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SEMISURFACES AND THE EQUATIONS

OF CODAZZI-MAINARDI

By

Naoya Ando

Abstract. In this paper, we shall describe the equations of

Codazzi-Mainardi for a surface without any umbilical point, using

the gradient vector fields of the mean curvature function and the

Gaussian curvature function. In addition, based on this description,

we shall obtain a homogeneous polynomial, which is an analogue of

a Codazzi-Mainardi polynomial obtained in [3], and we shall find a

relation between two polynomials.

1. Introduction

Let M be a smooth two-dimensional manifold and g a Riemannian metric

on M. Let D1, D2 be two smooth one-dimensional distributions on M. A

Riemannian manifold ðM; gÞ equipped with ðD1;D2Þ is called a semisurface if D1

and D2 are orthogonal to each other at any point of M with respect to g; if

ðM; g;D1;D2Þ is a semisurface, then a triplet ðg;D1;D2Þ is called a semisurface

structure of M. For example, a surface S in R3 without any umbilical point is

considered as a semisurface: the first fundamental form of S and two principal

distributions on S form a semisurface structure of S. Let ðM; g;D1;D2Þ be a

semisurface. For each point p A M, there exist local coordinates ðu; vÞ on a

neighborhood Up of p satisfying q=qu A D1 and q=qv A D2 on Up. Such coor-

dinates are said to be compatible with ðD1;D2Þ. The Riemannian metric g is

represented as g ¼ A2 du2 þ B2 dv2 on Up. In [3], we studied a surface S in R3

with nowhere zero Gaussian curvature K and without any umbilical point,
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noticing its semisurface structure. Let k1, k2 be distinct two principal curvature

functions on S and for each point q A S, let PCM;qðX1;X2Þ be a homogeneous

polynomial of degree two defined by

PCM;qðX1;X2Þ :¼ c20ðqÞX 2
1 þ c11ðqÞX1X2 þ c02ðqÞX 2

2 ;

where

c20 :¼ ðlogjK jA2Þvðlog BÞu � ðlog BÞuv;

c11 :¼ ðlogjK jABÞuv � 4ðlog AÞvðlog BÞu;

c02 :¼ ðlogjK jB2Þuðlog AÞv � ðlog AÞuv;

and ðu; vÞ are local coordinates compatible with principal distributions such that

k1 (respectively, k2) corresponds to q=qu (respectively, q=qv). We call PCM;q a

Codazzi-Mainardi polynomial of S at q. In [3], we proved PCM;qðk1ðqÞ; k2ðqÞÞ ¼ 0

for any point q of S. Noticing the equation of Gauss, we see that the coe‰cients

of PCM;q depend only on A, B and their partial derivatives. A Codazzi-Mainardi

polynomial at each point is determined by the semisurface structure of S up to a

nonzero constant, i.e., for other local coordinates ðu 0; v 0Þ compatible with principal

distributions such that k1 (respectively, k2) corresponds to q=qu 0 (respectively,

q=qv 0), the corresponding Codazzi-Mainardi polynomial P 0
CM;q is represented by

PCM;q up to a nonzero constant for each point q. Therefore we may define a

Codazzi-Mainardi polynomial of a semisurface ðM; g;D1;D2Þ at each point of M

up to a nonzero constant, if the curvature of ðM; gÞ is nowhere zero.

According to the fundamental theorem of the theory of surfaces, a surface

may be considered as a two-dimensional Riemannian manifold ðM; gÞ equipped

with a smooth tensor field W of type ð1; 1Þ which is connected with g by the

equations of Gauss and Codazzi-Mainardi (then g and W give the first fun-

damental form and the Weingarten map of the surface, respectively). The author

is interested in the semisurface structure of a surface without any umbilical point,

because he intends to consider a surface without any umbilical point as a two-

dimensional Riemannian manifold ðM; gÞ equipped with an orthogonal pair of

two smooth one-dimensional distributions ðD1;D2Þ which is connected with g by

some good relation (then g gives the first fundamental form and ðD1;D2Þ gives

a pair of principal distributions, which give the one-dimensional eigenspaces of

W at each point). The finding of Codazzi-Mainardi polynomials motivated him

to adopt this view. The two principal curvatures k1, k2 (the eigenvalues of the

Weingarten map W) satisfy k1k2 ¼ K (the equation of Gauss) and in addition, as
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was mentioned in the previous paragraph, if K is nowhere zero, then k1 and k2

satisfy PCMðk1; k2Þ ¼ 0. Since PCM;q is determined by the semisurface structure up

to a nonzero constant at each point q, we may represent each of k1 and k2 by

quantities determined by the semisurface structure, if PCM;q D 0 (for a concrete

representation, see [3]). For a semisurface ðM; g;D1;D2Þ with nowhere zero

curvature K and smooth functions k1, k2 satisfying k1k2 ¼ K and PCMðk1; k2Þ ¼ 0,

whether M may be locally and isometrically immersed in R3 so that ðD1;D2Þ
(respectively, ðk1; k2Þ) gives a pair of principal distributions (respectively, principal

curvature functions) depends on whether there exists a good relation between g

and ðD1;D2Þ. We may consider the equations of Codazzi-Mainardi

ðk1Þv ¼ �ðlog AÞvðk1 � k2Þ; ðk2Þu ¼ ðlog BÞuðk1 � k2Þ; ð1Þ

where ðu; vÞ are compatible with principal distributions such that k1 (respectively,

k2) corresponds to q=qu (respectively, q=qv), as a basic representation of the

good relation: whether (1) holds for a pair ðk1; k2Þ satisfying k1k2 ¼ K and

PCMðk1; k2Þ ¼ 0 determines whether there exists a good relation between g and

ðD1;D2Þ. In [3], we showed that if ðM; g;D1;D2Þ is a semisurface with nowhere

zero curvature and everywhere zero Codazzi-Mainardi polynomial, then there

exists a good relation between g and ðD1;D2Þ, that is, M may be locally and

isometrically immersed in R3 so that ðD1;D2Þ gives a pair of principal dis-

tributions. In addition, we may obtain a more concrete representation than (1) of

the good relation between g and ðD1;D2Þ of a parallel curved surface: for a

surface S with nowhere zero Gaussian curvature and without any umbilical point,

a neighborhood of each point of S is a canonical parallel curved surface if and

only if S satisfies PCM;q 1 0 for any q A S and the condition that the integral

curves of one principal distribution on S are geodesics; for a semisurface

ðM; g;D1;D2Þ with nowhere zero curvature and everywhere zero Codazzi-

Mainardi polynomial such that the integral curves of one of D1 and D2 are

geodesics, M may be locally and isometrically immersed in R3 as a canonical

parallel curved surface so that ðD1;D2Þ gives a pair of principal distributions

([3]). We may also obtain a more concrete representation than (1) of the good

relation between g and ðD1;D2Þ of a surface with constant mean curvature: if

S is with constant mean curvature H0, then on a neighborhood of each point

of S, there exist isothermal coordinates ðu; vÞ compatible with principal distribu-

tions and a smooth, positive-valued function A satisfying g ¼ A2ðdu2 þ dv2Þ and

D log AþH 2
0 � 1=A4 ¼ 0, where D is the Laplacian on S (if PCM D 0, then the

converse holds ([3])); for a semisurface ðM; g;D1;D2Þ satisfying g ¼ A2ðdu2 þ dv2Þ
and D log AþH 2

0 � 1=A4 ¼ 0, where ðu; vÞ are compatible with principal dis-

3Semisurfaces and the equations of Codazzi-Mainardi



tributions, M may be locally and isometrically immersed in R3 as a surface with

constant mean curvature H0 so that ðD1;D2Þ gives a pair of principal distribu-

tions, and such a surface is determined by the semisurface structure up to a

motion of R3 ([4, pp. 22], [6], [8]).

