \mathbf{N}) \cup 0$, and $(\mathbf{N} \times \mathbf{Z}) \cup 0$.

Theorem 4.5. For a subset A of $\mathbf{Z} \otimes \mathbf{Z}$, the following are equivalent.
(1) A is a semi-cone of $\mathbf{Z} \otimes \mathbf{Z}$.
(2) A has an increasing cover $\left\{S_{n} \mid n \in \mathbf{N}\right\}$ of finitely generated semi-cones with types $\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)\right\rangle$, but all of these types satisfy one of the following: (i) all $a_{j}, b_{j} \in \mathbf{Z}^{*}$, (ii) all $a_{j} \in \mathbf{N}$, and (iii) all $b_{j} \in \mathbf{N}$.
(3) A has an increasing cover $\left\{S_{n} \mid n \in \mathbf{N}\right\}$ of finitely generated semi-cones.

Proof. $(1) \Leftrightarrow(3)$ holds by Proposition 3.2. (2) $\Rightarrow(3)$ is clear, and (3) \Rightarrow (2) holds by Corollary 4.3.

5. Characterizations of Semi-cones in $\mathbf{Z} \ltimes \mathbf{Z}$

Lemma 5.1. For an additive subset A of $\mathbf{Z} \ltimes \mathbf{Z}$ with $A \ni 0$, let $A^{\prime}=A \cap$ $(0 \times \mathbf{Z})$. If $A^{\prime} \cap-A^{\prime}=0$, then $A^{\prime}=\sum_{i=1}^{n} \mathbf{Z}^{*}\left(0, b_{i}\right)$ for some $b_{1}, \ldots, b_{n} \in \mathbf{Z}$ with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.

Proof. The lemma follows from Proposition 2.8, noting $\mathbf{Z} \cong 0 \times \mathbf{Z}(\subset \mathbf{Z} \ltimes \mathbf{Z})$ by $x \mapsto(0, x)$, as additive groups.

Proposition 5.2. The following hold.
(1) If A is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$, then $A^{\prime}=A \cap(0 \times \mathbf{Z})$ and $A^{\prime \prime}=$ $(A \cap(\mathbf{N} \times \mathbf{Z})) \cup 0$ are semi-cones of $\mathbf{Z} \ltimes \mathbf{Z}$ with $A=A^{\prime} \cup A^{\prime \prime}=A^{\prime}+A^{\prime \prime}$, and $A^{\prime}=\sum_{i=1}^{n} \mathbf{Z}^{*}\left(0, b_{i}\right)$ for some $b_{1}, \ldots, b_{n} \in \mathbf{Z}$ with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.
(2) If A^{\prime} is an additive subset of $0 \times \mathbf{Z}^{*}$ or $0 \times-\mathbf{Z}^{*}$ with $A^{\prime} \ni 0$, and $A^{\prime \prime}$ is an additive and multiplicative subset of $(\mathbf{N} \times \mathbf{Z}) \cup 0$ with $A^{\prime \prime} \ni 0$, then $A^{\prime}, A^{\prime \prime}$ and $A=A^{\prime}+A^{\prime \prime}$ are semi-cones of $\mathbf{Z} \ltimes \mathbf{Z}$ with $A=A^{\prime} \cup A^{\prime \prime}$.

Proof. For (1), A^{\prime} and $A^{\prime \prime}$ are routinely semi-cones of $\mathbf{Z} \ltimes \mathbf{Z}$. Noting $A \subset \mathbf{Z}^{*} \times \mathbf{Z}$ by Proposition 2.10, $A=A^{\prime} \cup A^{\prime \prime}=A^{\prime}+A^{\prime \prime}$. The later part holds by Lemma 5.1.

For (2), routinely, $A^{\prime}, A^{\prime \prime}$ are semi-cones, and A is additive. Obviously, A is multiplicative by $A^{\prime} * A^{\prime \prime} \subset A^{\prime}$. Also, $A \cap-A=0$ since A is a subset of the cone \boldsymbol{L} or \boldsymbol{L}^{*}. Hence A is a semi-cone with $A=A^{\prime} \cup A^{\prime \prime}$.

