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TRANSFERRED KINEMATIC FORMULAE
IN TWO POINT HOMOGENEOUS SPACES

By

Takashi SAKAT*

Abstract. We give kinematic formulae for integral invariants of
degree 2 for hypersurfaces in two point homogeneous spaces
explicitly. The discussion here we use is a certain generalization of
the transfer principle in integral geometry.

1. Introduction

Let M and N be submanifolds in a Riemannian homogeneous space G/K,
one fixed and the other moving under the action of g € G. Consider an “‘integral
invariant” I(M NgN) of the intersection submanifold M NgN. Then a formula
which expresses the integral

(1.1) |, 102098) dugto

in terms of some geometric invariants of M and N, where du, is the invariant
measure of G, is called a kinematic formula. For example, in the case where M
and N are submanifolds of a real space form G/K and I(MNgN)=
vol(M NgN), then the evaluation of (1.1) leads to the Poincaré formula, which
expresses it as a constant times of volumes of M and N (see [8] for reference).
Chern [3] and Federer [4] obtained a remarkable kinematic formula as follows:

THEOREM 1.1. Let I(R") denote the isometry group of n-dimensional
Euclidean space R". Assume that 0 <2] < p+q—n. Then there exist constants
c(p,q,n,i,l) determined by indicated parameters so that
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!
JI(R )#21(M NgN) dug(g) = > e(p.q.n, i, Dty ( M)y (N)
i=0
holds for any compact submanifolds M and N in R" of dimensions p and q,
respectively.

Here the invariants u,; are those that appear in the Weyl tube formula.
Definition and some fundamental properties of them will be explained in Section
2.

Later Howard [5] defined integral invariants of submanifolds in Riemannian
homogeneous spaces from invariant polynomials on the space of second fun-
damental forms. He showed that kinematic formulae for these invariants can be
expressed by invariants of M and N if G is unimodular and acts transitively on
the sets of tangent spaces to each of M and N. Moreover, he showed the
“transfer principle” in integral geometry. Roughly speaking, it guarantees that the
same kinematic formulae hold in homogeneous spaces which have the same
isotropy groups.

The linear isotropy action of a two point homogeneous space is transitive on
the hypersphere in the tangent space at the origin. Therefore, from the transfer
principle, kinematic formulae for hypersurfaces in two point homogeneous spaces
can be expressed by invariants of two submanifolds. However, it is not obvious
how to obtain explicit forms of such kinematic formulae. In his paper, Howard
showed the following Poincaré formula by transferring from the case of real space
forms.

ProposITION 1.2 ([5] paragraph 3.12). Let G/K be a two point homogeneous
space of dimension n. Let M be a submanifold of dimension p and N a
hypersurface in G/K. If M and N have finite volume then

vol(K) vol(S?~1) vol(S™)
vol(S?) vol(S7-1)

J vol(M NgN) dug(g) = vol(M) vol(N)
G

holds.

A Poincaré formula is a kinematic formula for the volume functional, that is,
an integral invariant of degree 0. Therefore our interest goes to the higher degree
cases.

In the present paper, we shall study the kimematic formulae for hypersurfaces
in two point homogeneous spaces. We generalize the transfer principle, and
eventually obtain the following kinematic formulae.
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MAIN THEOREM. Let M and N be real hypersurfaces in a two point homo-
geneous space G/K. Then the following kinematic formulae hold:

jG (M N gN) duglg)

= —VoYE);(OIiL)) a(n — 1, n— 1,n)(]4ﬂ2(M) VOl(N) + VOI(M)]W&U\]))’

JG I"2(MNgN) dug(g)

= %b(ﬂ —1,n— 17”)(1%"’1(M) VOl(N) +V01(M)I%”*1(N)).

Integral invariants /”> and I” will be explained in the next section.

2. Preliminaries

We shall use this section to recall the general theory of the kinematic
formulae in Riemannian homogeneous spaces due to Howard, which is necessary
for our discussion. Refer to his paper [5] for details.

Let G be a Lie group and K a compact subgroup of G. We assume that G
has a left invariant metric that is also right invariant under K, then G/K is a
homogeneous space with an invariant metric. We denote by 7 = T,(G/K) the
tangent space of G/K at the origin o. Let V' be a linear subspace of 7. A
submanifold M of G/K is said to be of type V if and only if for each x e M
there exists g, € G such that (g,),V =T M.

For a linear subspace V' of T, we define a vector space II(}) to be

(V)= {h|h:V x V — V*; symmetric bilinear},

where V' is the normal space of ¥ in T. A second fundamental form of a
submanifold of G/K which passes through o and has V" as the tangent space at o
is an element of II(V). Let K(V) be the stabilizer of ¥V in K, that is, K(V) =
{keK|k.,V =V}. The group K(V) acts on II(V) by the following manner:

(2.1) (kh)(u,v) = k*(h(k*_lu,k*_lv)) (u,veV)

for k e K(V) and h e II(V'). Here we consider a polynomial £ on II(V) which is
invariant under K(V), that is, 2(kh) = #(h) for all k € K(V') and h e II(V). Let
M be a submanifold of G/K of type V. For the second fundamental form 4 of
M at xe M, we define
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P(hM) = 2(hg="1).