Remark. As was mentioned in the previous paragraph, a semisurface

ðM; g;D1;D2Þ with nowhere zero curvature and everywhere zero Codazzi-

Mainardi polynomial may be locally and isometrically immersed so that ðD1;D2Þ
gives a pair of principal distributions. Then we may obtain plural surfaces which

have the same semisurface structure ðg;D1;D2Þ such that arbitrarily distinct two

of the surfaces are not congruent with each other in R3: for each p A M and each

pair of numbers ðkð0Þ1 ; k
ð0Þ
2 Þ satisfying k

ð0Þ
1 k

ð0Þ
2 ¼ KðpÞ, there exist a neighborhood

Up of p and an isometric immersion Fp of Up into R3 satisfying (a) ðD1;D2Þ
gives a pair of principal distributions on FpðUpÞ, (b) k

ð0Þ
1 and k

ð0Þ
2 are the

principal curvatures of FpðUpÞ at FpðpÞ; such an immersion as Fp is determined

by a pair ðkð0Þ1 ; k
ð0Þ
2 Þ up to a motion of R3. In [5], Kishimura described relations

between two canonical parallel curved surfaces with nowhere zero Gaussian

curvature which have the same semisurface structure, in terms of generating pairs

(each canonical parallel curved surface is determined by a generating pair, which

is a pair of two simple curves Cb, Cg in R3 with a unique intersection pðCb;CgÞ and

contained in planes Pb, Pg, respectively such that we may choose as Pg the plane

normal to Cb at pðCb;CgÞ). In addition, he showed that for two generating pairs

with the relations, the corresponding canonical parallel curved surfaces have the

same semisurface structure.

In the present paper, we shall study a surface S in R3 without any umbilical

point, noticing another semisurface structure: the metric is given by the first

fundamental form; the two distributions are given by H-distributions, i.e., smooth

one-dimensional distributions on S which give directions such that the normal

curvatures are equal to the mean curvature of S. In Section 3, we shall study

smooth vector fields on a semisurface ðM; g;D1;D2Þ such that the divergences of

them with respect to the Levi-Civita connection are equal to the curvature of

ðM; gÞ, and in particular, we shall define the canonical pre-divergence VK of a

semisurface ðM; g;D1;D2Þ, which is one of such vector fields and determined by

the semisurface structure ðg;D1;D2Þ. In Section 4, we shall describe the equations

of Codazzi-Mainardi for a surface S in R3 without any umbilical point, using

the gradient vector fields of the mean curvature function H and the Gaussian

curvature function K , and the canonical pre-divergence of S: we shall prove
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Theorem 1.1. The equations of Codazzi-Mainardi are represented as

2K gradðHÞ ¼ WðgradðKÞ þ 4ðH 2 � KÞVKÞ; ð2Þ

where W and VK are the Weingarten map and the canonical pre-divergence of S,

respectively.

Suppose that S is oriented. In Section 5, computing the rotations of the both

hand sides of (2), we shall obtain an analogue of a Codazzi-Mainardi polynomial:

we shall prove

Theorem 1.2. If KðqÞ0 0 for q A S, then

PII;qðHðqÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðqÞ2 � KðqÞ

q
Þ ¼ 0 ð3Þ

holds, where

PII;qðY1;Y2Þ :¼ cII20ðqÞY 2
1 þ cII11ðqÞY1Y2 þ cII02ðqÞY 2

2 ;

cII20 :¼ � 1

2
fU1U1ðlogjK jÞ �U2U2ðlogjK jÞg

� 3

2
fU1ðlogjK jÞU1ðlog BÞ �U2ðlogjK jÞU2ðlog AÞg;

cII11 :¼ �2 rotðVKÞ � 2fU1ðlogjK jÞU2ðlog AÞ �U2ðlogjK jÞU1ðlog BÞg;

cII02 :¼ 1

2
fU1U1ðlogjK jB4Þ �U2U2ðlogjK jA4Þ

�U1ðlogjK jB4ÞU1ðlog BÞ þU2ðlogjK jA4ÞU2ðlog AÞg;

U1 :¼ 1

A

q

qu
; U2 :¼ 1

B

q

qv
;

and ðu; vÞ are local coordinates which are compatible with H-distributions and give

the orientation of S.

We call PII;q the second Codazzi-Mainardi polynomial of S at q. We see that

PII;q is determined by the semisurface structure and the orientation of S.

Therefore if M is oriented, then we may define the second Codazzi-Mainardi

polynomial of a semisurface ðM; g;D1;D2Þ with nowhere zero curvature. We set

PI;q :¼
1

AðqÞBðqÞPCM;q
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and we call PI;q the first Codazzi-Mainardi polynomial of ðM; g;D1;D2Þ at q.

We see that PI;q is determined by the semisurface structure ðg;D1;D2Þ and the

orientation of M. In Section 5, we shall prove

Theorem 1.3. Let ðg;Dþ
1 ;D

þ
2 Þ and ðg;D�

1 ;D
�
2 Þ be two semisurface structures

of M such that the angle between D�
i and Dþ

i is equal to p=4 at any point of M.

Suppose that the curvature of ðM; gÞ is nowhere zero. Let Pþ
I be the first Codazzi-

Mainardi polynomial of ðM; g;Dþ
1 ;D

þ
2 Þ and P�

II the second Codazzi-Mainardi

polynomial of ðM; g;D�
1 ;D

�
2 Þ. Then

Pþ
I;qðX1;X2Þ ¼ P�

II;qðY1;Y2Þ ð4Þ

holds for q A M and X1, X2, Y1, Y2 A R satisfying X1 ¼ Y1 þ Y2 and X2 ¼
Y1 � Y2.

The following is an analogue of Theorem 1.3 in [3].

Theorem 1.4. Let ðM; g;D1;D2Þ be a semisurface with nowhere zero cur-

vature satisfying PII 1 0 for any point of M. Then for each point p A M and each

number Hð0Þ satisfying ðHð0ÞÞ2 � KðpÞ > 0, there exists an isometric immersion of

a neighborhood Up of p into R3 satisfying the following:

(a) ðD1;D2Þ gives a pair of two H-distributions;

(b) the mean curvature at p is given by Hð0Þ.

Such an immersion of Up into R3 is uniquely determined by Hð0Þ up to a motion

of R3.

We may prove Theorem 1.4, using Theorem 1.3 or referring to the proof of

Theorem 1.3 in [3].

In Section 6, we shall study semisurface structures of surfaces with constant

mean curvature, surfaces with constant Gaussian curvature and surfaces of

revolution.

2. Preliminaries

2.1. The Divergence and the Rotation of a Smooth Vector Field

Let M be a smooth two-dimensional manifold. Let g be a Riemannian metric

on M and ‘ the covariant di¤erentiation with respect to the Levi-Civita con-
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nection of a Riemannian manifold ðM; gÞ. Let G l
ij ði; j; l A f1; 2gÞ be the

Christo¤el symbols of ‘ with respect to local coordinates ðu; vÞ, i.e., smooth

functions defined by

‘q=qu
q

qu
¼ G1

11

q

qu
þ G2

11

q

qv
; ‘q=qu

q

qv
¼ G1

12

q

qu
þ G2

12

q

qv
;

‘q=qv
q

qu
¼ G1

21

q

qu
þ G2

21

q

qv
; ‘q=qv

q

qv
¼ G1

22

q

qu
þ G2

22

q

qv
:

For local coordinates ðu; vÞ, suppose that the metric g is locally represented as

g ¼ A2 du2 þ B2 dv2, where A, B are smooth, positive-valued functions. Then the

following hold:

G1
11 ¼ ðlog AÞu; G2

11 ¼ �AAv

B2
; G1

12 ¼ G1
21 ¼ ðlog AÞv; ð5Þ

G2
22 ¼ ðlog BÞv; G1

22 ¼ �BBu

A2
; G2

12 ¼ G2
21 ¼ ðlog BÞu: ð6Þ

Let V be a smooth vector field on M and tV a smooth tensor field on M of

type ð1; 1Þ defined by tV ðwÞ :¼ ‘wV for each tangent vector w at each point of

M. Then the trace of tV is denoted by divðVÞ and called the divergence of V

with respect to the Levi-Civita connection. In the following, suppose that M is

oriented. Let ðu1; u2Þ be an ordered orthonormal basis of the tangent plane at a

fixed point of M such that ðu1; u2Þ gives the (positive) orientation of M. Then a

value

gðtV ðu1Þ; u2Þ � gðtV ðu2Þ; u1Þ

is independent of the choice of an ordered orthonormal basis ðu1; u2Þ and

uniquely determined by V and the metric g. This value is denoted by rotðVÞ and

called the rotation of V with respect to the metric g.

