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ISOTROPIC IMMERSIONS AND PARALLEL
IMMERSIONS OF SPACE FORMS INTO SPACE FORMS

By

Nobutaka BouMuKkI

Abstract. It is well-known that every parallel isometric immersion
of space forms into space forms is isotropic in the sense of O’Neill.
We characterize this parallel immersion from this point of view.

1. Introduction

Let f:M" — M"™” be an isometric immersion of an n-dimensional
Riemannian manifold M" into an (n+ p)-dimensional Riemannian manifold
M"? with metric ¢, ). We recall the notion of isotropic immersions ([O]): Let ¢
be the second fundamental form of f is said to be isotropic at xe M" if
lla(X, X)||/[1X]||* is constant for all vectors X(#£0) on M" at x. If the immersion
1s isotropic at every point, then we find a function 4 on M" defined by
x(e M") — ||lo(X, X)||/|1X]|*> and the immersion f is said to be A-isotropic or
simply, isotropic.

On the other hand it is known that all parallel immersions of compact
symmetric spaces M of rank one into space forms are isotropic. In this paper we
pay attention to the case that the submanifold M is a space form.

Space forms M"(c) are Riemannian manifolds of constant curvature ¢ which
are locally isometric to either one of the standard spheres S”(c), Euclidean spaces
R" and hyperbolic spaces H"(c).

We characterize all parallel immersions of space forms M"(c¢) into space
forms M"™*P(¢) by using the notion of isotropic and two inequalities related to the
mean curvature H(:= ||b||) of M"(c) in M"?(&), where b := (1/n) trace o.

The purpose of this paper is to prove the following:

THEOREM. Let f be an isotropic immersion of an n-dimensional compact
oriented space form M"(c) of curvature c¢ into an (n+ p)-dimensional space form
M"*P(¢) of curvature ¢. Let A denote the Laplacian on M"(c). Suppose that

Received August 1, 2002.



118 Nobutaka Boumuki

() H < 3(”:—1)(:*5,

(ii) 0 < (1 — n)AH? + ndh, Ah).
Then M"(c) is a parallel submanifold of M"*?(¢). Moreover the immersion f is
locally equivalent to one of the following:

(1) f is a totally umbilic imbedding of M"(c) into M"*? (i), where ¢ > ¢. Here
H?=c¢-¢.

M) f = frofi: M(c) D smn02-1(2(n + 1) /n)c) B W77 (), where f;
is a minimal immersion, f, is a totally umbilic imbedding and (2(n+ 1)/n)c > é.
Here H> = (2(n+1)/n)c — ¢.

Note that our theorem is no longer true if we omit the condition (ii) in the
hypothesis (for details, see section 4).

The author is grateful to Professor Sadahiro Maeda for his valuable sug-
gestions.

2. Basic Terminology

Here we recall terminology in this paper. Let M” be an n-dimensional
Riemannian submanifold of an (n + p)-dimensional Riemannian manifold M"*”
with metric {,) via f. We denote by V (resp. Y~7) the covariant differentiation
of M" (resp. M™P). Then the second fundamental form ¢ of f is defined by
o(X,Y)=VxY —VyY, where X and Y are vector fields tangent to M?".
The curvature tensor R of M" is defined by R(X,Y)Z =VxVyZ - VyVxZ —
Vix,v1Z, where X, Y and Z are vector fields tangent to M". For a vector field ¢
normal to M", we write Vy& = —AeX + Dy&, where X is a vector field tangent
to M" and —A:X (resp. Dx&) denotes the tangential (resp. the normal) com-
ponent of Vy&. The curvature tensor R+ of the normal connection D on the
normal bundle is defined by R+ (X, Y)¢ = DyDy¢ — DyDyx& — Dix y)&, where X
and Y are vector fields tangent to M" and £ is a vector field normal to M". We
define the covariant differentiation V' of the second fundamental form o with
respect to the connection in (tangent bundle) + (normal bundle) as follows:

(Vyo)(Y,Z) = Dx(o(Y,Z)) —a(VxY,Z) — a(Y,VxZ),

where X, Y and Z are vector fields tangent to M".

The second fundamental form o is said to be parallel if V' =0, namely
(V40)(Y,Z) =0 for all tangent vector fields X, Y and Z on M". We define the
second covariant differentiation of the second fundamental form o with respect to
the connection in (tangent bundle) + (normal bundle) as follows:
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(ViyVxo)(Y,Z) = Dw((Vyo)(Y,Z)) - (Vyo)(Vw Y, Z)
— (Vyo)(Y,VwZ) — (Vg xo)(Y, 2),

where X,Y,Z and W are vector fields tangent to M™".