Then we can define an integral invariant /7 (M) of M from a polynomial # by

(22) 170) = | 20 duy ().
M

We also define a vector space EII(T) to be
EI(T)={h|h: T x T — T; symmetric bilinear}.

Since K also acts on EII(7T) in the same way as in (2.1), we can define integral
invariants of a submanifold from polynomials on EII(7") invariant under K in the
same way as in (2.2).

With these notations, we can now state the kinematic formulae in Rie-
mannian homogeneous spaces as follows:

THEOREM 2.1 ([5] paragraph 4.10). Let G/K be a Riemannian homogeneous
space and assume that G is unimodular. Let V and W be linear subspaces of T
with dim(V) + dim(W) > dim(T), and # a homogeneous polynomial of degree |
on EII(T) which is invariant under K, such that

(2.3) JK oV kWY dug (k) < 0.

Then there exists a finite set of pairs (2, R,) such that
(1) each 2, is a homogeneous polynomial on IL(V) invariant under K(V),
2) each R, is a homogeneous polynomial on (W) invariant under K(W),
3) deg 2, +deg %, =1 for each a,
4) for all compact submanifolds (possibly with boundaries) M of type V and
N of type W in G/K the kinematic formula

(
(
(

(2.4) J I7(MNgN) dug(g ZIJ M)I”*(N)
G
holds.
Here o(V, W) is the angle between linear subspaces V' of dimension p and W
of dimension ¢ in an inner product space E. That is defined by

oV, W)=|viA--- Aoy AWp A= Awgll,

where vq,...,v, and wy,...,w, are orthonormal bases of V" and W, respectively.
In the condition (2.3), we required the integral to be convergent. If G/K is a real
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space form, then the condition (2.3) can be replaced by the manageable inequality
[ <dim(V) +dim(W) — dim(T) + 1.

In order to explain how Theorem 2.1 is obtained, we need some definitions
and lemmas. For 0 < p <n, Gr,(T) denotes the Grassmannian manifold of all
p-dimensional subspaces in 7. Then we set

IL(T) ={(V,h)| Ve Gr,(T), he II(V)}.
For (V,h)ell,(T) and a subspace W in T with V4+ W =T, we define
Gw(V,h) e EII(T) by
Gw (V,h)(u,v) = P}, (h(Pu, Pv)) (u,veT).
Here PVI{/ is the projection 7' — (V' N W)lﬂ W with kernel V, and P is the
orthogonal projection 7' — VN W.

Assume that p+q >n. For (V,h)ell,(T), (W,hy) ell,(T) and a poly-

nomial 2 on EII(T) invariant under K, we define

Ilif(Vahlv thZ)
_ J PG (V) + Gy (kW k" h))a (VK- W) dpge (k)
K
provided this integral converges.

LemmA 2.2 ([5] paragraph 6.5). Under the hypothesis of Theorem 2.1 there
exists a finite set of pairs (2,,R,) such that
(1) each 2, is a homogeneous polynomial on IL(V) invariant under K(V),

3) deg 2, +deg #, =1 for each «,

)
2) each R, is a homogeneous polynomial on (W) invariant under K(W),
)
4) for all hy e (V') and hy € II(W)

(
(
(
II?(VJZI, v, hz) - Z’Q1<hl)%a(h2)'
When M and N are submanifolds in G/K of type V and W, we define
) ) ] "
VB W) = 12V g w b,

LemmA 2.3 ([5] paragraph 7.2). Under the hypothesis of Theorem 2.1

L"”’(Mﬂgm duglg) = JM ARV BE W) diigg (3, )

holds for any compact submanifolds M of type V and N of type W in G/K.
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From these two lemmas we conclude Theorem 2.1.
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REmMARK 2.4. From these facts finally we arrive at the “transfer principle”,
that is a method of transferring kinematic formulae from one homogeneous space
to any other homogeneous space with the same isotropy subgroup.

Now we give some concrete forms of invariant polynomials and kinematic

formulae. Take an orthonormal basis e, .

of V' and e,.q,..
H e EII(T) are represented by

..,e, of T such that e, ..
.,e, is a basis of V*. Then components of 4 ell(V) and

hf;:(h(ef,ej),ek) (1<i,j<p,p+1<k<n)

Hf = (H(ei e), ey (1 <i,jk <n)

., €, 1s a basis

The following polynomials #7%; are homogeneous polynomials on II(}') of degree

2] invariant under O(V) x O(V*).
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We define homogeneous polynomials, also denoted by #7%;, on EII(T) of degree

2/ invariant under O(T) by
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In the both cases, #) =1 by definition. A second fundamental form 4 e II(V)

can be extended to H € EII(T) by

H(u,v) = h(Pu, Pv)

(woeT),

where P: T — V is the orthogonal projection. If H € EII(T) is the extension of

hell(V), then we have
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Wa(h) = Wyu(H).