Remark. A value

gðtV ðu1Þ; u2Þ þ gðtV ðu2Þ; u1Þ

depends on the choice of ðu1; u2Þ.

Let ðu; vÞ be local coordinates on a neighborhood U of each point of M

which satisfy g ¼ A2 du2 þ B2 dv2 and give the orientation of M. A smooth

vector field V is locally represented as V ¼ aq=quþ bq=qv, where a, b are smooth

functions on U . Then by (5) together with (6), we obtain
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‘q=quV ¼ ‘q=qu a
q

qu
þ b

q

qv

� �

¼ qa

qu
þ Vðlog AÞ

� �
q

qu
þ qb

qu
� a

AAv

B2
þ bðlog BÞu

� �
q

qv
; ð7Þ

‘q=qvV ¼ ‘q=qv a
q

qu
þ b

q

qv

� �

¼ qa

qv
� b

BBu

A2
þ aðlog AÞv

� �
q

qu
þ qb

qv
þ Vðlog BÞ

� �
q

qv
: ð8Þ

We set

U1 :¼ 1

A

q

qu
; U2 :¼ 1

B

q

qv
: ð9Þ

Then we may rewrite (7) and (8) into

‘U1
V ¼ qa

qu
þ Vðlog AÞ

� �
U1 þ

B

A

qb

qu
� a

Av

B
þ b

Bu

A

� �
U2

¼ fU1ða0Þ þ b0U2ðlog AÞgU1 þ fU1ðb0Þ � a0U2ðlog AÞgU2;

‘U2
V ¼ A

B

qa

qv
þ a

Av

B
� b

Bu

A

� �
U1 þ

qb

qv
þ Vðlog BÞ

� �
U2

¼ fU2ða0Þ � b0U1ðlog BÞgU1 þ fU2ðb0Þ þ a0U1ðlog BÞgU2;

respectively, where a0 :¼ Aa, b0 :¼ Bb (notice V ¼ a0U1 þ b0U2). Therefore we

obtain

½tV ðU1Þ; tV ðU2Þ� ¼ ½U1;U2�ðXðVÞ þ YðVÞÞ; ð10Þ

where X ðVÞ :¼ ðxijðVÞÞ and YðVÞ :¼ ðyijðVÞÞ are symmetric and alternating

matrices, respectively, defined by

x11ðVÞ :¼ U1ða0Þ þ b0U2ðlog AÞ;

x12ðVÞ ¼ x21ðVÞ :¼ U1ðb0Þ þU2ða0Þ � b0U1ðlog BÞ � a0U2ðlog AÞ
2

;

x22ðVÞ :¼ U2ðb0Þ þ a0U1ðlog BÞ;

y11ðVÞ ¼ y22ðVÞ :¼ 0;

y21ðVÞ ¼ �y12ðVÞ :¼ U1ðb0Þ �U2ða0Þ þ b0U1ðlog BÞ � a0U2ðlog AÞ
2

:
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Therefore we obtain the following:

divðVÞ ¼ x11ðVÞ þ x22ðVÞ; rotðVÞ ¼ 2y21ðVÞ: ð11Þ

Remark. For a smooth function f on M, let gradð f Þ be the gradient vector

field of f with respect to the metric g. Then the following hold:

divðgradð f ÞÞ ¼ Df ; rotðgradð f ÞÞ ¼ 0; ð12Þ

where D is the Laplacian on M with respect to g.

Remark. For a smooth vector field V on M, let V? be a smooth vector

field on M such that for a point p of M where V is not zero, ðV=jV j;V?=jV jÞ
is an ordered orthonormal basis of the tangent plane at p which gives the

orientation of M, where jV j :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðV ;VÞ

p
. If V is locally represented as V ¼

a0U1 þ b0U2, then V? is locally represented as V? ¼ �b0U1 þ a0U2. The fol-

lowing hold:

divðV?Þ ¼ �rotðVÞ; rotðV?Þ ¼ divðVÞ: ð13Þ

Let ðM; gÞ be a two-dimensional Riemannian manifold and ðu; vÞ local

coordinates such that the metric g is locally represented as g ¼ A2 du2 þ B2 dv2.

Then the curvature K of ðM; gÞ is represented as follows:

K ¼ � 1

AB

Av

B

� �
v

þ Bu

A

� �
u

� �
: ð14Þ

A smooth vector field V on M is called a pre-divergence of a two-dimensional

Riemannian manifold ðM; gÞ if the divergence divðVÞ of V with respect to the

Levi-Civita connection is equal to the curvature K .

Remark. Let ðu; vÞ be local coordinates on an open set U of M. The metric

g is locally represented as

g ¼ E du2 þ 2F dudvþ G dv2;

where E, F , G are smooth functions on U satisfying E > 0, G > 0 and

EG � F 2 > 0. Liouville showed that the curvature K may be represented in the

divergence form: he proved

9Semisurfaces and the equations of Codazzi-Mainardi



K ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p q

qu
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p

E
G2

12

 !
þ q

qv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p

E
G2

11

 !( )

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p q

qu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p

G
G1

22

 !
þ q

qv
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p

G
G1

12

 !( )
;

where G l
ij ði; j; l A f1; 2gÞ are the Christo¤el symbols of ‘ with respect to local

coordinates ðu; vÞ ([7, pp. 114]).

2.2. Incompressibility and Irrotationality of a Smooth Vector Field

Let M be an oriented, smooth two-dimensional manifold and g a

Riemannian metric on M. A smooth vector field V on M is said to be in-

compressible if V satisfies divðVÞ ¼ 0 on M; V is said to be irrotational if V

satisfies rotðVÞ ¼ 0 on M. Suppose that V is irrotational. Then on a neigh-

borhood of each point of M, there exists a smooth function f satisfying

gradð f Þ ¼ V . In addition, suppose that V is incompressible. Then Df ¼ 0 holds,

i.e., f is harmonic. By (13), we obtain divðV?Þ ¼ 0 and rotðV?Þ ¼ 0, i.e., we see

that V? is incompressible and irrotational. Therefore we see that on a neigh-

borhood of each point of M, there exists a smooth function f ? satisfying

gradð f ?Þ ¼ V? and Df ? ¼ 0. Let F be a smooth, complex-valued function on a

neighborhood of each point of M defined by F :¼ f þ
ffiffiffiffiffiffiffi
�1

p
f ?. We call F a

(local ) complex potential of V . We see that F satisfies the equations of Cauchy-

Riemann:

1

A

qf

qu
¼ 1

B

qf ?

qv
;

1

B

qf

qv
¼ � 1

A

qf ?

qu
; ð15Þ

where ðu; vÞ are local coordinates which give the orientation of M and satisfy

g ¼ A2 du2 þ B2 dv2. In general, a complex potential F may not be necessarily

extended on M as a single-valued function.