Corollary 5.3. The maximal semi-cones in $\mathbf{Z} \ltimes \mathbf{Z}$ are precisely the cones \boldsymbol{L} and \boldsymbol{L}^{*}.

Corollary 5.4. A subset A of $\mathbf{Z} \ltimes \mathbf{Z}$ is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ iff $A=$ $B+\sum_{i=1}^{n} \mathbf{Z}^{*}\left(0, b_{i}\right)$ for some additive and multiplicative subset B of $(\mathbf{N} \times \mathbf{Z}) \cup 0$ with $B \ni 0$ and some b_{1}, \ldots, b_{n} with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.

For non-zero elements $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in $\mathbf{Z} \ltimes \mathbf{Z}$, let us define a condition
(C): (i) $a_{1}, \ldots, a_{k} \in \mathbf{N}, \quad a_{k+1}=\cdots=a_{n}=0$ and (ii) $b_{k+1}, \ldots, b_{n} \in \mathbf{N}$ or $b_{k+1}, \ldots, b_{n} \in-\mathbf{N}$, where $0 \leq k \leq n$ (possibly, $k=0$ or $k=n$).

Lemma 5.5. Let $F=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ be a finite subset of $\mathbf{Z} \ltimes \mathbf{Z}$. Then the following hold.
(1) For $a_{1}, \ldots, a_{n} \in \mathbf{N}$ and $b_{1}, \ldots, b_{n} \in \mathbf{Z}$, the set A of all finite sums of elements of the form $c\left(a_{1}, b_{1}\right)^{v_{1}} * \cdots *\left(a_{n}, b_{n}\right)^{v_{n}} \quad\left(c, v_{1}, \ldots, v_{n} \in \mathbf{Z}^{*}\right.$ with some $v_{i}>0$) is the semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ generated by F.
(2) For $a_{1}=\cdots=a_{n}=0$ and $b_{1}, \ldots, b_{n} \in \mathbf{Z}$ with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$, $A=\sum_{i=1}^{n} \mathbf{Z}^{*}\left(0, b_{i}\right)$ is the semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ generated by F.
(3) For $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ satisfying (C), $A=\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\rangle+$ $\sum_{j=k+1}^{n} \mathbf{Z}^{*}\left(0, b_{j}\right)$ is the semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ generated by F.

Proof. For a case (1), (2), or (3), A is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$ by Proposition $5.2(2)$ (indeed, for (1), put $A^{\prime \prime}=A$. For (2), put $A^{\prime}=A$. For (3), let $A^{\prime}=$ $\sum_{j=k+1}^{n} \mathbf{Z}^{*}\left(0, b_{j}\right)$, and define $A^{\prime \prime}$ as A in (1), but $n=k$, then $\left.A=A^{\prime}+A^{\prime \prime}\right)$. Thus, for each case, $A=\langle F\rangle$ by Proposition 3.1.

Proposition 5.6. For a finite subset $F=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$ of $\mathbf{Z} \ltimes \mathbf{Z}$, F is contained in some semi-cone A of $\mathbf{Z} \ltimes \mathbf{Z}$ iff all $a_{i} \in \mathbf{Z}^{*}$, and $\left\{b_{i} \mid a_{i}=0\right\}$ is a subset of \mathbf{Z}^{*} or $-\mathbf{Z}^{*}$.

Proof. The if part holds by Lemma 5.5(3). The only if part holds, modifying the proof of Proposition 5.2(1).

