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ON T-COERCIVE INTERIOR TRANSMISSION

EIGENVALUE PROBLEMS ON COMPACT MANIFOLDS

WITH SMOOTH BOUNDARY

By

Naotaka Shoji

Abstract. We consider an interior transmission eigenvalue problem

on two compact Riemannian manifolds with common smooth

boundary. We assume that this problem is locally anisotropic type.

Then we prove that the set of interior transmission eigenvalues forms

a discrete subset of complex plane. Moreover, we also mention the

interior transmission eigenvalue free region. In order to prove our

results, we employ the so-called T-coercivity method.

1. Introduction

In the present paper, we study the interior transmission eigenvalue problem

on two compact Riemannian manifolds with common smooth boundary. As we

explain in §2 and §4, the interior transmission eigenvalue problem (the ITE

problem for short) is a boundary value problem for a system of Helmholtz

equations on the support of the scattering media. The ITE problem arises

from scattering theory, in particular, from non-scattering phenomena (see e.g.,

Vesalainen [14], [15] for quantum and acoustic scattering). As is pointed out in

[14], [15], the ITE problem is closely related to the problem of non-scattering

energy or non-scattering wave number. The ITE problem was first studied by

Colton and Monk [8], in which they dealt with the case of isotropic media. Since

[8], the ITE problem in the isotropic case has been studied by a lot of people.

(For more details, see the survey of Cakoni and Haddar [6].) On the other hand,

a similar ITE problem with anisotropic media was studied by Bonnet-Ben Dhia,
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Chesnel and Haddar [4]. Currently, there are only a few results in the anisotropic

case. In addition, it should be also noted that all of those papers deal with the

ITE problems on Euclidean spaces. In recent years, scattering theory in non-

compact manifolds with ends, in particular hyperbolic manifolds, has been widely

studied. Therefore, it is natural to consider an ITE problem on Riemannian

manifolds.

Our main purpose in this article is to study the distribution of these

eigenvalues.

2. Background

Let us recall some basic notions of scattering theory in Euclidean case.

We now consider the case of time harmonic acoustic scattering problem on

d-dimensional Euclidean space Rd for db 2 with compactly supported and

bounded inhomogeneity n. We assume that there exists a bounded domain

D � Rd with smooth boundary qD such that nðxÞ ¼ 1 outside D.

We deal with a stationary acoustic total wave u satisfying the perturbed

Helmholtz equation

ð�D� k2nÞu ¼ 0 in Rd ; k > 0ð2:1Þ

where D is the Laplacian on Rd . Then we find that a solution to (2.1) is written

in the form

u ¼ ui þ us:

Here, ui is an incident wave satisfying the free Helmholtz equation

ð�D� k2Þui ¼ 0 in Rd

and us is the corresponding scattered wave satisfying some asymptotic behavior

near infinity. Now let ui ¼ uiðxÞ be a plane wave eikx�o with an incident direction

o satisfying joj ¼ 1 and a fixed positive wave number k (or a fixed positive

energy k2). If us satisfies

usðxÞ ¼ CðkÞjxj�ðd�1Þ=2
eikjxjaðk;o; x̂xÞ þ oðjxj�ðd�1Þ=2Þ as jxj ! y

for some positive constant CðkÞ depending on k, there exists a unique solution

u ¼ ui þ us of (2.1) (see e.g., [7]). Here, x̂x ¼ x=jxj is the scattered direction of

us and the function aðk;o; x̂xÞ is called the scattering amplitude. Let F̂FðkÞ be

the integral operator on the space of square integrable functions on the ðd � 1Þ-
dimensional sphere with integral kernel aðk;o; x̂xÞ. Then the S-matrix is given by
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ŜSðkÞ ¼ 1� 2piF̂F ðkÞ. If one is an eigenvalue of ŜSðkÞ for k > 0, then k is called

a non-scattering wave number (or k2 is called a non-scattering energy). We denote

the set of all non-scattering wave numbers by sN . For k A sN , the corresponding

scattered wave us ¼ usðk; xÞ vanishes outside D from the Rellich type uniqueness

theorem (see e.g., [12], [13]). Hence, if k is in sN , there exists a non-trivial

solution of the boundary value problem for a system of Helmholtz equations for

ui and u of the form

ð�D� k2Þui ¼ 0 in Rd ;ð2:2Þ

ð�D� k2nÞu ¼ 0 in D;ð2:3Þ

ui � u ¼ 0 on qD;ð2:4Þ

qnu
i � qnu ¼ 0 on qD;ð2:5Þ

where qn is the outward normal derivative on qD. Conversely, we suppose that

(2.2)–(2.5) depending on a positive constant k has a non-trivial solution. Putting

u ¼ ui outside D, we can extend u as a solution of (2.1). Letting us ¼ u� ui, we

can show that the scattering amplitude corresponding to us identically vanishes.

Hence, k is in sN . Therefore, k is in sN if and only if there exists a nontrivial

solution of the boundary value problem (2.2)–(2.5).