Let F be a complex-valued function on M. Then there exist real-valued

functions f , f ? satisfying F ¼ f þ
ffiffiffiffiffiffiffi
�1

p
f ? on M. Suppose that F is smooth, i.e.,

f and f ? are smooth. Then F is said to be holomorphic if F satisfies (15). We see

that a complex potential of an incompressible and irrotational vector field is

holomorphic. Whether F is holomorphic or not depends only on the conformal

structure of ðM; gÞ: it depends on neither the choice of local coordinates satisfying

the above conditions nor the choice of a metric conformal to g. For a hol-

omorphic function F ¼ f þ
ffiffiffiffiffiffiffi
�1

p
f ? on M, vector fields V :¼ gradð f Þ and

V? :¼ gradð f ?Þ on M are incompressible and irrotational.
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2.3. The Exterior Derivative and the Co-Derivative of a 1-Form

Let M be an oriented, smooth two-dimensional manifold and CyðMÞ the set

of smooth functions on M. We know that CyðMÞ is considered as a ring. For

each k A f0; 1; 2g, let LkðMÞ be the set of k-forms on M. We know that L0ðMÞ
is just CyðMÞ and that for k A f1; 2g, LkðMÞ is a CyðMÞ-module. Let g be a

Riemannian metric on M. A 1-form y A L1ðMÞ is locally represented as y ¼
a0y1 þ b0y2, where y1 :¼ A du, y2 :¼ B dv, and ðu; vÞ are local coordinates which

satisfy g ¼ A2 du2 þ B2 dv2 and give the orientation of M. Then the exterior

derivative of y is locally represented as

dy ¼ fU1ðb0Þ �U2ða0Þ þ b0U1ðlog BÞ � a0U2ðlog AÞgW; ð16Þ

where W A L2ðMÞ is the area element of ðM; gÞ and locally represented as W ¼
y15y2. Let � denote Hodge’s �-operator on M with respect to g, i.e., a CyðMÞ-
homomorphism from LkðMÞ onto L2�kðMÞ for k A f0; 1; 2g defined as follows:

(i) for a 0-form 1 A L0ðMÞ, which is a function identically equal to one on

M, �ð1Þ corresponds with the area element W;

(ii) for a 1-form y A L1ðMÞ, �ðyÞ is locally represented as �ðyÞ ¼
�b0y1 þ a0y2;

(iii) for the area element W A L2ðMÞ, �ðWÞ corresponds with 1.

We set d :¼ �d� (notice the sign). Then for a 1-form y on M, dðyÞ is a smooth

function on M. This function is called the co-derivative of y. By (16), we see that

dð�ðyÞÞ is locally represented as

dð�ðyÞÞ ¼ dð�b0y1 þ a0y2Þ

¼ fU1ða0Þ þU2ðb0Þ þ a0U1ðlog BÞ þ b0U2ðlog AÞgW:

Therefore we see that the co-derivative dðyÞ of y is locally represented as follows:

dðyÞ ¼ U1ða0Þ þU2ðb0Þ þ a0U1ðlog BÞ þ b0U2ðlog AÞ: ð17Þ

For a 1-form y on M, let Vy be a smooth vector field on M satisfying

gðVy;wÞ ¼ yðwÞ for any tangent vector w at any point of M. We see that such

a vector field is uniquely determined by y and that Vy is locally represented

as Vy ¼ a0U1 þ b0U2. Therefore noticing (11), (16) and (17), we obtain the

following:

dðyÞ ¼ divðVyÞ; dy ¼ rotðVyÞW: ð18Þ
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For a smooth vector field V on M, let yV be a 1-form on M satisfying

gðV ;wÞ ¼ yV ðwÞ for any tangent vector w at any point of M. We see that such a

1-form is uniquely determined by V and we obtain

dðyV Þ ¼ divðVÞ; dyV ¼ rotðVÞW: ð19Þ

Remark. Let V be a smooth vector field on M. Then from (19), we see that

if V is incompressible (respectively, irrotational), then the corresponding 1-form

yV satisfies dðyV Þ ¼ 0 (respectively, dyV ¼ 0). In particular, we see that if V is

incompressible and irrotational, then yV satisfies dðyV Þ ¼ 0 and dyV ¼ 0, i.e., yV

is harmonic. Let y be a 1-form on M. Then we see from (18) that if y satisfies

dðyÞ ¼ 0 (respectively, dy ¼ 0), then the corresponding vector field Vy is in-

compressible (respectively, irrotational). In particular, we see that if y is har-

monic, then Vy is incompressible and irrotational.

Remark. Let f be a smooth function on M. Then by (18) or (19), we

obtain a rewrite of (12): dðdf Þ ¼ Df and dðdf Þ ¼ 0.

2.4. Conformal Semisurfaces

Let M be a smooth two-dimensional manifold and for a Riemannian metric

g on M, let Cg denote the conformal structure of ðM; gÞ, i.e., the set of metrics

on M conformal to g. Let D1, D2 be two smooth one-dimensional distributions

on M. Then ðM;Cg;D1;D2Þ is called a conformal semisurface if D1 and D2 are

perpendicular to each other at any point of M with respect to a metric in Cg.

Whether D1 and D2 are perpendicular to each other does not depend on the

choice of a metric in Cg. The triplet ðCg;D1;D2Þ is called a conformal semisurface

structure of M.

In the sequel, we call ðM; g;D1;D2Þ (respectively, ðg;D1;D2Þ) a Riemannian

semisurface (respectively, a Riemannian semisurface structure) if ðM; g;D1;D2Þ is

a semisurface in the sense of the beginning of Section 1.

Suppose that M is oriented. Let ðM;C;D1;D2Þ be a conformal semisurface

and ðu; vÞ local coordinates which are compatible with ðD1;D2Þ and give the

orientation of M. A Riemannian metric g on M in C is locally represented as

g ¼ A2 du2 þ B2 dv2. We set f :¼ logðB=AÞ. Then a 2-form Y :¼ fuv du5 dv does

not depend on the choice of local coordinates ðu; vÞ satisfying the above con-

ditions. In addition, Y does not depend on the choice of a metric g in C, either.

Thus Y is defined on M by a given conformal semisurface structure ðC;D1;D2Þ
of M. We call Y the distorsion 2-form of a conformal semisurface ðM;C;D1;D2Þ.
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The following holds:

Proposition 2.1. Let ðM;C;D1;D2Þ be a conformal semisurface. Then the

following are mutually equivalent:

(a) the distorsion 2-form of ðM;C;D1;D2Þ is identically zero;

(b) on a neighborhood of each point of M, there exists a nowhere zero,

incompressible and irrotational vector field Vi with respect to g A C sat-

isfying Vi A Di;

(c) on a neighborhood of each point of M, there exist isothermal coordinates

with respect to g A C compatible with ðD1;D2Þ.

3. Pre-Divergences of a Riemannian Semisurface

Let M be an oriented, smooth two-dimensional manifold and g a Rie-

mannian metric on M. It is said that a smooth one-dimensional distribution D on

M is parallel with respect to a vector field V on M if for a smooth unit vector

field U on a neighborhood of each point of M satisfying U A D, ‘VU is

identically zero. Let D1, D2 be two smooth one-dimensional distributions on

M such that g, D1 and D2 form a Riemannian semisurface structure of M.

A smooth vector field V on M is called a pre-divergence of a Riemannian

semisurface ðM; g;D1;D2Þ if V satisfies the following:

(i) V is a pre-divergence of a Riemannian manifold ðM; gÞ;

(ii) the rotation rotðVÞ of V with respect to g satisfies rotðVÞW ¼ Y, where

W is the area element of ðM; gÞ and Y is the distorsion 2-form of the

conformal semisurface ðM;Cg;D1;D2Þ;

(iii) D1 and D2 are parallel with respect to V .

We shall prove

Proposition 3.1. There exists a pre-divergence of ðM; g;D1;D2Þ.

Proof. Let VK be a smooth vector field on M defined by

VK :¼ �U1ðlog BÞU1 �U2ðlog AÞU2; ð20Þ

where U1 and U2 are as in (9) and ðu; vÞ are local coordinates which are

compatible with ðD1;D2Þ and give the orientation of M. The definition of VK
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does not depend on the choice of local coordinates ðu; vÞ satisfying the above

conditions. We shall show that VK is a pre-divergence of ðM; g;D1;D2Þ. Noticing

(14), we obtain divðVKÞ ¼ K , i.e., we see that VK is a pre-divergence of a

Riemannian manifold ðM; gÞ. By direct computation, we obtain

rotðVKÞ ¼
1

AB
ðlogðB=AÞÞuv: ð21Þ

Therefore we obtain rotðVKÞW ¼ Y. By (5) together with (6), we obtain

‘VK
U1 ¼ �U1ðlog BÞ

A
‘q=qu

1

A

q

qu

� �
�U2ðlog AÞ

B
‘q=qv

1

A

q

qu

� �

¼ �U1ðlog BÞ
A

�ðlog AÞu
A

q

qu
þ 1

A
ðlog AÞu

q

qu
� AAv

B2

q

qv

� �� �

�U2ðlog AÞ
B

�ðlog AÞv
A

q

qu
þ 1

A
ðlog AÞv

q

qu
þ ðlog BÞu

q

qv

� �� �

¼ 0:

Therefore we see that ‘VK
U1 is identically zero. In the same way, we may show

that ‘VK
U2 is identically zero. Therefore D1 and D2 are parallel with respect to

VK . Hence we see that VK is a pre-divergence of ðM; g;D1;D2Þ. r

Noticing (11), (13) and (20), we obtain

Proposition 3.2. The following are mutually equivalent:

(a) VK is contained in D1 (respectively, D2);

(b) U1 (respectively, U2Þ is irrotational, i.e., rotðU1Þ1 0 (respectively,

rotðU2Þ1 0);

(c) U2 (respectively, U1Þ is incompressible, i.e., divðU2Þ1 0 (respectively,

divðU1Þ1 0);

(d) The integral curves of D1 (respectively, D2) are geodesics.