Let \mathscr{F} be the collection of all finitely generated semi-cones of $\mathbf{Z} \ltimes \mathbf{Z}$. Let $\mathscr{F}_{1}=\{A \in \mathscr{F} \mid A \cap(\mathbf{N} \times \mathbf{Z}) \neq \varnothing\} ; \mathscr{F}_{2}=\{A \in \mathscr{F} \mid A \cap(\mathbf{N} \times \mathbf{Z})=\varnothing\} ;$ and,
$\mathscr{F}_{1}^{*}=\{A \in \mathscr{F} \mid A \cap(0 \times \mathbf{Z}) \neq 0\} ; \mathscr{F}_{2}^{*}=\{A \in \mathscr{F} \mid A \cap(0 \times \mathbf{Z})=0\}$.
Clearly, $\mathscr{F}^{\prime}=\mathscr{F}_{1} \cup \mathscr{F}_{2}=\mathscr{F}_{1}^{*} \cup \mathscr{F}_{2}^{*}$. Note that $\mathscr{F}_{1}=\left\{A \in \mathscr{F} \mid p_{1}(A) \neq 0\right\} ;$ $\mathscr{F}_{2}=\left\{A \in \mathscr{F} \mid p_{1}(A)=0\right\}$ (by $p_{1}(A) \subset \mathbf{Z}^{*}$ in Proposition 2.10).

For $A \in \mathscr{F}$ with $A \neq 0$, let $A_{0}=A \backslash\{0\}$. Then $\mathscr{F}_{1}^{*}=\left\{A \in \mathscr{F} \mid p_{1}\left(A_{0}\right) \ni 0\right\}$; $\mathscr{F}_{2}^{*}=\left\{A \in \mathscr{F} \mid p_{1}\left(A_{0}\right) \nexists 0\right.$ or $\left.A=0\right\}$.

The following holds by Lemma 5.5 and Proposition 5.6.
Proposition 5.7. Let A be a subset of $\mathbf{Z} \ltimes \mathbf{Z}$. Then the following hold.
(1) (a) $A \in \mathscr{F}_{1}$ iff $A=\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\rangle+\sum_{j=k+1}^{n} \mathbf{Z}^{*}\left(0, b_{j}\right)$ for some $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in $\mathbf{Z} \ltimes \mathbf{Z}$ satisfying (C), but $1 \leq k \leq n$.
(b) $A \in \mathscr{F}_{2}$ iff $A=\sum_{i=1}^{n} \mathbf{Z}^{*}\left(0, b_{i}\right)$ for some b_{1}, \ldots, b_{n} with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.
(2) (a) $A \in \mathscr{F}_{1}^{*}$ iff A is the same as in (1)(a), but $0 \leq k<n$.
(b) $A \in \mathscr{F}_{2}^{*}$ iff $A=\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$ for some $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in $\mathbf{N} \ltimes \mathbf{Z}$, or $A=0$.

For a semi-cone $A=\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\rangle+\sum_{j=k+1}^{n} \mathbf{Z}^{*}\left(0, b_{j}\right)$ of $\mathbf{Z} \ltimes \mathbf{Z}$ with $a_{j} \in \mathbf{N}$ and $0 \leq k<n$, let us say that A is positive (resp. negative) if all b_{k+1}, \ldots, b_{n} are positive (resp. negative), for convenience.

Theorem 5.8. For a subset A of $\mathbf{Z} \ltimes \mathbf{Z}$, the following are equivalent.
(1) A is a semi-cone of $\mathbf{Z} \ltimes \mathbf{Z}$.
(2) $A=\bigcup_{n \in \mathbf{N}} A_{n}+\sum_{i=1}^{r} \mathbf{Z}^{*}\left(0, b_{i}\right)$ for some $A_{n} \in \mathscr{F}_{2}^{*}(n \in \mathbf{N})$ with $A_{n} \subset A_{n+1}$, and some b_{1}, \ldots, b_{r} with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$.
(3) A has an increasing cover $\left\{S_{n} \mid n \in \mathbf{N}\right\}$ with all $S_{n} \in \mathscr{F}_{1}^{*}$ or all $S_{n} \in \mathscr{F}_{2}^{*}$, here for $S_{n} \in \mathscr{F}_{1}^{*}$, all S_{n} are positive or all are negative.
(4) A has an increasing cover $\left\{S_{n} \mid n \in \mathbf{N}\right\}$ of finitely generated semi-cones.

