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CURVATURE PINCHING FOR KAEHLER SUBMANIFOLDS
OF A COMPLEX PROJECTIVE SPACE*

By

Yoshio MATSUYAMA

Abstract. A complete classification for a compact Kaehler sub-
manifold M, in P,;,(C) with the scalar curvature p > n’ is given,
so that a conjecture of K. Ogiue is resolved partially.

1 Introduction

Let P,;,(C) be an (n+ p)-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature 1. There are a
number of conjectures for Kaehler submanifolds in P,.,(C) suggested by K.
Ogiue ([8]); some have been resolved under a suitable topological restriction (e.g.
M, is complete) (cf. [1], [2], [8], [9], [10], [11], [12], [13], [14], [16] and [17]). In this
direction, one of the open problems so far is as follows:

CoNJECTURE (K. Ogiue). Let M, be an n-dimensional complete submanifold
immersed in P,,(C). If p>n? is M totally geodesic in P, ,(C)?

In the case that M, is a complete Kaehler submanifold immersed in P, ,(C)
which has the Ricci curvature S > g, it was proved in [9] that such a submanifold
M, is totally geodesic in P,1,(C) ([9]). Recently, in the case of M, has S > g

Suh and Yang ([12]) proved that such one is parallel, i.e., either totally geodesic
or congruent to one of Q, and P;(C) x P;(C). Also, the case that the scalar

2 .
curvature p > n(n+ 1) — % was studied by Tanno [15], and he proved that M

is totally geodesic in P,,(C).
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In the present paper we would like to consider the case that M, is compact
and p > n?, so that the above conjecture is resolved partially. The main result is
the following:

THEOREM. Let M, be an n-dimensional compact Kaehler submanifold
immersed in P,,(C). Then p >n? if and only if M is either totally geodesic in
P,.,(C) or p=n% In the latter case M" is imbedded submanifold congruent to the
standard imbedding of one of the following submanifolds: P,(C) x P;(C) and the
complex quadric Q,, n > 3.

Hence, we have the following (see [8], p662—p663):

COROLLARY. Let M, be an n-dimensional compact Kaehler submanifold
immersed in P,.,(C). If p>n?, then M is totally geodesic in P,,(C).

2 Preliminaries

Let M, be a compact Kaehler submanifold of complex dimension n, immersed
in the complex projective space P, ,(C) endowed with the Fubini-Study metric of
constant holomorphic sectional curvature 1. We denote by UM the unit tangent
bundle over M and by UM, its fibre over x € M and by J and <, ) the complex
structure and the Fubini-Study metric. Let V and 4 be the Riemannian con-
nection and the second fundamental form of the immersion, respectively. 4 and
V+ are the Weingarten endomorphism and the normal connection. The first and
the second covariant derivatives of the normal valued tensor & are given by

(Vh>(X7 Y> Z) = VJ);(h(Y,Z)) - h(VX Yv Z) - h(Ya VXZ)
and
(V2h)(X,Y,Z, W) =V+((Vh)(Y,Z,W)) — (Vh)(Vx Y, Z, W)

—(VA(Y,VxZ, W) = (Vh)(Y,Z,Vx W),

respectively, for any vector fields X, Y, Z and W tangent to M,.
Let R and R denote the curvature tensor associated with V and V*, re-
spectively. Then /# and VA are symmetric and for V21 we have the Ricci-identity

(V2h)(X,Y,Z, W) — (V*h)(Y,X,Z, W)

= R (X, V)W(Z, W) — h(R(X,Y)Z, W) — h(Z,R(X, Y)W).
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We also consider the relations
h(JX,Y)=Jh(X,Y) and Aj:=JA:=—A:J,

where & is a normal vector to M,.

If S and p is the Ricci tensor of M and the scalar curvature of M, re-
spectively, since M is a complex Kaehler submanifold in P,,(C), then from the
Gauss equation we have

n+1 21
S(v,w) = 5 v, wy — Z (Ao, e €is W, (1)
i=1
p=nin+1)— 2)
Now, let ve UM,, xe M. If e,,...,e), are orthonormal vectors in UM,
orthogonal to v, then we can consider {e,,..., ey} as an orthonormal basis of

T,(UM,). We remark that {v =ej,e,...,ez,} is an orthonormal basis of T\ M.
We denote the Laplacian of UM, =~ S?*~! by A.
Define a function f; on UM,, xe M, by

2n
f](l)) = Z <Ah(e,-,ej)ej;Ah(v,v)ei>-

ij=1

Noting that V, v = —ex, Ve.er = 0w, k,0=2,...,2n, we have

2n

(Af)(0) =D (V) (v, ens ex)

k=2

2n 2n
=-2 Z Vek (Z <Ah(e,-,e,-)ej7 Al1(ek,u)ei>>

k=2 ij=1

2n

2n
=2 i) +2Y filew).
k=2 k=2

Using the minimality of M we can prove that

2n
(Afi)(v) = =2(2n— 1) fi(v) + 22 {Aner )€ An(er, )€1
)