Furthermore, these polynomials #7; are characterized as the invariant poly-
nomials which vanish on (extended) second fundamental forms with relative rank
less than 2/. For a submanifold M of G/K, we introduce the integral invariants
L (M) defined by

ﬂzl(M) = I%'(M)

For these integral invariants u,;, the Chern-Federer kinematic formula (Theorem
1.1) holds. In fact, this formula holds in any real space forms by the transfer
principle. The value of the constants a(p,q,n,i,/) were computed by Chern [3]
and Nijenhuis [7].

The space of homogeneous polynomials on II(V) of degree 2 invariant under
O(V) x O(V*) is spanned by two polynomials

2
2(h) =3 "(hE)?, 2a(h) =" (Z h,-%) :
i),k k i

where 1 <i,j<p, p+1<k<n If 2<p<n-—1, these two polynomials are
independent. Geometrically, 2;(h) is the square of the norm of the second
fundamental form, and 2,(h) is p> times the square of the mean curvature.
However, it is convenient for us to take the basis

szgz—,@l, %pzpﬂl—ﬂz.

For these polynomials we have the following:

ProposITION 2.5 ([5] paragraph 8.5). Assume that 2 < p+ q — n. Then there
exist constants a(p,q,n) and b(p,q,n) so that

JG 1" (M NgN) dug(g) = a(p,q,n)1">(M) vol(N) + a(q, p,n) vol(M)I"*(N)

J 1" (M N gN) dpg(g) = b(p,q,m)I" (M) vol(N) + b(g, p,n) vol(M)I"*(N)
G

holds for any compact submanifolds M and N of dimensions p and q in a real
space form G/K.

The first one is entirely the Chern-Federer formula of degree 2. The constants
a(p,q,n) and b(p, q,n) were determined in the previous paper [6]. The polynomial
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U, is characterized as the invariant polynomial which vanishes at an umbilic
point. The integral invariant

1550 = | (0,02 (4
M
is an conformal invariant, called the Willmore-Chen functional, of p-dimensional
submanifold M (see [1], [2], [9]).

3. Two Point Homogeneous Spaces

A connected Riemannian manifold M is called a two point homogeneous
space if, for any pairs of points x;, y; € M with distance d(xi, y1) = d(x2, 2),
there exists an isometry g € I(M) such that gx; = x, and gy; = y». On the other
hand, a Riemannian manifold M is said to be isotropic at xe M if I(M), =
{g € I(M)|gx = x} acts transitively on the unit hypersphere in T, M, and M is
isotropic if and only if it is isotropic at every point. It is well known that these
two notions are equivalent. Furthermore, two point homogeneous spaces are
completely classified; a two point homogeneous space is a Euclidean space
R"=1(R")/O(n) or an irreducible symmetric space of rank 1: a sphere
S"=0(m+1)/0(n), a real projective space RP"=O(n+1)/0(1) x O(n), a
complex projective space CP" = U(n+ 1)/U(1) x U(n), a quaternionic projective
space HP" = Sp(n+1)/Sp(1) x Sp(n), the Cayley projective plane Cay P> =
F4/Spin(9), and their non-compact duals.

LemmA 3.1. Let M = G/K be a two point homogeneous space. Assume that
G is the isometry group of M listed above. Then there is no homogeneous
polynomial on 1I(V) (resp. EII(T)) of odd degree invariant under K(V') (resp. K).

Proor. Since K(V) (resp. K) acts on II(V) (resp. EII(T)) by (2.1), it is
enough if we find an element k& € K which acts on 7" as —idy. It is easy to find
such k € K in the case of K = O(n),0(1) x O(n),U(1) x U(n),Sp(l) x Sp(n). It
remains the case of K = Spin(9). The spinor group Spin(n) is defined as a subset
of the Clifford algebra CI,, and it is well known that a Clifford algebra is
isomorphic to a matrix algebra. In this case,

Spin(9) = CI"™" =~ Cls =~ M(16,R)

where M (16, R) denotes the algebra of 16 x 16 matrices over R. This inclusion
defines the spin representation of Spin(9), that is equivalent to the linear isotropy



Transferred kinematic formulae in two point homogeneous spaces 351

representation of K = Spin(9). Through these isomorphisms, —1 € Spin(9) cor-
responds to minus the identity matrix —/ € M (16, R). Thus —1 € Spin(9) acts on
T as —idy. This completes the proof. O

4. Proof of the Main Theorem

Let G/K be a two point homogeneous space of dimension n. Then it is
isotropic; K acts transitively on the hypersphere in 7' by the linear isotropy
representation. For v e T we denote by K(v) the stabilizer of v in K, and then
K/K(v) is homothetic to the unit sphere S"~!. We note that if we put W = v+
then K(v) = K(W).