In order to study the spectral properties of non-scattering wave numbers, we

consider the boundary value problem for a system of Helmholtz equations for

unknown functions v and w of the form

ð�D� k2Þv ¼ 0 in D;ð2:6Þ

ð�D� k2nÞw ¼ 0 in D;ð2:7Þ

v� w ¼ 0 on qD;ð2:8Þ

qnv� qnw ¼ 0 on qD:ð2:9Þ

The above boundary value problem is called an interior transmission eigenvalue

problem. If there exists a non-trivial solution of the ITE problem (2.6)–(2.9) for

some k A C, we call such a complex number k an interior transmission eigenvalue.

We denote the set of all interior transmission eigenvalues by sI . We note that the

ITE problem (2.6)–(2.9) is an eigenvalue problem for a non-selfadjoint operator.

Therefore, interior transmission eigenvalues do not necessarily belong to R. Also

note that from the definition of sN and sI , the inclusion relation sN � sI holds.

Hence, as the first step to study detailed properties of the non-scattering wave
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numbers, in this paper, we will focus on the distribution of the interior trans-

mission eigenvalues.

3. Notation

For db 2, let M be a d-dimensional connected and compact oriented

Riemannian manifold endowed with a smooth Riemannian metric g and with a

smooth boundary qM. We fix local coordinates x ¼ ðx1; . . . ; xdÞ of M. We regard

g ¼ gðxÞ as a positive-definite symmetric matrix valued function and we write

gðxÞ ¼ ðgijðxÞÞdi; j¼1. We denote the inverse matrix of gðxÞ by gðxÞ�1 ¼ ðgijðxÞÞdi; j¼1.

The determinant of gðxÞ and the volume element on M are denoted by GðxÞ
and dVg :¼

ffiffiffiffi
G

p
dx ¼

ffiffiffiffi
G

p
dx15� � �5dxd , respectively. Here, dx1; . . . ; dxd are the

1-forms providing an oriented basis for the cotangent bundle of M and the symbol

5 means the wedge product, respectively. A symbol dS denotes the surface

element on qM induced by dx. For x A M, TxM and TM denote the tangent

space of M at x A M and the tangent bundle of M, respectively. We write tangent

vectors Xx, Yx on TxM as Xx ¼
Pd

i¼1 XiðxÞðqiÞx, Yx ¼
Pd

i¼1 YiðxÞðqiÞx A TxM,

respectively. Here, Xi and Yi are smooth functions on M and fðqiÞxg
d
i¼1 is a basis

of TxM. We denote the inner product and the norm on TxM by

ðXx;YxÞg ¼
Xd
i; j¼1

gijðxÞXiðxÞYjðxÞ; jXxjg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXx;XxÞg

q
;

respectively. The space of all smooth vector fields on M is denoted by GðTMÞ.
Let Dg : C

yðMÞ ! CyðMÞ and ‘g : C
yðMÞ ! GðTMÞ be the Laplace-Beltrami

operator and the gradient operator on M, respectively. In local coordinates on

M, those operators are written in the form

Dgu ¼ G�1=2
Xd
i; j¼1

qiðgijG1=2qjuÞ; ð‘guÞx ¼
Xd
i; j¼1

gijðqiuÞðqjÞx

for all u A CyðMÞ, respectively. Here, ð‘guÞx denotes the corresponding tangent

vector in TxM.

For measurable functions u on M and f on qM, we define

kukLyðMÞ ¼ inffC1 b 0 j juðxÞjaC1 a:e:; x A Mg;

k f kLyðqMÞ ¼ inffC2 b 0 j j f ðxÞjaC2 a:e:; x A qMg;

respectively. Next, we define LyðMÞ and LyðqMÞ by the space of all measurable

functions u on M such that kukLyðMÞ < y and the space of all measurable
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functions f on qM such that k f kLyðqMÞ < y, respectively. We denote the

L2ðMÞ-inner product and the L2ðMÞ-norm on CyðMÞ and the L2ðqMÞ-inner
product and the L2ðqMÞ-norm on CyðqMÞ by

ðu; vÞM ¼
ð
M

uv dVg; kukM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞM

q
; u; v A CyðMÞ;

ð f ; gÞqM ¼
ð
qM

f g dS; k f kqM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f ; f ÞqM

q
; f ; g A CyðqMÞ;

respectively. Then the completion of CyðMÞ by k � kM and the completion of

CyðqMÞ by k � kqM are denoted by L2ðMÞ and L2ðqMÞ, respectively. We denote

the L2ðTMÞ-inner product and the L2ðTMÞ-norm on GðTMÞ by

ðX ;YÞTM ¼
ð
M

ðXx;YxÞg dVg;

kXkTM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX ;X ÞTM

q
;

X ;Y A GðTMÞ;

respectively. Then the completion of GðTMÞ by k � kTM is denoted by L2ðTMÞ.
We denote the H 1ðMÞ-inner product and the H 1ðMÞ-norm on CyðMÞ by

ðu; vÞH 1ðMÞ ¼ ð‘gu;‘gvÞTM þ ðu; vÞM ;

kukH 1ðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞH 1ðMÞ

q
;

u; v A CyðMÞ;

respectively. Then the completion of CyðMÞ by k � kH 1ðMÞ is denoted by

H 1ðMÞ.