We shall prove

Proposition 3.3. For a vector field V on M, the following are mutually

equivalent:
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(a) one of D1 and D2 is parallel with respect to V ;

(b) both of D1 and D2 are parallel with respect to V ;

(c) V and VK are linearly dependent at any point of M.

Proof. Let ðu; vÞ be local coordinates on a neighborhood of each point of

M which are compatible with ðD1;D2Þ. A vector field V is locally represented as

V ¼ aq=quþ bq=qv. Then by (5) together with (6), we obtain

‘VU1 ¼ a‘q=qu
1

A

q

qu

� �
þ b‘q=qv

1

A

q

qu

� �
¼ �a

Av

B
þ b

Bu

A

� �
U2; ð22Þ

‘VU2 ¼ a‘q=qu
1

B

q

qv

� �
þ b‘q=qv

1

B

q

qv

� �
¼ � �a

Av

B
þ b

Bu

A

� �
U1: ð23Þ

If one of ‘VU1 and ‘VU2 is identically zero, then we obtain aAv=B1 bBu=A.

This implies that V and VK are linearly dependent at any point of M. If V and

VK are linearly dependent at any point of M, then from (22) and (23), we see that

both ‘VU1 and ‘VU2 are identically zero. Hence we obtain Proposition 3.3.

r

Corollary 3.4. Let ðM; g;D1;D2Þ be a Riemannian semisurface. Then the

following are mutually equivalent:

(a) Di is parallel with respect to any vector field on M;

(b) on a neighborhood of each point of M, a smooth unit vector field U i A Di is

incompressible and irrotational;

(c) VK is identically zero;

(d) the integral curves of D1 and D2 are geodesics.

In addition, if one of the above (a)@(d) holds, then the following hold:

(e) the curvature of ðM; gÞ is identically zero;

(f ) the distorsion 2-form of ðM;Cg;D1;D2Þ vanishes;

(g) any incompressible and irrotational vector field is a pre-divergence of

ðM; g;D1;D2Þ.

Let V1 and V2 be smooth vector fields on M satisfying the following:
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(i) divðV1Þ ¼ divðV2Þð¼: d0Þ;

(ii) rotðV1Þ ¼ rotðV2Þð¼: r0Þ;

(iii) V1 and V2 are linearly dependent at any point of M.

Suppose that for a point p A M, V1ðpÞ is not zero, and let Up be a neighborhood

of p such that V1 is nowhere zero on Up and l a smooth function satisfying

V2 ¼ lV1 on Up. Then by (i) together with (ii), we obtain

ðl� 1Þd0 ¼ �V1ðlÞ; ðl� 1Þr0 ¼ V?
1 ðlÞ: ð24Þ

We see that l1 1 is always a solution of this overdetermined system for a given

V1. Let ðu; vÞ be local coordinates on a neighborhood of p such that V1 and V?
1

are locally represented as

V1 ¼ f ðu; vÞ q

qu
; V?

1 ¼ gðu; vÞ q

qv
;

respectively, where f and g are smooth, positive-valued functions. Then we

see that there exists another solution of (24) than l1 1 if and only if

ðd0=f Þv þ ðr0=gÞu 1 0, i.e.,

V?
1 ðd0Þ þ V1ðr0Þ ¼ d0V

?
1 ðlog f Þ þ r0V1ðlog gÞ

holds and that if there exists another solution l, then lðpÞ0 1 holds and l is

uniquely determined by the initial value at p. Suppose V1 ¼ VK . Then it is

possible that there exists another solution of (24) than l1 1. Therefore noticing

Proposition 3.3, we see that it is possible that there exist plural pre-divergences

of ðM; g;D1;D2Þ, even if ðM; g;D1;D2Þ is not any Riemannian semisurface

satisfying one of (a)@(d) in Corollary 3.4. In Section 4, we shall prove (2).

Equation (2) implies that VK defined as in (20) should be considered as a special

pre-divergence. In the following, we call VK the canonical pre-divergence of

ðM; g;D1;D2Þ.
The following hold:

Proposition 3.5. Let ðM; g;D1;D2Þ be a Riemannian semisurface and VK

the canonical pre-divergence of this semisurface. Then VK is incompressible and

irrotational if and only if the curvature and the distorsion 2-form vanish. In

addition, if VK is incompressible and irrotational, then the metric g is locally

represented as g ¼ e2hðdu2 þ dv2Þ, where h is a harmonic function and ðu; vÞ are

local coordinates compatible with ðD1;D2Þ.
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Proposition 3.6. Let ðM; g;D1;D2Þ be a Riemannian semisurface and VK the

canonical pre-divergence of this semisurface. Then VK is represented by U1 þU2 up

to a constant at each point of M if and only if on a neighborhood of each point

of M, there exists a smooth function f satisfying g ¼ f 2
u du2 þ f 2

v dv2, where ðu; vÞ
are local coordinates which are compatible with ðD1;D2Þ and satisfy fu > 0 and

fv > 0. In addition, if ðM; g;D1;D2Þ satisfies one of these conditions, then the

curvature K is locally represented as follows:

K ¼ � 1

fu fv
ðlog fu fvÞuv: ð25Þ

Let ðM; g;D1;D2Þ be a Riemannian semisurface and yK a 1-form on M

defined by

yK :¼ �ðlog BÞu du� ðlog AÞv dv; ð26Þ

where ðu; vÞ are local coordinates which are compatible with ðD1;D2Þ and give

the orientation of M. The definition of yK in (26) does not depend on the choice

of local coordinates ðu; vÞ satisfying the above conditions. For any tangent vector

w at any point of M, the following holds:

yKðwÞ ¼ gðVK ;wÞ: ð27Þ

Therefore by (19), we obtain

Proposition 3.7. The following hold:

dðyKÞ ¼ K ; dyK ¼ Y:

Corollary 3.8. Let ðM; g;D1;D2Þ be a Riemannian semisurface. Then the

following are mutually equivalent:

(a) one of (a)@(c) in Proposition 2.1 holds, where C ¼ Cg;

(b) yK is closed;

(c) VK is locally represented as the gradient vector field of a smooth function.

Remark. Suppose that ðM; g;D1;D2Þ satisfies one of the conditions in

Proposition 3.6. Then the following holds:

yK ¼ � fuv

fu fv
df :
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Remark. For a 1-form y A L1ðMÞ, let y= be a 1-form defined by y= :¼
b0y1 þ a0y2. We see that y= is determined by the Riemannian semisurface

structure. For a smooth vector field V on M, the following holds:

2x12ðV?Þ ¼ �ðdy=V þ 2yV5y
=
KÞ; ð28Þ

where x12 is defined by ðU1;U2Þ such that local coordinates ðu; vÞ are compatible

with ðD1;D2Þ and give the orientation of M. We shall use (28) in Section 5.

4. The Equations of Codazzi-Mainardi

Let S be an oriented surface in R3 without any umbilical point. Then for

each point p of S, there exist just two one-dimensional subspaces L1, L2 of the

tangent plane to S at p such that the normal curvatures of S at p with respect to

L1 and L2 are equal to the mean curvature. Such a one-dimensional subspace as

Li is called an H-direction of S at p. There exist two smooth one-dimensional

distributions D1, D2 on S which give the two H-directions at each point of S.

