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PROBLEM
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1. In our previous papers [1] and [2] we have observed several interesting
and significant aspects of the generalized Josephus problem. In the present article
we shall again concern ourselves with this problem. Thus, given a total number
n>1 and certain n objects numbered from 1 to n, and another integer m > 1,
called the reduction coefficient, we arrange these n objects in a circle and, starting
with the object numbered 1, and counting each object in turn around the
circle, we eliminate every mth object until all of them are removed. By
am(k,n) (1 <k <n) we denote as before the kth Josephus number, that is, the
object number to be removed in the kth step of elimination. It is evident that we

have

(1) Il <apulk,n) <n
and

(2) am(l,n) =m (mod n),
and that

amlk+1L,n+1)=a,(l,n+1)+au(k,n) (modn—+1),
from which follows at once
(3) amk+1L,n+1)=m+ay,(k,n) (modn-+1)

in view of (2); (3) is the fundamental relation due to P. G. Tait for the
Josephus numbers a,(k,n) (cf. [1; §§1-2]). In effect, the Josephus numbers
am(k,n) (1 <k < n) are completely determined by the conditions (1), (2) and (3).

In what follows we devote ourselves to the study of the special case of k =n
and write for simplicity’s sake d,,(n) = a,,(n,n) as in [1]. We have then d,,(1) =1
for any m > 1, and the fundamental relation (3) becomes

(4) dp(n+1)=m+d,(n) (modn+1).
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Now, in connexion with his study of a Japanese version of the Josephus
problem, Seki Takakazu (1642?-1708) called any positive integer n for which one
has dy,(n+1) =1, if it exists, a limitative number with respect to the reduction
coefficient m; compare [1; §8]. We have formulated there a hypothesis on the
infinitude of limitative numbers n for every fixed m > 2, regarding it as an
implicit intention of Seki’s. The validity of this hypothesis is easy to prove for
m =2 and 3, but for m >4 it appears to be difficult to settle it. At present we
are able only to show that there are infinitely many integers n satisfying the
condition

1 <duy(n+1)<m-—1

for every fixed reduction coefficient m > 2 (cf. [2; §3]). In this respect it will be of
some interest to note that the set of positive integers m for which exist only a
bounded number of integers n satisfying d,(n + 1) = 1 has natural density 0; in
other words, there are unboundedly many limitative numbers »n for almost all, so
to say, values of the reduction coefficient m (>4) (see §3 below).

In the present note we wish to provide a proof for this metric result as an
approach to the original hypothesis mentioned above.

Note. Let S be a set of positive integers m. The upper asymptotic density
0(S) of the set S is defined by

< 1
0(S) = limsup — 1
X—oo X’%}

and the lower asymptotic density d(S) of S is with liminf in place of limsup; we
always have 6(S) > 6(S) and, in case the upper and lower asymptotic densities
coincide with each other, say 6(S) =6 = 6(S), the common value § = §(S) is the
natural density of the set S. If in particular 6(S) = 0 then we have naturally
o(S) =0.

2. Let n, p and ¢ be given positive integers > 1. We denote by H(n) the
set of positive integers m for which one has d,,(n) =1 and by H(p,q) the set
of positive integers m such that d,,(p) =dn(q) =1. If p=gq then H(p,q) =

H(p,p) = H(p).
We set M; =1 and for n > 1

M, :=L.CM.(1,2,...,n).
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LemmMA 1. For any ¢ (1 </ <n) the number Z(n;/) of integers
m (1 <m < M,) satisfying the condition d,(n) ={¢ is given by
Mn

Z(n;l) = o

so that, in particular, the natural density 0(H(n)) exists and equals 1/n.
This is the special case k =n of Proposition 3 in [2].

LEMMA 2. Suppose that p and q be prime numbers, p < q. Then, for any
t, (1<, <p) and any ¢, (1 </, <q) the number Z(p,q;(,,{;) of integers
m (1 <m < M,) fulfilling the conditions d,,(p)=1¢, and d,(q) ={, is given by

M,
Z(p,qilp. ly) =—2,
(P43, 0q) g

so that, in particular, the natural density 6(H(p,q)) exists and is equal to 1/(pq).

Proor. Consider the system of g congruences in m (cf. (4)):
(5) m=h;—h_ (modi) (i=1,2,...,9),

where hy =0 and the /; (1 <i < gq) are parameters taking some integer values
such that

thus, #; = 1 and the first congruence in the system (5) is absurd, so that we shall
actually deal with (5) only for 2 <i<gq.

We fix hy =1, h, =/, and h, = /,. For an arbitrary integer j (2 < j <g) we
contemplate the subsystem of (5):

(6) m=h;—h_y (modi) (i=2,...,)).
The system of congruences (6) may admit a solution
m=m; (mod M)

under certain conditions, in general, to be imposed on the integers /4;. Anyway
there may be several, mutually incongruent solutions m; (mod M;) of (6), where
m; = mj(hi,hy, ..., h;) depends on the ordered j-tuple of integers (hy,ho,. .., h;),
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and it is readily seen that if moreover (h{,h},...,h) is such a j-tuple different

J
from (hy,ha, ..., h;), then we have

mj(hy, hy, ... k) # mi(hi, o, .o hy) o (mod M;).
For j =2 we have plainly with 1 </h, <2
my =my(hy, ) =hy —h =hy—1 (mod M).
For j > 3 the solvability condition for the system

(7) {’” =My (mod M; ;)

m=h;—hi_; (mod j),
which is equivalent to (6), is provided by

(8) mj—1 =l —hi-1 - (mod &),
where

d; = G.C.D.(M;_1,i) (i=2).