We choose local orthonormal frames {ej,...,e,} on M" and define the mean
curvature vector field b as b= 3" (1/n)a(e;, e;). The mean curvature H of M™
is defined by H = ||b||. The mean curvature vector field § is said to be parallel
if Db =0, namely Dyh =0 for all tangent vector fields X on M". We denote
by |lo|| the length of the second fundamental form o, namely |o*=
>i =1€0(ei,¢;),a(ei,€)>. ||V'a| is the length of the derivative of the second
fundamental form o, namely

n

IV'all> = D" <(V.0)(eie), (Vi,0)(eire)>.

iijkzl

|Db|| denotes the length of the derivative of the mean curvature vector field b,
namely

IDh|I> = " <(Deb, Do b>.
i=1

3. Proof of Theorem|

First of all we review the following lemma due to J. Simons [Si]. We here
write the proof of the lemma in detail for readers.

LEMMA. If M" be an n-dimensional Riemannian submanifold of an (n+ p)-
dimensional space form M"*?(¢), then we can get the Jfollowing equation:

(3.1) —;—A||a||2 — [V'o|? = én?H2 + énllo]?
n

+ Y DDy olerser)))s olene)

ij k=1
+ Z [2<G'(€k,ej),O'(ei,e[)><0'(e[,ek),0'(ei,6j)>
ik =1
— 2{o(ex, &), a(ex, er) Y<ales, e;),a(ei, )
+ {a(ex, ex), o(ei, er) y<a(er, ¢),a(ei,e)>

- <G'(e,‘,ej), 0'(81, ek)><0'(e[, ek)? O'(ei, ej)>]7



120 Nobutaka Boumukl

where A denotes the Laplacian on M" and {ey,...,e,} are local orthonormal

frames on M".

Proor. We define local orthonormal frames {ey,...,e,} around a point x of
M?" by using parallel displacement for the vector e; (i =1,...,n) at x along each
geodesic with origin x. Then we easily find that (V.e;)(x) =0 (i,j=1,...,n). By
direct computation, using the notation in section 2, we have

1 1 &
§A||a||2 =5 E ex(ex(alei, ), a(ei €))))
i k=1

n

= Z ex({De, (a(ei, €))),a(ei, €))

ij,k=1

n

= [<Dek (0’(6,', ej))’ Dek (U(eiv ej))> + <D5’k (Dek (0’(6,‘, ej)))? 0’(6,', ej)>]
i jik=1

n

= [IV'oll* + > (De(De(ales ex))), aler e)>

i’j’ k:1

n

= IV'a|l* + Z [{D., (De,(a(e), ex))), a(eis )

i,j, k=1

— (D¢, (D, (a(ej, ex))), a(ei, €)> + {De,(De,(0(ej, k))), a(ei, )]

n

= [V'all* + D [Ko(R(ei,ex)es ex), alei, e)>
i,j, k=1

+ <o(e;, R(e;,ex)ex), a(ei, €)> — (R (e;, ex)(a(ej, ex)), o(ei €)>

+ (D¢, (D, (0(ex,ex))), a(ei, €)].

Here we compute each term in the right-hand side in the this equation. We first
get

n

Z Ca(R(ei, ex)ej, ex), o(ei, )y

i,j,k=1

n

= Z (o(E(drjei — dijex) + As(er,e)€i — Aater,e) k> k), O(€is€)) )
i jik=1
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n

= 5”0”2 - Ensz + Z [<0'(€k,€j), O-(eivel)><a(elaek)’a(ei>ej)>
i,j,k,I=1

— (a(ei, €;), aex, er) ){a(er, ex), (e, e))].

We compute similarly

Z <O‘(€j, R(ei’ ek)ek)’ a(ei’ ej)>
i k=1

n

=énllo|* —élloll*+ > [Kolex,ex),o(es, er)><aler, ¢;), o(ei, €))

ijk,I=1

— (o(ei, ex),a(ex, er) )<alel, ), (e, €)].
Next, we have

Z <R_L(ei’ ek)(a(ej’ ek))’ J(el" ej)>

i,j, k=1

n

= Z KDei(Dek(a(ej’ek)))va(ei’ej)> - <Dek(D€i(a(ej’ek)))’G(ei7ej)>]

i’j7k=1

n

= > KVe(De(o(ej;ex))), 0(eir )y — Ve, (De,(a(es, e0))), oer, )]

i,j, k=1

= [<v€i 6€k (G(ej’ ek))’ 0'(6,', ej)> + <6ei (Aa(ej,ek)ek)’ U(el'v ej)>
i,j, k=1

— Ve, Ve (a(e,ex)), 0(eir €)> = (Voo (Aoiey o)1), 0(eir €1)]