For more details on this, see [7], [10]. Similarly, define f>, f3, fa, f5, fs, f7, fs, Jo,
Jio and fi; by
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= Z CAp(, 000, A, e i
v) = Z {An(es,e) €55 An(w,e) 02
= Z LA, e)€is An(o, )€1+
v) = Z Ao, v)€is An(w,v)€i 2+
Jo(0) =" LAye, vy€i, Aniey €0
1(®) = h(v,v)],

fi(0) =" LAy e, vdlh(v,0)

9 U) = (Z <A11(v,e,)eiav>)27
fio(0) =Y {Ap(e.e)€ir 0D
fu(0) = [h*|h(v,0)[%,

respectively. Then we obtain

(Af2)(v) = —4(2n + 2) f2(v) + 4f3(v) + 4fa(v) + 2fi (v),
(Af3)(v) = =4nf3(v) + 2 {Apiey.e)€f Aniey. e €k s
(Afa)(v) = =4nfa(v) + 2 {Aiiey )€ Aniey, )€k s
(Af5)(v) = =420+ 2) f5(v) + 8> {Apev)€r, Apiey €
(Afe)(v) = —4nfs(v) + 2 {Apiey )€ Aney )€
(Af1)(v) = =420 +2) f1(0) + 8D {Ap(w.epei 0,
(Afs)(v) = —6(2n +4) fs(v) + 16/2(v) + 211 (v) + 8fs (v),
(Afo)(v) = —4(2n +2) fo(v) + 8fa(v) + 41h|> > {Any.cpi 0D,
(Afi0)(v) = —4nfio(v) + 2|,

(Afin) () = =4(2n+2) fi1(0) + 81> Y (Ap(p.e€ir 0.
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Since
1 .
EZ(V2f7)(ei7 €j, U) = Z <(V2h)(ei7 €, U, U)a h(U7 U)>

= Z <(Vh)(ela v, U)v (Vh)(eia v, U)>v
we have the following (See [3], [4], [5], [6] and [7]):
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LemMA. Let M be an n-dimensional complex Kaehler submanifold of Py.,(C).

Then for ve UM, we have
1 n—+2
EZ(Vzﬁ)(eiv €, U) = Z |(Vh)(eia v, U)‘z + T |h(l}, U)|2
+2 Z <Ah(v,v)eia Alz(ei,v)v>
-2 Z <Ah(v,e,-)eia Ah(v,v)v>

- Z <Ah(v. v)€is Ah(v,v)ei>-

3 Proof of Theorem

From (2) we have
p=n(n+1)— A
Thus we have only to prove Theorem under the assumption
|h|> < n.
We see the following equation holds for v e UM,, xe M.

Z <Al1(Jv,Jv)ei7 Ah(e,v,Jv)Jv> = Z <Ah(v, v)€is Ah(ei,v)v>'

From (14) and (16) we have
3 (VA e en0) + 5 S (V) e i)

= " |(Vh)(ei,v,v) +¥|h(v,v)l2

-2 Z <Ah(v,e,v)ei7 Ah(l/“ L')U> - Z <Ah(v,u)eia Ah(v. v)ei>~
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Now, we choose an orthonormal basis {v =ej,e,...,e,} such that the matrix
2p

> Ag is diagonalized, where {¢;,&,,...,¢,,} is any orthonormal normal basis
=1 *

and 1 <o <2p. Then we have

) = Al (18)
In terms of (4), (5), (6), (10), (11), (13), (17) and (18) we have
1 (VP h)enent) + 3 SV enen o)
3 QORI+ (A0~ AR+ (BA)E)

— (n AR~ 2AAR)E) + (Afi) ()
= SR e )P+ T2 e o)~ fia(e) — (o)
= 31T e, o) + b, o) — (o), (19)

noting that (15). On the other hand, in terms of (9) and (12) we have

2

n 1
2 < A0+ )

T (&)

__" L AT

Also, we have from (7) and (8)

1 2

- m (Afs)(v) — m (Afs)(v)

. 2
= fS(U) - mz <Ah(€lve/()ei’ Ah(e,g/‘)el>

2 2 s
= - Az A
B0~ sz o A
b
2n(2n + 2)

2 50 = 5y M (21)

> f5(v) - Al
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where we used > (trace A@Agﬂ)zg %|h|4 (See [9], p. 88) and (15), where
{&1,&,,...,&,,} is any orthonormal normal basis as above and 1 <o, f < 2p.

Summing up (17), (20) and (21) and using Hopf’s lemma, we have

S [(Vh)(er, v, 0)* = 0.

Thus we know that M, is parallel. This proves Theorem (See [8], p. 662—663).
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