Having determined m;_; modulo M;_; with (hy,...,hj_1), we fix /; to the modulus
d; by (hi,...,hj—1) according to the congruence (8), so that the number of possible
choices for the value of /; turns out to be equal primarily to j/d;.

Setting Z; = My = 1, we denote by Z; for 2 < j < ¢ the number of different
(i.e. incongruent) solutions m; (mod M;) of the system (6), or of the system (7).
Clearly Z, = Z(p,q;y,4y).

If 2 <j< p then we have

|~.

Zj=Zi1% = M,

X

For j = p, a prime, we have d, =1 and may arbitrarily fix the integer 4, =/,
with 1 <7/, < p, so that

M
Z,,:Z,,_l-lep_l :7p;

for p+1<j<gqg we find, as above, that

I_M

Z/:ZHdI

b

p

and finally for j=g¢q, a prime different from p, we have again d, =1 and,
therefore, with h, =7¢,, 1 </, <gq,
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M,
Zy=Zy - 1=—0"1 =
p

IS

which was to be proved.

Needless to add, our Lemma 2 can naturally be extended to the case in which
three or more distinct primes are involved. Given an arbitrary finite set P of
prime numbers p and a set (/,) of prescribed integers /, with 1 <7/, < p (peP),
the number Z(P;(¢,)) of integers m (1 <m < M) such that we have

dy(p)=1¢, for all peP

is found to be equal to M,/D, where s is any integer not less than the maximal
prime of the set P and D is the product of all primes p e P.

3. We are now in a position to enunciate and establish our principal result
about the hypothesis of Seki, as mentioned in §1 above. We shall prove the
following

THEOREM. For all values of the reduction coefficient m (>1), except possibly
for a set of integers m of natural density 0, there exist unboundedly many positive
integers n satisfying the condition d,(n) = 1.

ProoF. Let Ay (resp. Ao(v), v being a natural number) the set of positive
integers m such that there are only a bounded number (resp. at most v in number)
of integers n satisfying d,,(n) = 1. We have to show that J(4y) = 0; this can be
achieved, if we prove that 6(4o(v)) = 0 however large the bound v (<+o0) may
be, since we have Ag(v) < Ao(v’) if v < v’ so that

Ao= |J Ao(v) and 6(d4g) = sup d(Ay(v)) =0.

1<v<+o0 1<v<+w

We define for a fixed positive integer n

(1 i d(n) = 1,
() = {O otherwise;

this is the characteristic function of the set H(n) of integers m for which holds
du(n) = 1. Denoting by p and ¢ generic primes, we have, in virtue of Lemmas 1
and 2,

wl 1

) H(p) =3 o enlp) = i p <5
5 =1
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and
1.
LM Py if p#4q, p,q<s,
(10) O(H(p.4) =37 D em(p)en(e) =1 |
S m=1 — ifp=g<s
P

We now calculate, with a positive real number Q, the dispersion

2
. 1 1
(a1 V(0= Jim =3 (Z(w);)) |

m<X \p<Q

where Zp <o Indicates the summation over the prime numbers p < Q.
Let s be any integer not less than the largest prime < Q. Then it follows from
(9) and (10) that

(12) V(Q)Azf<z<cm(17)—;>>2 Z,ﬂ(l—;)

Sm=1\p<Q p<0

which ensures the existence of the limit on the right-hand side of (11).

For any natural number v let us denote by A(v) the set of positive integers m
for which we have d,(p) =1 for at most v primes p in number.

Writing for the sake of brevity

we have for every m e A(v)

o3

p<Q

Consequently, however large the bound v (<+o0) may be, we may choose Q so
large as to satisfy S(Q) > 2v, which is certainly possible, since S(Q) tends to
infinity with Q, as is seen from the well-known inequality

S(0) > loglog 0 3 (0>2),

and we find, by (11),
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2
1 1
1. 3 ‘m -

V(Q) > limsup H;X (I;g(c (p) p>)

me A(v)
1 z 1 1 -
> (35(0) timsup 3 1= 45050
me A(v)

We have V' (Q) < S(Q) in view of (12), so that

Sy < V@ _ 4
o(AW) < 1(s(0))? =500

and we may conclude that §(A4(v)) =0, on letting Q — +co0. We thus have
d(A(v)) =0 for all v < +o0 and so d(4g) =0, as was noticed above.
This completes our proof of the theorem.

Note that we have actually demonstrated that for almost all values of m > 1
there are indefinitely many primes p satisfying d,(p) = 1; here, that the qualifier
‘almost’ cannot be omitted is clear, as we recall the fact that for m =2 the
integers n for which holds d>(n) = 1 are exclusively the powers of 2 (cf. [1; §8]).

REMARK.  We note also that if the (upper or lower) asymptotic density were
a completely additive probability measure over the subsets of the set of positive
integers m, then, in our proof of the theorem, we could have directly appealed to
the Borel-Cantelli lemma in probability theory; the density is not a completely
additive measure, however.

References

[1] Uchiyama, S., On the generalized Josephus problem, Tsukuba J. Math. 27 (2003), 319-339.
[2] , A note on the generalized Josephus problem, Tsukuba J. Math. 29 (2005), 49-63.

Sabur6 Uchiyama

Prof. Emer.

University of Tsukuba
(Institute of Mathematics)
and

Okayama University