= Z [<R(eiaek)(a(ej’ek))’a(eiaej)> - <Ad(ej,ek)ek7vei(o-(ei7ej))>

ij k=1
+ <Aa(ej,ek)ei7 Vek (O-(ei, ej))>]
(where R is the curvature tensor of M"*? 3))

n
= Z [<Aa(ej,ek)ekaAa(e,—,ej)ei> - <Ao(ej,ek)ei>Ao(e,-,ej)ek>]
i j k=1
(because R(e,-, ex)(a(ej,ex)) = c({ex,a(ej, ex) yei — ei, o(ej, ex)dex) = 0)

n

= Z [<G(Aa(ej,ek)ek> ei), O.(eia ej)> - <J(Ao’(ej,ek)ei, ek)’ O-(ei’ e])>]
i k=1
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n

= [Ko(ej,ex), aler, ex))<aler, e:), a(ei €))
ik, d=1

— (a(ej,ex),o(er,e;))<a(er, ex),0(ei €))]-

Therefore by virtue of the above computation, we obtain equation (3.1).
QE.D.

In the following we study a A-isotropically isometric immersion f : M"(c) —
M"P(&). Tt is known that the following equation holds (for details, see page 46 in

5a):
(3.2) {(o(X,Y),0(Z,W))

c_
3

2
+%(< X, YYZ, W+ (X, ZXY, W)+ (X, WY, Z),

€U, YIZ, WS = (X, ZY, W — (X, WY, Z))

where X,Y,Z and W are vector fields tangent to M".
Equation (3.2) yields the following:

(3.3) 3||o(X, Y)||* +c—é= 12,
where X and Y are orthonormal vector fields tangent to M”.

_2n—1)(e=0)+ A(n+2)

2
(3.4) H -

(3.5) loll® = n*H? — n(n — 1)(c — &).

Here we compute the fourth term of the right-hand side in our lemma.
In order to compute this term easily we use again the condition that Ve; = 0 at
the point x, i e {1,...,n}. It follows from the Codazzi equation (Vyo)(Y,Z) =

(V,0)(X,Z), (3.2) and that

n

Z <Dei(Dej(O-(ek’ ek)))7 J(ei’ ej)>

i,j, k=1

n

= ) [ei(<De,(alex, ek)), aler,€)))) — {De,(0(ex, &), De,(0(eir €)) )]

i7j7k=1
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n

= Y le(ei(<olen, ex), o(ei, €)))) — ei(<alex, ex), Do (a(eir€7)))

i,j,k=1

— (D, (a(ex,ex)), D (0(ei, €:)))]

n

= Z ei(ej({alex,ex),a(ei, e;)>)) — {o(ek,ek), De,(D,(0(ej, €)))>

i,j,k=1
- 2<Dej(0-(eka ek))a Dej(a(eb el))>]

. Zl {ei (ej [c_;g (25, — 26000 + 3nH? —32(51n+—21))(c —9) 05 + zakiékj)])

i,j, k=
- <O'(ek, ek)’ ‘Dei (Dei(a(ej’ ej)))> - 2<De/.(a(ek, ek))7Dej(0-(ei’ el))>j|

= nAH? — n2(bh, Ah) — 2n%|| Db||?
= nAH? + n*(h, Ab> — n2(2||DY||* + 2<b, Ab)
= n(1 — n)AH? + n<{h, Ab.

Therefore we can get the following equation:

n

(3.6) > {De(De(oler, e))), o(er €)= n((1 — n)AH? + nh, Ab)).

i,j k=1
Using our lemma, (3.2), (3.4), and (3.6), we obtain the following
equation:

1 2 ;) 2 n3(n — 1) 2 - ) 2(n + l) ~
2A||G’|I —“VO’“ _T—+—_2_——(H —C+C) H- - " c+cC

+ n((1 — n)AH? + ndh, Ah).

Here it follows from {3.3) and {3.4) that

2
H2—c+5=n+

2
(4= c+8 =" jo(x, I 2 0,

for each orthonormal pair of vectors X and Y.