4. Main Theorem

To begin with, let us explain our setting. For db 2, let M1 and M2 be

d-dimensional connected and compact smooth oriented Riemannian manifolds

endowed with Riemannian metrics g1 and g2 and with smooth boundaries qM1

and qM2, respectively. Throughout the paper, we assume that

� M1 and M2 have a common boundary G :¼ qM1 ¼ qM2:

� G is a disjoint union of a finite number of connected and closed

components G1; . . . ;GN ; namely G ¼ qN
j¼1Gj:

� Let S :¼ M1 \M2: Then there exist connected neighborhoods Sj

of Gj ð1a jaNÞ such that S is written as the disjoint union of

S1; . . . ;SN ; namely; S ¼ qN
j¼1Sj ðsee Figure 1Þ:

ðA-1Þ
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Here, we note that we do not necessarily assume that M1 and M2 are di¤eo-

morphic.

Now, for functions nl A LyðMlÞ ðl ¼ 1; 2Þ and z A LyðGÞ and for k A C,

we consider a boundary value problem for a system of Helmholtz equations for

unknown functions u1 and u2 of the form

ð�Dg1 � k2n1Þu1 ¼ 0 in M1;ð4:1Þ

ð�Dg2 � k2n2Þu2 ¼ 0 in M2;ð4:2Þ

u1 � u2 ¼ 0 on G;ð4:3Þ
ffiffiffiffiffiffi
G1

p
qn;1u1 �

ffiffiffiffiffiffi
G2

p
qn;2u2 ¼ zu1 on G:ð4:4Þ

Here, in the above, qn;1 and qn;2 denote the outward normal derivatives on G with

respect to g1 and g2, respectively. Similarly as in (2.6)–(2.9), we also call the

above boundary value problem an interior transmission eigenvalue problem.

Remark 4.1. In scattering theory, the above functions nl ðl ¼ 1; 2Þ and z

are called a refractive index and a conductive boundary parameter, respectively.

Usually, we assume that n1 and n2 are real valued functions and that z is a purely

imaginary valued function. For the details, see [3]. However, in this article, we

allow n1, n2 and z to be complex valued functions.

We put

H :¼ H 1ðM1Þ �H 1ðM2Þ:

Then H is a Hilbert space equipped with the inner product ð� ; �ÞH :¼ ð� ; �ÞH 1ðM1Þ þ
ð� ; �ÞH 1ðM2Þ and the norm k � kH :¼ ð� ; �Þ1=2H . Now let us go into the definition of an

interior transmission eigenvalue.

Figure 1

220 Naotaka Shoji



Definition 4.2. If there exists a non-trivial solution ðu1; u2Þ A H of the ITE

problem (4.1)–(4.4) for some k A C, we call such a complex number k an interior

transmission eigenvalue.

Definition 4.3.

� We denote the set of interior transmission eigenvalues by sI .

� A pair of functions ðu1; u2Þ A H is called an interior transmission eigen-

function associated with k A sI , if ðu1; u2Þ satisfies the ITE problem (4.1)–

(4.4) corresponding to k.

� The dimension of the space spanned by all interior transmission eigen-

functions ðu1; u2Þ associated with k A sI is called the multiplicity of k.

Our first main result is stated as follows.

Theorem 4.4. Let nl A LyðMlÞ ðl ¼ 1; 2Þ and z A LyðGÞ be complex valued

functions. We assume that g2=
ffiffiffiffiffiffi
G2

p
a cg1=

ffiffiffiffiffiffi
G1

p
on S for some constant 0 < c < 1.

Then there exists a constant z0 > 0 such that for z with Re zb�z0, the set sI of

interior transmission eigenvalues is a discrete subset of C. The point at infinity is

the only possible accumulation point of sI . Furthermore, the multiplicity of each

interior transmission eigenvalue is finite.

Remark 4.5. The ITE problem (4.1)–(4.4) is said to be locally anisotropic

type on S, if g1ðxÞ0 g2ðxÞ for some x A S. The condition on g1 and g2 in

Theorem 4.4 implies that the ITE problem (4.1)–(4.4) is locally anisotropic type

on S.

For r; y > 0, we put

Nðr; yÞ :¼ fk A C j jkj > r and jIm kj > ðtan yÞjRe kjg

(see Figure 2). Then our second main result is given by the following.