Such a distribution as Di is called an H-distribution on S. We see that D1 and D2

are perpendicular to each other at any point with respect to the first fundamental

form I of S. This implies that I, D1 and D2 form a Riemannian semisurface

structure of S. Let ðu; vÞ be local coordinates compatible with ðD1;D2Þ. Such

coordinates are also said to be compatible with H-distributions. The first fun-

damental form I of S is locally represented as I ¼ A2 du2 þ B2 dv2, where A and

B are smooth, positive-valued functions. Then the second fundamental form II of

S is locally represented as

II ¼ HA2 du2 G 2eAB dudvþHB2 dv2; ð29Þ

where e :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K

p
, and K and H are the Gaussian and the mean curvatures of

S, respectively. In the following, we suppose that the sign of the second term of the

right hand side of (29) is positive. The equation of Gauss is given by (14). By (5)

together with (6), we see that the equations of Codazzi-Mainardi are represented

as follows:

ðHA2Þv � ðeABÞu ¼ ðlog AÞv �HA2 þ ðlog B=AÞu � eABþ AAv

B2
�HB2; ð30Þ

ðeABÞv � ðHB2Þu ¼ �BBu

A2
�HA2 þ ðlog B=AÞv � eAB� ðlog BÞu �HB2: ð31Þ

We see that (30) and (31) are equivalent to
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ðeB2Þu ¼ ABHv; ð32Þ

ðeA2Þv ¼ ABHu; ð33Þ

respectively. In addition, by e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K

p
, we see that (32) and (33) are

equivalent to

Hv ¼
BH

Ae
Hu þ

B

Ae
ðlog B2Þue2 � Ku

2

� �
; ð34Þ

Hu ¼
AH

Be
Hv þ

A

Be
ðlog A2Þve2 � Kv

2

� �
; ð35Þ

respectively. We see that (34) and (35) hold if and only if the following hold:

2K
U1ðHÞ
U2ðHÞ

 !
¼ Hc1ðeÞ þ ec2ðeÞ

Hc2ðeÞ þ ec1ðeÞ

 !
¼ H e

e H

� �
c1ðeÞ
c2ðeÞ

 !
; ð36Þ

where

c1ðeÞ :¼ U1ðKÞ � 4e2U1ðlog BÞ; c2ðeÞ :¼ U2ðKÞ � 4e2U2ðlog AÞ: ð37Þ

Let W be the Weingarten map of S. Then the following holds:

½WðU1Þ;WðU2Þ� ¼ ½U1;U2�
H e

e H

� �
:

We set V0 :¼ c1ðeÞU1 þ c2ðeÞU2. Then (36) is represented as 2K gradðHÞ ¼
WðV0Þ. The following holds:

V0 ¼ gradðKÞ þ 4e2VK ;

where VK denotes the canonical pre-divergence of a Riemannian semisurface

ðS; I;D1;D2Þ. Therefore we obtain Theorem 1.1.

The following holds:

II ¼ H I þ eABðdun dvþ dvn duÞ; ð38Þ

where ðu; vÞ are local coordinates compatible with H-distributions. Therefore by

(2), (27) and (38), we see that for any tangent vector w at any point of S, the

following hold:
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2K dHðwÞ ¼ 2KIðgradðHÞ;wÞ

¼ IðWðgradðKÞ þ 4e2VKÞ;wÞ

¼ IIðgradðKÞ þ 4e2VK ;wÞ

¼ H IðgradðKÞ þ 4e2VK ;wÞ

þ eABðdun dvþ dvn duÞðgradðKÞ þ 4e2VK ;wÞ

¼ H dKðwÞ þ 4He2yKðwÞ

þ e
B

A
Ku dvþ

A

B
Kv du

� �
ðwÞ � 4e3 Bu

A
dvþ Av

B
du

� �
ðwÞ:

Therefore we obtain

Corollary 4.1. The equations of Codazzi-Mainardi are represented as

follows:

2K dH ¼ H dK þ 4He2yK

þ e
B

A
Ku dvþ

A

B
Kv du

� �
� 4e3 Bu

A
dvþ Av

B
du

� �
; ð39Þ

where ðu; vÞ are local coordinates compatible with H-distributions.

5. The Second Codazzi-Mainardi Polynomial

Let ðD1;D2Þ be a pair of H-distributions such that I, D1 and D2 form a

Riemannian semisurface structure of S. For a smooth vector field V on S, we set

V� :¼ a0U1 � b0U2, where ðu; vÞ are compatible with ðD1;D2Þ and give the

orientation of M. We see that V� is determined by the Riemannian semisurface

structure of M.

Proof of Theorem 1.2. The following holds:

WðgradðKÞ þ 4ðH 2 � KÞVKÞ

¼ H gradðKÞ þ 4He2VK þ eðU2ðKÞU1 þU1ðKÞU2Þ

� 4e3ðU2ðlog AÞU1 þU1ðlog BÞU2Þ: ð40Þ

By (2) together with (40), we obtain
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2 rotðK gradðHÞÞ

¼ �4He2gðV?
K ; gradðlogjK jÞÞ þ 4e3gðV�

K ; gradðlogjK jÞÞ

þ ðH 2 � e2ÞegðgradðlogjK jÞ�; gradðlogjK jÞÞ: ð41Þ

Noticing e2 ¼ H 2 � K , we obtain

4 rotðHe2VKÞ

¼ 4He2 rotðVKÞ � 6He2gðV?
K ; gradðlogjK jÞÞ

� 2ð2H 2 þ e2ÞegðV�
K ; gradðlogjK jÞÞ � 8ð2H 2 þ e2Þe3

K
gðV�

K ;VKÞ; ð42Þ

rotðeðU2ðKÞU1 þU1ðKÞU2ÞÞ

¼ e rotðU2ðKÞU1 þU1ðKÞU2Þ

þ ðH 2 � e2Þe
2

gðgradðlogjK jÞ�; gradðlogjK jÞÞ

� 2He2gðV?
K ; gradðlogjK jÞÞ þ 2H 2egðV�

K ; gradðlogjK jÞÞ; ð43Þ

�4 rotðe3ðU2ðlog AÞU1 þU1ðlog BÞU2ÞÞ

¼ �4e3 rotðU2ðlog AÞU1 þU1ðlog BÞU2Þ

þ 6He2gðV?
K ; gradðlogjK jÞÞ

þ 6e3gðV�
K ; gradðlogjK jÞÞ þ 24H 2e3

K
gðV�

K ;VKÞ: ð44Þ

Using (2), (40)@(44) and

rotðH gradðKÞÞ ¼ �rotðK gradðHÞÞ;

we obtain

�4He2gðV?
K ; gradðlogjK jÞÞ þ 2ðH 2 þ e2ÞegðV�

K ; gradðlogjK jÞÞ

þ ðH 2 � e2ÞegðgradðlogjK jÞ�; gradðlogjK jÞÞ � 4He2 rotðVKÞ

� e rotðU2ðKÞU1 þU1ðKÞU2Þ

� 4e3f2gðV�
K ;VKÞ � rotðU2ðlog AÞU1 þU1ðlog BÞU2Þg

¼ 0: ð45Þ
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The following hold:

rotðU2ðKÞU1 þU1ðKÞU2Þ

¼ ðH 2 � e2ÞfU1U1ðlogjK jÞ �U2U2ðlogjK jÞ

þ gðgradðlogjK jÞ�; gradðlogjK jÞÞg

� ðH 2 � e2ÞgðV�
K ; gradðlogjK jÞÞ; ð46Þ

2gðV�
K ;VKÞ � rotðU2ðlog AÞU1 þU1ðlog BÞU2Þ

¼ �U1U1ðlog BÞ þU1ðlog BÞ2 þU2U2ðlog AÞ �U2ðlog AÞ2

¼ 2x12ðV?
K Þ: ð47Þ

Applying (46) and (47) to (45), and noticing

2x12ðgradðlogjK jÞ?Þ

¼ U1U1ðlogjKjÞ �U2U2ðlogjK jÞ þ gðV�
K ; gradðlogjK jÞÞ;

we obtain

f�x12ðgradðlogjK jÞ?Þ þ 2gðV�
K ; gradðlogjKjÞÞgH 2e

� 2frotðVKÞ þ gðV?
K ; gradðlogjK jÞÞgHe2

þ fx12ðgradðlogjK jÞ?Þ � 4x12ðV?
K Þge3

¼ 0: ð48Þ

Noticing e0 0, we see that (48) is equivalent to PIIðH;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K

p
Þ ¼ 0. Hence we

obtain Theorem 1.2. r

Remark. We shall obtain another representation of (3): we shall prove

f�dðdðlogjK jÞÞ= þ 2dðlogjK jÞ5y
=
KgH 2

þ 4f�Yþ dðlogjK jÞ5yKgHe

þ fdðdðlogjK jÞÞ= þ 2dðlogjKjÞ5y
=
K � 4½dy=K þ 2yK5y

=
K �ge2

¼ 0 ð49Þ

(noticing (28), we see that (49) is equivalent to (48)). By (39), we obtain
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2dðK dHÞ ¼ 4He2dðlogjK jÞ5yK þ 4e3dðlogjK jÞ5y
=
K