This, together with the inequalities (i), (ii) in the assumption of our theorem
and a well-known Hopf’s lemma, yields that V' =0. Moreover we have
H?=c¢~¢ or H> = (2(n+ 1)/n)c — ¢. Therefore we get the conclusion (F).
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4. Remarks

(1) We comment on the inequality 0 < (1 —n)AH? +n{h,Ah>. By easy
computation we know that this inequality means that the mean curvature vector
b is parallel when the mean curvature H is constant.

In fact, when H is constant, from the inequality 0 < (1 — n)AH2 + ndh, Ab>
we know that 0 < <, Ah)>. Again, by using the condition that H is constant, we
get ||D||> = —<h,Ap). It follows from these two inequalities that Db = 0.

(2) As an immediate consequence of our theorem we obtain the following:

COROLLARY. Let f be an isotropic immersion of an n-dimensional compact
oriented space form M"(c) of curvature c into an (n+ p)-dimensional space form
M"P(&) of curvature . Suppose that
2(n+1 .
2ntl) &

n

)

(i) H? <

(ii) the mean curvature vector Yy is parallel.
Then M"(c) is a parallel submanifold of M"?(Z). Moreover the immersion f is
locally equivalent to one of the following:

(I) f is a totally umbilic imbedding of M"(c) into M"™*P(E), where ¢ > ¢. Here
H?=c-¢

(D) f = frofi: M"(c) &b smneD2=1(2(n + 1) /n)e) B BI™P(G), where fi
is a minimal immersion, f, is a totally umbilic imbedding and (2(n+1)/n)c > ¢.
Here H?> = (2(n+ 1)/n)c — ¢.

(3) We show that our theorem is no longer true if we omit the condition (ii) in
the hypothesis. We recall the following example due to Maeda ((M)]).

EXaMPLE. Let y, :S8"(n/(2(n+1))) — S*+D/2-1(1) be the second
standard minimal immersion and y, : S"(n/(2(n+1))) — S"(n/(2(n+ 1))) be the
identity mapping. Using these minimal immersions, for ¢ € (0,7/2) we define the
following minimal immersion:

4.1) " 1
x:(= (1, 12)) (2(;1 + l)) cos? ¢t 2(n+ 1) sin® ¢

Here the differential map (y,), of x, is given by (y,),X = (cost- (x;).X,
sinz-(x,),X) for each X € TS"(n/(2(n+ 1))). The product space of spheres in
(4.1) can be imbedded into a sphere as a Clifford hypersurface:
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(4.2)

Sn+n(n+l)/2—1< 1 ) % §" n . _, gnrtn(n+3)/2 n — .
cos? ¢ 2(n+ 1) sin“ ¢ n+ (n+2)sin” ¢

Combining (4.1) with (4.2), we obtain the following isometric immersion f;:

n n
4.3 NG N Sn+n(n+3)/2 i
“3) S (2(n+ 1)) n+ (n+2)sin® ¢

By virtue of the result in [M], we obtain the following properties of f; for
each t e (0,n/2):
(a) the mean curvature H, of f; is given by

(n+2)sintcost
V2 + 1)(n+ (n+2) sin 1

(b) the mean curvature vector b, of f; is not parallel. The length of the
derivative of b, is given by:

H, = [b|| = #0,

2)%
1Db,|2 = 45”—+1;2 sin? 1 cos? £ 0.
n—+

(c) f; is constant A,-isotropic. A; is given by

n—1 G1 cos2 t — &y sin? 1)
At:\/cos“t placosti—& );éO,
n+1 CcL+ ¢

where ¢ = 1/cos? t and & = n/2(n+ 1) sin® 1.
Now, in particular we set cos = 1/v/n+ 1 and sin ¢t = y/n/(n + 1). Then we
have the following isometric immersion f

(4.4) 1 1
n n +
N n+n(n+1)/2-1 1 nf 2} _, n+n(n+3)/2 )
/ (2(n+1)>_>S (r+1)x8%3) =S 3

We shall show that this isometric immersion f given by (4.4) satisfies the
inequality (i) but not the equality (i) in the statement of our [Theoreml
In fact, we have

: 2 2(n+1) L (n+2)? B n+1
W " n T T e Bt 1) 2n+3
n(n+2)

b

2+ 1)?
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(i) (1 — n)AH? + ndb, A) = n<h, Ab)

n3(n+2)*

_ 2 _
= —n||\Dy|| 2t D)

This shows that our does not hold without the inequality (ii).
We finally note that the isometric immersion f given by (4.4) is a counter-

example to theorem 5.1 in [IO].
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