Theorem 4.6. Let nl A LyðMlÞ ðl ¼ 1; 2Þ and z A LyðGÞ be complex valued

functions. We assume that Re n1 and Re n2 are strictly positive functions. We also

assume that n1, n2, g1 and g2 satisfy

sup
S

ð
ffiffiffiffiffiffi
G1

p
ðRe n1ÞÞ < inf

S
ð

ffiffiffiffiffiffi
G2

p
ðRe n2ÞÞ;

g2ffiffiffiffiffiffi
G2

p a c
g1ffiffiffiffiffiffi
G1

p on Sð4:5Þ
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for some constant 0 < c < 1. Then there exist positive constants r, y, e0 and z0 such

that there are no interior transmission eigenvalues in the region Nðr; yÞ for n1 with

jIm n1j < e0 in S and for z with Re zb�z0 on G.

In [4], by using analytic Fredholm theorem (see e.g., [2, Theorem 1]), Bonnet-

Ben Dhia, Chesnel and Haddar proved the discreteness of sI . In our setting,

instead of analytic Fredholm theorem, we use the theory of compact operators to

simplify their argument. As a result, we are able to remove their assumption

which is essential to use analytic Fredholm theorem. Furthermore, we note that

in this paper, we introduce a new function z called a boundary conductive

parameter in the ITE problem (4.1)–(4.4). This parameter z plays an important

role in scattering problem with conductive transmission condition. In this sense,

we can say that our problem is a slightly more generalized version of the original

ITE problem.

5. T-coercivity Method

In order to prove the discreteness of sI , we employ the T-coercivity method

(see for example [4], [5]). Let

H0 :¼ fðu1; u2Þ A H j u1 ¼ u2 on Gg:

Let ‘g1 and ‘g2 be the gradient operators on ðM1; g1Þ and on ðM2; g2Þ, respec-
tively. We define a sesquilinear form Ak½� ; �� on H0 �H0 by

Ak½ðu1; u2Þ; ðv1; v2Þ� :¼ ð‘g1u1;‘g1v1ÞTM1
� ð‘g2u2;‘g2v2ÞTM2

� k2ððn1u1; v1ÞM1
� ðn2u2; v2ÞM2

Þ � ðzu1; v1ÞG

Figure 2: An example of Nðr; yÞ ðr ¼ 1; y ¼ p=3Þ.
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for all ðu1; u2Þ; ðv1; v2Þ A H0. We can easily show that the ITE problem (4.1)–(4.4)

has a non-trivial solution ðu1; u2Þ A H if and only if the variational problem of the

form

Ak½ðu1; u2Þ; ðv1; v2Þ� ¼ 0 for all ðv1; v2Þ A H0

has a non-trivial solution ðu1; u2Þ A H0. We define an operator T on H0 by

Tðu1; u2Þ ¼ ðu1 � 2wu2;�u2Þð5:1Þ

for ðu1; u2Þ A H0. Here, w is a smooth cut-o¤ function on M2 such that w ¼ 1

in a small neighborhood of G with support in S \M2 and 0a wðxÞa 1 for all

x A M2. Let IH be the identity operator on H. Since T 2 ¼ IH, T is an iso-

morphism on H0. By using this isomorphism, we define a sesquilinear form

AT
k ½� ; �� on H0 �H0 by

AT
k ½ðu1; u2Þ; ðv1; v2Þ� :¼ Ak½ðu1; u2Þ;Tðv1; v2Þ�

for all ðu1; u2Þ; ðv1; v2Þ A H0. We can easily show that the above sesquilinear form

AT
k ½� ; �� is non-degenerate and bounded on H0 �H0. Hence, applying the first

representation theorem (see e.g., [9, Page 322, Theorem 2.1]) or the Riesz repre-

sentation theorem to the sesquilinear form AT
k ½� ; ��, we find that there exists a

bounded linear operator ATðkÞ on H0 such that

AT
k ½ðu1; u2Þ; ðv1; v2Þ� ¼ ðATðkÞðu1; u2Þ; ðv1; v2ÞÞH

for all ðu1; u2Þ; ðv1; v2Þ A H0. Summarizing the above argument, we obtain the

following proposition.

Proposition 5.1. A point k A C is in sI if and only if the operator ATðkÞ
on H0 has a non-trivial kernel. In this case, each element of the kernel of ATðkÞ is
interior transmission eigenfunction associated with k A sI . The multiplicity of k A sI

coincides with the dimension of the kernel of ATðkÞ.

Now, let us introduce the notion of strictly coercive.

Definition 5.2. Let H be a Hilbert space equipped with inner product

ð� ; �ÞH and norm k � kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� ; �ÞH

p
. A bounded linear operator B : H ! H is said

to be strictly coercive if there exists a constant C > 0 such that

ReðBj; jÞH bCkjk2H

for all j A H.

223On T-coercive ITE problems on compact manifolds



The following theorem is well-known as the Lax-Milgram theorem.

Theorem 5.3 (see e.g., [10, Page 201, Theorem 13.23]). In a Hilbert space H,

a strictly coercive bounded linear operator B : H ! H has a bounded inverse.