þ ðH 2 � e2ÞedðlogjK jÞ5ðdðlogjK jÞÞ=; ð50Þ

4dðHe2yKÞ ¼ 4He2Y� 2ð2H 2 þ e2ÞedðlogjKjÞ5y
=
K

þ 6He2dðlogjK jÞ5yK � 8ð2H 2 þ e2Þe3

K
yK5y

=
K ; ð51Þ

d e
B

A
Ku dvþ

A

B
Kv du

� �� �

¼ ðH 2 � e2Þe
2

dðlogjK jÞ5ðdðlogjK jÞÞ= þ 2H 2edðlogjK jÞ5y
=
K

þ 2He2dðlogjK jÞ5yK þ edðdKÞ=; ð52Þ

�4d e3 Bu

A
dvþ Av

B
du

� �� �
¼ 6e3dðlogjK jÞ5y

=
K þ 24

H 2e3

K
yK5y

=
K

� 6He2dðlogjK jÞ5yK þ 4e3 dy
=
K : ð53Þ

Using (39), (50)@(53) and dðH dKÞ ¼ �dðK dHÞ, we obtain (49).

Proof of Theorem 1.3. Let ðuþ; vþÞ (respectively, ðu�; v�Þ) be local

coordinates on an open set U of M which are compatible with ðDþ
1 ;D

þ
2 Þ

(respectively, ðD�
1 ;D

�
2 Þ) and give the orientation of M. Then the metric g is

represented as

g ¼ ðAþÞ2ðduþÞ2 þ ðBþÞ2ðdvþÞ2 ¼ ðA�Þ2ðdu�Þ2 þ ðB�Þ2ðdv�Þ2:

The following holds:

Pþ
I ðY1 þ Y2;Y1 � Y2Þ

¼ ðcþI20 þ cþI11 þ cþI02ÞY 2
1 þ 2ðcþI20 � cþI02ÞY1Y2 þ ðcþI20 � cþI11 þ cþI02ÞY 2

2 ; ð54Þ

where cþIij :¼ cþij =A
þBþ. We set

Uþ
1 :¼ 1

Aþ
q

quþ
; Uþ

2 :¼ 1

Bþ
q

qvþ
; U�

1 :¼ 1

A�
q

qu�
; U�

2 :¼ 1

B�
q

qv�
:

We may suppose
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Uþ
1 ¼ 1ffiffiffi

2
p ðU�

1 þU�
2 Þ; Uþ

2 ¼ 1ffiffiffi
2

p ð�U�
1 þU�

2 Þ:

Then we obtain

cþI20 þ cþI11 þ cþI02

¼ 1

AþBþ fðlogjKjÞuþðlog AþÞvþ þ ðlogjK jÞvþðlog BþÞuþ þ ðlogjK jÞuþvþg

¼ 1

4
ðU�

1 þU�
2 Þð�U�

1 þU�
2 ÞðlogjK jÞ

þ 1

4
ð�U�

1 þU�
2 ÞðU�

1 þU�
2 ÞðlogjK jÞ

þ 3

4
f�U�

1 ðlogjK jÞ þU�
2 ðlogjK jÞgfU�

1 ðlog BþÞ þU�
2 ðlog BþÞg

þ 3

4
fU�

1 ðlogjK jÞ þU�
2 ðlogjKjÞgf�U�

1 ðlog AþÞ þU�
2 ðlog AþÞg

¼ 1

2
f�U�

1 U
�
1 ðlogjKjÞ þU�

2 U
�
2 ðlogjK jÞg

þ 3

4
f�U�

1 ðlogjK jÞ þU�
2 ðlogjK jÞgfU�

1 ðlog B�Þ þU�
2 ðlog A�Þg

þ 3

4
fU�

1 ðlogjK jÞ þU�
2 ðlogjKjÞgf�U�

1 ðlog B�Þ þU�
2 ðlog A�Þg

¼ 1

2
f�U�

1 U
�
1 ðlogjKjÞ þU�

2 U
�
2 ðlogjK jÞg

þ 3

2
f�U�

1 ðlogjK jÞU�
1 ðlog B�Þ þU�

2 ðlogjK jÞU�
2 ðlog A�Þg

¼ c�II20: ð55Þ

Similarly, we obtain

cþI20 � cþI02

¼ 1

AþBþ fðlogjK jÞvþðlog BþÞuþ � ðlogjKjÞuþðlog AþÞvþ � ðlog Bþ=AþÞuþvþg

¼ �rotðV�
K Þ � gððV�

K Þ
?; gradðlogjK jÞÞ

¼ c�II11=2;
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cþI20 � cþI11 þ cþI02

¼ 1

AþBþ fðlogjK jðAþÞ4Þvþðlog BþÞuþ þ ðlogjK jðBþÞ4Þuþðlog AþÞvþ

� ðlogjK jðAþÞ2ðBþÞ2Þuþvþg

¼ x�12ðgradðlogjK jÞ?Þ � 4x�12ððV�
K Þ

?Þ

¼ c�II02:

Hence we obtain Theorem 1.3. r

6. Riemannian Semisurface Structures of Some Surfaces

In this section, we suppose the following:

(i) any smooth two-dimensional manifold is connected and oriented;

(ii) there exists no umbilical point on any surface;

(iii) on any Riemannian semisurface ðM; g;D1;D2Þ, local coordinates are

always compatible with ðD1;D2Þ and give the orientation of M; on any

surface S, local coordinates are always compatible with H-distributions

and give the orientation of S.

6.1. Surfaces with Constant Mean Curvature

Let S be a surface with constant mean curvature H0 A R. Then the left hand

side of (2) is identically zero. If the Gaussian curvature function K is identically

zero, then S is part of a cylinder. In the following, suppose K0 0. Then we see

that V0 ¼ gradðKÞ þ 4e2VK is identically zero. This is equivalent to

4VK ¼ gradðlogðH 2
0 � KÞÞ: ð56Þ

From (56), we obtain

U1ðlogððH 2
0 � KÞB4ÞÞ ¼ 0; U2ðlogððH 2

0 � KÞA4ÞÞ ¼ 0: ð57Þ

From (57), we see that ðH 2
0 � KÞB4 (respectively, ðH 2

0 � KÞA4Þ is of one-variable

v (respectively, u). We set

e4f ðuÞ :¼ ðH 2
0 � K

�
A4; e4gðvÞ :¼ ðH 2

0 � KÞB4;

~AA :¼ e�f ðuÞA ¼ e�gðvÞB ¼ ðH 2
0 � KÞ�1=4:
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Let ~uu (respectively, ~vv) be a smooth function of u (respectively, v) satisfying

d~uu

du
¼ e f ðuÞ respectively;

d~vv

dv
¼ egðvÞ

� �
:

Then we see that ð~uu; ~vvÞ are isothermal coordinates: we may consider ~AA as a

function of ~uu and ~vv, and we obtain I ¼ ~AA2ðd~uu2 þ d~vv2Þ. We see that VK ¼
�gradðlog ~AAÞ and K ¼ H 2

0 � 1= ~AA4 hold.