Proof. For $(1) \Rightarrow(2)$, let $A^{\prime}, A^{\prime \prime}$ be same as in Proposition 5.2(1). Then $A^{\prime}, A^{\prime \prime}$ are semi-cones and $A=A^{\prime} \cup A^{\prime \prime}=A^{\prime}+A^{\prime \prime}$. Also, there exists a finite subset $\left\{b_{1}, \ldots, b_{r}\right\}$ with all $b_{i} \in \mathbf{Z}^{*}$ or all $b_{i} \in-\mathbf{Z}^{*}$ such that $A^{\prime}=\sum_{i=1}^{r} \mathbf{Z}^{*}\left(0, b_{i}\right)$. If $A^{\prime \prime}=0$, (2) holds, so assume $A^{\prime \prime} \neq 0$. Let $A^{\prime \prime}=\left\{z_{1}, z_{2}, \ldots\right\} \cup 0$ with all $z_{i} \in$ $\mathbf{N} \times \mathbf{Z}$, and put $A_{n}=\left\langle z_{1}, \ldots, z_{n}\right\rangle$. Then $\left\{A_{n} \mid n \in \mathbf{N}\right\}$ is an increasing cover of $A^{\prime \prime}$
by finitely generated semi-cones in \mathscr{F}_{2}^{*} (by Proposition 5.7(2)). This suggests (2) holds.

For (2) \Rightarrow (3), put $S_{n}=A_{n}+\sum_{i=1}^{r} \mathbf{Z}^{*}\left(0, b_{i}\right)(n \in \mathbf{N})$ in (2). Then $\left\{S_{n} \mid n \in \mathbf{N}\right\}$ is a desired cover of A in (3) in terms of Proposition 5.7(2).
$(3) \Rightarrow(4)$ is clear, and $(4) \Rightarrow(1)$ holds by Proposition 3.2.

References

[1] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand Reinhold company, 1960.
[2] Y. Kitamura and Y. Tanaka, Ordered rings and order-preservation, Bull. Tokyo Gakugei Univ., Nat. Sci., 64 (2012), 5-13.
[3] Y. Kitamura and Y. Tanaka, Partially ordered rings, Tsukuba J. Math., 38 (2014), 39-58.
[4] Y. Kitamura and Y. Tanaka, Partially ordered rings II, Tsukuba J. Math., 39 (2015), 181-198.
[5] Y. Kitamura and Y. Tanaka, Product extensions of commutative rings, Bull. Tokyo Gakugei Univ., Nat. Sci., 67 (2015), 1-8.
[6] Y. Kitamura and Y. Tanaka, Product extension rings and partially ordered rings, Bull. Tokyo Gakugei Univ., Nat. Sci., 68 (2016), 13-23.
[7] Y. Kitamura and Y. Tanaka, Partially ordered additive groups and convex sets, Bull. Tokyo Gakugei Univ., Nat. Sci., 69 (2017), 11-22.
[8] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 1991.
[9] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1998.

Yoshimi Kitamura
Department of Mathematics
Tokyo Gakugei University
Tokyo 184-8501, Japan
(Professor Emeritus)
E-mail: kitamura@u-gakugei.ac.jp
Yoshio Tanaka
Department of Mathematics
Tokyo Gakugei University
Tokyo 184-8501, Japan
(Professor Emeritus)
E-mail: ytanaka@u-gakugei.ac.jp

[^0]: 2010 Mathematics Subject Classification: 06A06, 06F25.
 Key words and phrases: partially ordered ring, direct product ring, product extension ring, semi-cone, cone, finitely generated semi-cone.
 Received March 3, 2017.
 Revised July 13, 2017.