Let k A Rnf0g and e; d > 0 be constants such that

e� :¼ sup
S

ð
ffiffiffiffiffiffi
G1

p
Þe < inf

S
ð

ffiffiffiffiffiffi
G2

p
Þd ¼: d�:

We define a sesquilinear form Aik; e; d½� ; �� on H0 �H0 by

Aik; e; d½ðu1; u2Þ; ðv1; v2Þ� :¼ ð‘g1u1;‘g1v1ÞTM1
� ð‘g2u2;‘g2v2ÞTM2

þ k2ððeu1; v1ÞM1
� ðdu2; v2ÞM2

Þ � ðzu1; v1ÞG

for all ðu1; u2Þ; ðv1; v2Þ A H0. In addition, we define a bounded operator Ik; d; e on

H0 by

ðIk; e; dðu1; u2Þ; ðv1; v2ÞÞH :¼ Aik; e; d½ðu1; u2Þ;Tðv1; v2Þ�

for all ðu1; u2Þ; ðv1; v2Þ A H0.

Now in order to reduce the ITE problem (4.1)–(4.4) to the eigenvalue

problem for a certain compact operator, we state the following key lemma.

Lemma 5.4. Let nl A LyðMlÞ ðl ¼ 1; 2Þ and z A LyðGÞ be complex valued

functions. We assume

g2ffiffiffiffiffiffi
G2

p a c
g1ffiffiffiffiffiffi
G1

p on Sð5:2Þ

for some constant 0 < c < 1. Then there exist a point z0 > 0 and a constant C > 0

such that for z with Re zb�z0, the inequality

ReðIk; e; dðu1; u2Þ; ðu1; u2ÞÞH bCkðu1; u2Þk2H; ðu1; u2Þ A H0ð5:3Þ

holds.

Proof. We have the equality

ReðIk; e; dðu1; u2Þ; ðu1; u2ÞÞHð5:4Þ

¼
ð
M1nS

j‘g1u1j
2
g1
dVg1 þ

ð
M2nS

j‘g2u2j
2
g2
dVg2
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þ k2ðeku1k2M1nS þ dku2k2M2nSÞ þ
ð
S

j‘g1u1j
2
g1
dVg1

þ
ð
S

j‘g2u2j
2
g2
dVg2 þ k2 e

ð
S

ju1j2 dVg1 þ
ð
S

dju2j2 dVg2

� �

� 2 Reð‘g1u1;‘g1ðwu2ÞÞTM1
� 2k2e Reðu1; wu2ÞM1

þReðzu1; u1ÞG

for all ðu1; u2Þ A H0. Using Young’s inequality and (5.2), we have

2 Reð‘g1u1;‘g1ðwu2ÞÞTM1
ð5:5Þ

a ðaþ bÞ
ð
S

j‘g1u1j
2
g1
dVg1 þ a�1

ð
S

j‘g1u2j
2
g1
dVg1

þ b�1

ð
S

j‘g1wj
2
g1
ju2j2 dVg1

a ðaþ bÞ
ð
S

j‘g1u1j
2
g1
dVg1 þ ca�1

ð
S

j‘g2u2j
2
g2
dVg2

þ b�1 sup
S

j‘g1wj
2
g1

ffiffiffiffiffiffi
G1

G2

r� �ð
S

ju2j2 dVg2

and

2k2e Reðu1; wu2ÞM1
a k2eg

ð
S

ju1j2 dVg1 þ k2

ð
S

1ffiffiffiffiffiffi
G2

p g�1
ffiffiffiffiffiffi
G1

p
eju2j2 dVg2ð5:6Þ

for all a; b; g > 0. Plugging (5.5) and (5.6) into (5.4), we obtain

ReðIk; e; dðu1; u2Þ; ðu1; u2ÞÞH

b

ð
M1nS

j‘g1u1j
2
g1
dVg1 þ

ð
M2nS

j‘g2u2j
2
g2
dVg2 þ k2ðeku1k2M1nS þ dku2k2M2nSÞ

þ ð1� a� bÞ
ð
S

j‘g1u1j
2
g1
dVg1 þ ð1� ca�1Þ

ð
S

j‘g2u2j
2
g2
dVg2

þ k2eð1� gÞ
ð
S

ju1j2 dVg1 þ k2

ð
S

1ffiffiffiffiffiffi
G2

p ðd� � g�1e�Þju2j2 dVg2

� b�1 sup
S

j‘g1wj
2
g1

ffiffiffiffiffiffi
G1

G2

r� �ð
S

ju2j2 dVg2 � z0ku1k2G:

Taking g such that e�=d� < g < 1, we have
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ReðIk; e; dðu1; u2Þ; ðu1; u2ÞÞH

b

ð
M1nS

j‘g1u1j
2
g1
dVg1 þ

ð
M2nS

j‘g2u2j
2
g2
dVg2

þ k2ðeku1k2M1nS þ dku2k2M2nSÞ þ ð1� a� bÞ
ð
S

j‘g1u1j
2
g1
dVg1

þ ð1� ca�1Þ
ð
S

j‘g2u2j
2
g2
dVg2 þ k2eð1� gÞ

ð
S

ju1j2 dVg1

þ ðk2c1ðd� � g�1e�Þ � c2b
�1Þ

ð
S

ju2j2 dVg2 � z0ku1k2G

for some c1; c2 > 0. Using the trace theorem, we obtain

ku1kG a c3ku1kH 1ðM1Þð5:7Þ

for some c3 > 0. By taking a, b such that

c < a < 1; 0 < b < 1� a

and using (5.7), letting jkj > 0 large enough and z0 > 0 small enough, more

precisely taking

k2 >
c2b

�1

c1ðd� � g�1e�Þ ; 0 < z0 < c�1
3 minf1� a� b; k2eð1� gÞg;

we can easily show that there exists a constant C > 0 such that the inequality

(5.3) holds. r

Remark 5.5. For example, we take

a ¼ cþ 1

2
; b ¼ 1� c

4
; g ¼ d� þ e�

2d�
; z0 ¼

1� c

8c23

and

k2 ¼ max
2d�

eðd� � e�Þ ;
1

d
;

d� þ e�

c1d�ðd� � e�Þ 1þ 4c2
1� c

� �� �
:

Then the constant C > 0 appeared in (5.3) is equal to ð1� cÞ=8.

Remark 5.6. As stated above, using the isomorphism T given by (5.1), we

can avoid the di‰culty arising from the non-ellipticity of the sesquilinear form

Ak½� ; ��. Such a method is called the T-coercivity method.
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Using the above lemma, we can write ATðkÞ as the sum of an isomorphism

and a compact operator as follows.

Proposition 5.7. Let nl A LyðMlÞ ðl ¼ 1; 2Þ and z A LyðGÞ be complex

valued functions. We assume (5.2) for some constant 0 < c < 1. Then there exists a

point z0 > 0 such that for z with Re zb�z0 and for all k A C, the operator ATðkÞ
is written in the form ATðkÞ ¼ IþK where I is an isomorphism on H0 and K

is a compact operator on H0. As a result, ATðkÞ is a Fredholm operator on H0 for

all k A C.

Proof. By Lemma 5.4, the inequality (5.3) holds. Applying Theorem 5.3 to

the bounded linear operator Ik; e; d, we find that Ik; e; d is an isomorphism on H0.

Recall that AT ðkÞ and Ik; e; d are written as

ðATðkÞðu1; u2Þ; ðv1; v2ÞÞH

¼ ð‘g1u1;‘g1v1ÞTM1
þ ð‘g2u2;‘g2v2ÞTM2

� 2ð‘g1u1;‘g1ðwv2ÞÞTM1

� k2ððn1u1; v1ÞM1
þ ðn2u2; v2ÞM2

� 2ðn1u1; wv2ÞM1
Þ � ðzu1; v1ÞG

and

ðIk; e; dðu1; u2Þ; ðv1; v2ÞÞH

¼ ð‘g1u1;‘g1v1ÞTM1
þ ð‘g2u2;‘g2v2ÞTM2

� 2ð‘g1u1;‘g1ðwv2ÞÞTM1

þ k2ððeu1; v1ÞM1
þ ðdu2; v2ÞM2

� 2ðeu1; wv2ÞM1
Þ � ðzu1; v1ÞG

for ðu1; u2Þ; ðv1; v2Þ A H0, respectively. We put K :¼ ATðkÞ �Ik; e; d. Then the

operator K satisfies

ðKðu1; u2Þ; ðv1; v2ÞÞH

¼ �k2ððn1u1; v1ÞM1
þ ðn2u2; v2ÞM2

� 2ðn1u1; wv2ÞM1
Þ

� k2ððeu1; v1ÞM1
þ ðdu2; v2ÞM2

� 2ðeu1; wv2ÞM1
Þ

for all ðu1; u2Þ; ðv1; v2Þ A H0. Therefore, the inequality

jðKðu1; u2Þ; ðv1; v2ÞÞHjaCkðu1; u2ÞkL2ðM1Þ�L2ðM2Þkðv1; v2ÞkH

holds for some constant C > 0 depending on k. Here, k � kL2ðM1Þ�L2ðM2Þ is a norm

of the Hilbert space L2ðM1Þ � L2ðM2Þ and denotes

kðu1; u2ÞkL2ðM1Þ�L2ðM2Þ ¼ ðku1k2M1
þ ku2k2M2

Þ1=2
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for ðu1; u2Þ A L2ðM1Þ � L2ðM2Þ. The above inequality is equivalent to

kKðu1; u2ÞkH aCkðu1; u2ÞkL2ðM1Þ�L2ðM2Þð5:8Þ

for all ðu1; u2Þ A H0. By the Rellich–Kondrashov theorem (see e.g., [1, Page 168,

Theorem 6.3]), a bounded sequence in H0 has a Cauchy subsequence in

L2ðM1Þ � L2ðM2Þ. Let fðu1n; u2nÞgyn¼1 be such a subsequence. Using the inequality

(5.8), we have

kKðu1n; u2nÞ �Kðu1m; u2mÞkH aCkðu1n; u2nÞ � ðu1m; u2mÞkL2ðM1Þ�L2ðM1Þ:

This means that fKðu1n; u2nÞgyn¼1 is a Cauchy sequence in H0. Thus, K is a

compact operator on H0. If we take I ¼ Ik; e; d, then we have ATðkÞ ¼ IþK,

which proves the assertion. r

6. Proof of the Main Theorems

First, we prove Theorem 4.4.