Let ðM; g;D1;D2Þ be a Riemannian semisurface. Then (56) holds for a real

number H0 A R if and only if on a neighborhood of each point of M, there exist

isothermal coordinates ðu; vÞ and a smooth, positive-valued function ~AA satisfying

g ¼ ~AA2ðdu2 þ dv2Þ and K ¼ H 2
0 � 1= ~AA4 for some H0 A R. Suppose that one of

these conditions holds. Then by (2) together with the fundamental theorem of the

theory of surfaces, we see that M may be locally and isometrically immersed in

R3 as a surface with constant mean curvature H0 so that ðD1;D2Þ gives a pair of

H-distributions and that such a surface is determined by the Riemannian

semisurface structure up to a motion of R3.

Remark. Let S be a surface in R3 with nowhere zero Gaussian curvature

K . Suppose that on a neighborhood of each point of S, there exist isothermal

coordinates ðu; vÞ and a smooth, positive-valued function ~AA satisfying I ¼
~AA2ðdu2 þ dv2Þ and K ¼ H 2

0 � 1= ~AA4 for some H0 A R. In addition, suppose that

for the function ~AA, there exists a nonconstant smooth function ~aa of one variable

satisfying ~AAðu; vÞ ¼ ~aaðuþ vÞ. Then there exists a nonconstant smooth function ~hh

of one variable satisfying

K~hh 0 ¼ �2ð~hh2 �H 2
0 Þð~hhþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~hh2 � K

p
Þðlog ~aaÞ0:

Therefore from (2) and the fundamental theorem of the theory of surfaces, we see

that it is possible that the mean curvature function on S is not constant.

6.2. Flat Surfaces

Let S be a surface with identically zero Gaussian curvature. Then from (2),

we see that WðVKÞ is identically zero. This implies that at any point of S, VK is

in a principal direction such that the corresponding principal curvature is zero.

Then we may suppose that at each point of S, VK is represented by U1 þU2 up

to a constant. Therefore from Proposition 3.6, we see that on a neighborhood

of each point of S, there exists a smooth function f satisfying fu > 0, fv > 0,
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I ¼ f 2
u du2 þ f 2

v dv2 and ðlog fu fvÞuv ¼ 0. Then there exist local coordinates ð~uu; ~vvÞ
satisfying f~uu f~vv ¼ 1 and VK is represented as

VK ¼ �f~uu~vvðU1 þU2Þ: ð58Þ

Let ðM; g;D1;D2Þ be a Riemannian semisurface with identically zero cur-

vature such that VK is represented by U1 þU2 up to a constant at each point of

M. Then by (2), we see that ðM; g;D1;D2Þ may be locally and isometrically

immersed in R3 so that ðD1;D2Þ gives a pair of H-distributions.

6.3. Surfaces with Nonzero Constant Gaussian Curvature

Let S be a surface with nonzero constant Gaussian curvature K0. Then from

(2), we obtain

2K0 gradðHÞ ¼ 4ðH 2 � K0ÞWðVKÞ; ð59Þ

from PIIðH;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K0

p
Þ ¼ 0, we obtain

H rotðVKÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � K0

p
x12ðV?

K Þ ¼ 0: ð60Þ

Let ðM; g;D1;D2Þ be a Riemannian semisurface with nonzero constant

curvature K0. Then M may be locally and isometrically immersed in R3 so that

ðD1;D2Þ gives a pair of H-distributions if and only if for a smooth function H

satisfying (60), (59) holds. If rotðVKÞ0 0, then there exists at most one function

H satisfying (60). Suppose PII;q 1 0 for any q A M. This condition is equivalent

to the condition that on a neighborhood of each point of M, there exists a

smooth, positive-valued function A satisfying g ¼ A2ðdu2 þ dv2Þ and

D log Aþ K0 ¼ 0; ð61Þ

U1U1ðlog AÞ �U2U2ðlog AÞ �U1ðlog AÞ2 þU2ðlog AÞ2 ¼ 0: ð62Þ

We see that A satisfies (61) and (62) if and only if A satisfies

U1U1ðlog AÞ þU2ðlog AÞ2 þ K0=2 ¼ 0; ð63Þ

U2U2ðlog AÞ þU1ðlog AÞ2 þ K0=2 ¼ 0: ð64Þ

There exists a smooth function A satisfying (63) and (64). Therefore noticing

Theorem 1.4, we see that for each point p of M, there exist plural isometric

immersions of a neighborhood of p into R3 such that arbitrarily distinct two of

the images by them are not congruent with each other in R3 and have the same

Riemannian semisurface structure.
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6.4. Surfaces of Revolution

Let S be a surface of revolution. Then at each point of S, gradðHÞ is in a

principal direction. Therefore from (2), we see that V0 is in the same principal

direction at each point. Since at each point of S, gradðKÞ is in the same principal

direction, we see that at each point of S, VK is in the same principal direction.

Then we may suppose that at each point of S, VK is represented by U1 þU2 up

to a constant. From Proposition 3.6, we see that on a neighborhood of each point

of M, there exists a smooth function f satisfying I ¼ f 2
u du2 þ f 2

v dv2. In ad-

dition, we see that there exist isothermal coordinates ð~uu; ~vvÞ and a smooth function
~ff of one variable satisfying f ð~uu; ~vvÞ ¼ ~ff ð~uuþ ~vvÞ and ~ff 0 > 0. Then VK is represented

as follows:

VK ¼ 1
~ff 0

� �0
ðU1 þU2Þ:

Let ðM; g;D1;D2Þ be a Riemannian semisurface with nowhere zero curvature

such that at any point of M, the direction determined by U1 þU2 contains both

VK and gradðKÞ. Then the following hold:

gðV?
K ; gradðlogjK jÞÞ ¼ 0; gðV�

K ; gradðlogjK jÞÞ ¼ 0:

In addition, the following hold:

2x12ðV?
K Þ ¼ 2x12ðU2ðlog AÞU1 �U1ðlog BÞU2Þ

¼ �2x12ðV�
K Þ

¼ 1

AB
ðlogðB=AÞÞuv

¼ rotðVKÞ;

2x12ðgradðlogjKjÞ?Þ ¼ 2x12ð�U2ðlogjK jÞU1 þU1ðlogjK jÞU2Þ

¼ �2x12ðgradðlogjK jÞ�Þ

¼ U1U2ðlogjKjÞ �U2U1ðlogjK jÞ

¼ 1

AB
ðlogjK jÞuv �U1ðlog BÞU2ðlogjK jÞ

� 1

AB
ðlogjK jÞuv þU1ðlogjK jÞU2ðlog AÞ

¼ 0:
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Therefore we obtain

PIIðY1;Y2Þ ¼ �2 rotðVKÞðY1 þ Y2ÞY2: ð65Þ

This implies that PII 1 0 is equivalent to rotðVKÞ ¼ 0. Therefore noticing

Theorem 1.4, we see that if the distorsion 2-form of ðM;Cg;D1;D2Þ vanishes,

then M may be locally and isometrically immersed in R3 so that ðD1;D2Þ gives a

pair of two H-distributions. Then at each point, a principal direction contains

both VK and gradðKÞ.

Remark. Suppose PII;q D 0 for q A M, i.e., rotðVKÞ0 0 at q. Then by

Theorem 1.2 together with (65), we see that there exists no neighborhood of q

which may be isometrically immersed in R3 so that ðD1;D2Þ gives a pair of two

H-distributions.

Let S be a surface with nowhere zero Gaussian curvature such that at each

point of S, there exists a principal direction which contains both VK and gradðKÞ.
Then there exists a smooth function f as in Proposition 3.6 on a neighborhood of

each point of S. In addition, noticing Proposition 2.1 and the above remark, we

see that there exist isothermal coordinates ð~uu; ~vvÞ and a smooth function ~ff of one-

variable satisfying f ð~uu; ~vvÞ ¼ ~ff ð~uuþ ~vvÞ. We may suppose ~ff 0 > 0. From (25), we see

that K is represented as

K ¼ � 2

~ff 0ð~uuþ ~vvÞ2
ðlog ~ff 0ð~uuþ ~vvÞÞ00:

Therefore from (2), we see that for the mean curvature function H, there exists

a smooth function ~hh of one variable satisfying Hð~uu; ~vvÞ ¼ ~hhð~uuþ ~vvÞ. Then by the

fundamental theorem of the theory of surfaces, we see that S is part of a surface

of revolution.
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