Let 2 be a polynomial on EII(7T) invariant under the orthogonal group O(T)
acting on 7. From the definition (2.5), we have

(41) II?(V7hla WahZ)

_ J PG (V. hy) + Gy (k2 Wk h))a (V' k2 W) dpg (k)
K

= J P(Grw(V, ) + Gy (k. W, kha))a(VE k. W) dug (k)
K

for (V,h)ell,(T) and (W, hy) € 1L,_1(T). The last equality holds since K is a
compact Lie group.

We take a second fundamental form /(r) € II(W) of a hypersurface which is
tangent to W and umbilic at that point with principal curvature r. It is not a
problem whether such a hypersurface exists. We are just considering an element
of II(W) formally. If we take an orthonormal basis of T and regard II( W) as the
space of (n—1) by (n— 1) symmetric matrices then /(r) is expressed as rl,_,
where I,_; is the identity matrix. Since K(v) acts on II(W) by (2.1), it is clear
that A(r) e II(W) is fixed by the action of K(v);

(4.2) gh(r) = h(r) ("9 € K(v)).

If [k] = [k'] e K/K(v), then there exists g € K(v) such that k' = kg. Therefore,
when we apply iy = A(r) in (4.1), from (4.2) we have

P(Gow (V) + Gy (kLW k'h(r))a(V*, kL W)
= P (Grg.w(V,) + Gy (kg W, kgh(n))o(V*, kg. W)

= P(Grw(V,In) + Gy (k. W, kh(r))a(V*, k. W),
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This implies that, when we regard K as a principal fiber bundle on K/K(v) with
fiber K(v), the integrand in (4.1) is constant on each fiber. Thus the integration
on K is reduced to that on K/K(v). Hence we have

(4.3) IZ(V, hy, W, h(r))

= vol(K(v)) J P (G, w(V, ) + Gy ([k]. W, [k]h(r)))

K/K(v)
x a(V, k], W) dug i (K])

vol(K)

= vol(s™ 1) JK/K(U) P(Gug.w(V, 1) + Gy ([k], W, [k]h(r)))

x a(VE, [k W) dpse ([K])

— o500} o Vo, W (),
We have the second equality normalizing the invariant measure of K/K(v) to
that of unit sphere S"~!'. The last equality is obtained by the opposite procedure
of reducing the integration on K to that on the sphere.

Now we restrict ourselves to the case dim V' = dim W =n — 1. In addition,
we take an O(T)-invariant homogeneous polynomial # = #5 on EII(T).
Without loss of generality, we can assume V = W, since K acts transitively on
Grp—1(T). In Lemma 3.1 we showed that there is no homogeneous polynomial of
odd degree invariant under K(W). Therefore, from Lemma 2.2, there exists a
homogeneous polynomial 2 on II(W) of degree 2 invariant under K(W) so that

L (W, b, Woha) = 2(h) + 2(h),
In the case of K = SO(n), this is entirely Proposition 2.5. Thus we have
LG (W hi, W) = a(n = 1,n = Ln) (W3 () + #2(ha)).
From (4.3) we have

200+ 20h(0) = os dsaln = Lon = L) (k) + H3000)

Since 2 is homogeneous polynomial of degree 2 and h(r) = rl,_,

2(hy) +r*2(h(1)) = %am —1,n—1,n)(W3(hy) + r*W>(h(1))).
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Here r is arbitrary real number, thus coefficients of polynomials with respect to r
agree in each degree. Thus we have
vol(K) .
I(h)=———F—an—1,n—1,0)W>(h).
) =Saiisou) 0~ 1 = Lt
The same discussion holds when we take an invariant polynomial 2 = %,,_;.
Consequently we have the Main Theorem.

5. Problems

We shall conclude this paper by posing some related problems. In the Main
Theorem we showed that the kinematic formulae for integral invariants of degree
2 can be obtained transferring from the case of real space forms. Then our
interest is in the case of higher degree.

PrOBLEM 5.1. Can all kinematic formulae for hypersurfaces in two point
homogeneous spaces for integral invariants defined from O(T)-invariant ho-
mogeneous polynomials be obtained by transferring from the case of real space
forms?

In Proposition 1.2, Howard showed the Poincaré formula for a real
hypersurface N and any dimensional submanifold M in a two point homogeneous
space. Therefore it is natural to pose the following problem:

PrROBLEM 5.2. Does the Main Theorem hold for a real hypersurface N and
any dimensional submanifold M?
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