Proof of Theorem 4.4. Let us define two operators F and Gk; e; d on H0

by

ðFðu1; u2Þ; ðv1; v2ÞÞH ¼ ðn1u1; v1ÞM1
þ ðn2u2; v2ÞM2

� 2ðn1u1; wv2ÞM1

and

ðGk; e; dðu1; u2Þ; ðv1; v2ÞÞH ¼ k2ððeu1; v1ÞM1
þ ðdu2; v2ÞM2

� 2ðeu1; wv2ÞM1
Þ

for all ðu1; u2Þ; ðv1; v2Þ A H0, respectively. By the same argument as in the proof

of Proposition 5.7, we can show that F and Gk; e; d are also compact operators on

H0. Using these operators, we rewrite AT ðkÞ as

Ik; e; d � k2F� Gk; e; d:

Let us take e; d > 0 such that supSð
ffiffiffiffiffiffi
G1

p
Þe < infSð

ffiffiffiffiffiffi
G2

p
Þd. Next, we choose e

and d small enough such that kI�1
k; e; dGk; e; dkH0!H0

< 1. Here, k � kH0!H0
denotes

the operator norm for bounded linear operators on H0. Then we can easily show

that IH �I�1
k; e; dGk; e; d is a bijection on H0 and has a bounded inverse. There-

fore, an interior transmission eigenfunction ðu1; u2Þ A H0 associated with k A sI

satisfies

0 ¼ I�1
k; e; dA

TðkÞðu1; u2Þð6:1Þ

¼ ðIH �I�1
k; e; dGk; e; dÞðu1; u2Þ � k2I�1

k; e; dFðu1; u2Þ:
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Put B ¼ ðIH �I�1
k; e; dGk; e; dÞ�1I�1

k; e; d. Obviously, B is a bounded operator on H0

and is independent of k. Thus, BF is also a compact operator on H0. Moreover,

it follows easily from (6.1) that

BFðu1; u2Þ ¼ k�2ðu1; u2Þ

for all ðu1; u2Þ A H0nfð0; 0Þg. As a conclusion, ðu1; u2Þ A H0 is an interior trans-

mission eigenfunction associated with k A sInf0g if and only if k�2 A C is an

eigenvalue of the compact operator BF on H0 and ðu1; u2Þ A H0 is the corre-

sponding eigenfunction associated with k�2. As is well-known in the theory of

compact operators, 0 is the only possible accumulation point of eigenvalues of a

compact operator. Therefore, we obtain the assertion of Theorem 4.4. r

Next, we prove Theorem 4.6.

Proof of Theorem 4.6. It is su‰cient to prove that there exist constants

r > 0 and y A ð0; p=2� such that for all k A Nðr; yÞ and for some constant C > 0,

the inequality

ReðAT ðkÞðu1; u2Þ; ðu1; u2ÞÞbCkðu1; u2Þk2H; ðu1; u2Þ A H0ð6:2Þ

holds. Indeed, applying Theorem 5.3 to the bounded linear operator ATðkÞ, we
find that for k A Nðr; yÞ, ATðkÞ is an isomorphism on H0 and has a trivial kernel.

Hence, such a complex number k is not in sI .

We put

n�
1 :¼ sup

S

ð
ffiffiffiffiffiffi
G1

p
ðRe n1ÞÞ; n2� :¼ inf

S
ð

ffiffiffiffiffiffi
G2

p
ðRe n2ÞÞ:

We assume that n1 satisfies

jIm n1j < e0 in S

for some constant e0 > 0. Then we derive the estimate

2 Reðn1u1; wu2ÞM1
ð6:3Þ

a g

ð
S

ðRe n1Þju1j2 dVg1 þ
ð
S

1ffiffiffiffiffiffi
G2

p g�1ð
ffiffiffiffiffiffi
G1

p
Re n1Þju2j2 dVg2

þ e0

ð
S

ju1j2 dVg1 þ e0 sup
S

ffiffiffiffiffiffi
G1

G2

r� �ð
S

ju2j2 dVg2

for all g > 0. Let r A Rnf0g. Using (4.5), (5.5) and (6.3), we obtain
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ReðATðirÞðu1; u2Þ; ðu1; u2ÞÞH

b

ð
M1nS

j‘g1u1j
2
g1
dVg1 þ

ð
M2nS

j‘g2u2j
2
g2
dVg2

þ r2 inf
M1nS

ðRe n1Þku1k2M1nS þ inf
M2nS

ðRe n2Þku2k2M2nS

� �

þ ð1� a� bÞ
ð
S

j‘g1u1j
2
g1
dVg1 þ ð1� ca�1Þ

ð
S

j‘g2u2j
2
g2
dVg2

þ r2
ð
S

ð1� gÞðRe n1Þju1j2 dVg1 � r2e0

ð
S

ju1j2 dVg1

þ r2
ð
S

1ffiffiffiffiffiffi
G2

p ðn2� � g�1n�
1 Þju2j

2
dVg2 � r2e0 sup

S

ffiffiffiffiffiffi
G1

G2

r� �ð
S

ju2j2 dVg2

� b�1 sup
S

j‘g1wj
2
g1

ffiffiffiffiffiffi
G1

G2

r� �ð
S

ju2j2 dVg2 � z0ku1k2G:

for all a; b; g > 0. Taking g such that n�
1=n2� < g < 1, we have

ReðATðirÞðu1; u2Þ; ðu1; u2ÞÞH

b

ð
M1nS

j‘g1u1j
2
g1
dVg1 þ

ð
M2nS

j‘g2u2j
2
g2
dVg2

þ r2 inf
M1nS

ðRe n1Þku1k2M1nS þ inf
M2nS

ðRe n2Þku2k2M2nS

� �

þ ð1� a� bÞ
ð
S

j‘g1u1j
2
g1
dVg1 þ ð1� ca�1Þ

ð
S

j‘g2u2j
2
g2
dVg2

þ r2 ð1� gÞ inf
S
ðRe n1Þ � e0

� �ð
S

ju1j2 dVg1

þ ðr2ðc1ðn2� � g�1n�
1 Þ � c4e0Þ � c2b

�1Þ
ð
S

ju2j2 dVg2 � z0ku1k2G

for some c1; c2; c4 > 0. Using the same argument as in the proof of Lemma 5.4,

for a suitable choice of constants a, b, g and a small constant e0 > 0 and a large

constant r > 0 and letting jrj > r, we have

ReðAT ðirÞðu1; u2Þ; ðu1; u2ÞÞHð6:4Þ

bC1ðk‘g1u1k
2
TM1

þ k‘g2u2k
2
TM2

Þ þ C2r
2ðku1k2M1

þ ku2k2M2
Þ � z0ku1k2G
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for some constants C1;C2 > 0. On the other hand, taking k ¼ ireij with

0a j < p=2, we find that there exists a constant C3 > 0 such that

ReððATðirÞ �ATðkÞÞðu1; u2Þ; ðu1; u2ÞÞHð6:5Þ

aC3r
2j1� e2ijjðku1k2M1

þ ku2k2M2
Þ

for all ðu1; u2Þ A H0. Combining (6.4) with (6.5), we obtain

ReðATðkÞðu1; u2Þ; ðu1; u2ÞÞH

bC1ðk‘g1u1k
2
TM1

þ k‘g2u2k
2
TM2

Þ

þ ðC2 � C3j1� e2ijjÞr2ðku1k2M1
þ ku2k2M2

Þ � z0ku1k2G

for all ðu1; u2Þ A H0. By choosing j; z0 > 0 small enough and using (5.7), we

have

ReðATðkÞðu1; u2Þ; ðu1; u2ÞÞH bCkðu1; u2Þk2H

for some constant C > 0. We put y :¼ p=2� j. Then for all k A Nðr; yÞ, the

inequality (6.2) holds. Therefore, we obtain the assertion of the Theorem 4.6.

r

7. Final Remarks

1. In this paper, we have presented spectral properties of interior transmis-

sion eigenvalues corresponding to scattering by an inhomogeneous medium on

Riemannian manifolds. In particular, we have studied the discreteness and

localization of interior transmission eigenvalues corresponding to the case of

locally anisotropic type. In this case, we used the T-coercivity method. This

method was first introduced by Bonnet-Ben Dhia, Ciarlet and Zwölf [5]. Using

the idea of T-coercivity, they proved that the electromagnetic wave transmission

problem is well-posed when dielectric constant changes its sign. In [4], Bonnet-

Ben Dhia, Chesnel and Haddar first applied T-coercivity method to the study of

the discreteness of interior transmission eigenvalues. They considered the ani-

sotropic ITE problem in a bounded domain of Rd . Making use of T-coercivity

method, they proved that the set of interior transmission eigenvalues forms a

discrete set under a certain condition on refractive index, which is crucial to use

analytic Fredholm theorem.

2. The ITE problem on Riemannian manifolds is also studied in [11]. In a

similar setting to ours, however, they deal with the case when g1ðxÞ ¼ g2ðxÞ for
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all x A G. Here, the ITE problem (4.1)–(4.4) corresponding to this case is said to

be locally isotropic type on G. In this case, they employ the method of Dirichlet-

to-Neumann operators to prove the discreteness, existence and Weyl asymptotics

of interior transmission eigenvalues. Their Weyl asymptotics is estimated from

below by the counting functions of the corresponding Dirichlet eigenvalues on

compact Riemannian manifolds.
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