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A NOTE ON SPACES WITH A $\sigma$-COMPACT-FINITE
WEAK BASE*

By

Shou LIN, Li YAN

Abstract. In this paper spaces with a $\sigma- compact- finite$ weak base
are discussed, and some characterizations of g-metrizable spaces are
obtained by spaces with $\sigma- compact- finite$ weak base and spaces with
a $\sigma$-weakly hereditarily closure-preserved weak base.

In this paper all spaces are $T_{2}$ . Readers may refer to [2] and [6] for unstated
definitions.

Let $\mathscr{P}$ be a family of subsets of a space X. $\mathscr{P}$ is called compact-finite if any
compact subset of $X$ meets at most finitely many members of $\mathscr{P};\mathscr{P}$ is called
closure-preserved if $\overline{(\cup \mathscr{P}^{\prime})}=\cup\{\overline{P} : P\in \mathscr{P}^{\prime}\}$ for each $\mathscr{P}^{\prime}\subset \mathscr{P};\mathscr{P}$ is called heredi-
tarily closure-preserving if a family $\{H(P):P\in \mathscr{P}\}$ is closure-preserved for each
$H(P)\subset P\in \mathscr{P};\mathscr{P}$ is called weakly hereditarily closure-preserving if a family
$\{\{p(P)\}:P\in \mathscr{P}\}$ is closure-preserving for each $p(P)\in P\in \mathscr{P}$ .

Obviously, a locally finite family for a space is compact-finite and hereditarily
closure-preserving, a hereditarily closure-preserving family is closure-preserving
and weakly hereditarily closure-preserving. In a k-space, a compact-finite family
is a weakly hereditarily closure-preserving family. In certain conditions spaces
determined by hereditarily closure-preserving families have some similar prop-
erties with spaces determined by compact-finite families.

First, we discuss some properties of weakly hereditarily closure-preserving
families. Let $x\in P\subset X$ . $P$ is called a sequential neighborhood of $x$ in $X$ if
whenever $\{x_{n}\}$ is a sequence converging to the point $x$ , then $\{x_{n} : n\geq m\}\subset P$ for
some $m\in N$ .
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The following Lemmas can be checked directly.

LEMMA 1. Let $\mathscr{P}$ be a weakly hereditarily closure-preserving family of a space
X. If $\mathscr{P}$ is a family of sequential neighborhoods of a point $x$ and there is a non-
trivial sequence converging to $x$ in $X$ , then $\mathscr{P}$ is finite. $\square $

LEMMA 2. Every point-finite and weakly hereditarily closure-preserving family
is compact-finite. $\square $

LEMMA 3. Let $\mathscr{P}$ be a weakly hereditarily closure-preserving family of a
space X. Put $D=$ { $x\in X:\mathscr{P}$ is not point-finite at $x$}. Then $\{P\backslash D:P\in \mathscr{P}\}\cup$

$\{\{x\}:x\in D\}$ is compact-finite.

PROOF. Since $\{P\backslash D:P\in \mathscr{P}\}$ is a point-finite and weakly hereditarily closure-
preserving family of $X$ , it is compact-finite by Lemma 2. If $K\cap D$ is infinite
for some compact subset $K$ of $X$ , there are an infinite subset $\{x_{j} : i\in N\}$ of
$K$ and a subset $\{P_{j} : i\in N\}$ of $\mathscr{P}$ such that each $x_{l}\in P_{i}$ , thus $\{x_{j} : i\in N\}$ is
closed discrete in $K$ , a contradiction. Therefore, $\{P\backslash D:P\in \mathscr{P}\}\cup\{\{x\}:x\in D\}$ is
compact-finite. $\square $

If $X$ is a k-space, then $D$ in Lemma 3 is a closed discrete subset of $X$ .
Let $\mathscr{P}=\bigcup_{x\in X}\mathscr{P}_{X}$ be a cover of a space $X$ such that for each $x\in X$ ,

(1) $\mathscr{P}_{X}$ is a network of $x$ in $X$ , i.e., $x\in\cap \mathscr{P}_{X}$ and for $x\in U$ with $U$ open in $X$ ,
$P\subset U$ for some $P\in \mathscr{P}_{x}$ .

(2) If $U,$ $V\in \mathscr{P}_{X},$ $W\subset U\cap V$ for some $W\in \mathscr{P}_{x}$ .
$\mathscr{P}$ is a weak base for $X$ if whenever $G\subset X$ satisfying for each $x\in G$ there is a

$P\in \mathscr{P}_{X}$ with $P\subset G$ , then $G$ is open in X. $\mathscr{P}$ is an sn-network [7] for $X$ if each
member of $\mathscr{P}_{X}$ is a sequential neighborhood of $x$ in $X$ for each $x\in X$ .

$\mathscr{P}_{x}$ above is called a wn-network and an sn-network of $x$ , respectively. Every

wn-network at $x$ is an sn-network at $x$ [ $6$ , Corollary 1.6.18]. A space $X$ is called
a gf-countable space if each point of $X$ has a countable wn-network. A regular

space with a $\sigma$-locally finite weak base is called a g-metrizable space [10].

Every g-metrizable space is a $gf$-countable space, every $gf$-countable space is
a sequential space, and every sequential space is a k-space.

For a space $X$ , denote $I=$ {$x\in X:x$ is an isolated point of $X$ }.

THEOREM 1. The $fo$llowing are equivalent for a space $X$ :
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(1) $X$ has a $\sigma- compact- finite$ weak base.
(2) $X$ is a k-space with a $\sigma$-weakly hereditarily closure-preserving weak base.
(3) $X$ is a gf-countable space with a $\sigma$-weakly hereditarily closure-preserving

weak base.

PROOF. We shall show that (2) $\Rightarrow(3)\Rightarrow(1)$ . Let $X$ be a k-space with a
$\sigma$-weakly hereditarily closure-preserving weak base. $X$ has a $\sigma- compact- finite$

network by Lemma 3, thus any compact subset of $X$ has a countable network,
hence any compact subset of $X$ is metrizable [2, Theorem 3.1.19], and so $X$ is a
sequential space. $X$ is $gf$-countable space by Lemma 1.

Let $\mathscr{P}=\bigcup_{n\in N}\mathscr{P}_{n}$ be a $\sigma$-weakly hereditarily closure-preserving weak base for
a $gf$-countable space $X$ , here each $\mathscr{P}_{n}$ is a weakly hereditarily closure-preserving
family and $\mathscr{P}_{n}\subset \mathscr{P}_{n+1}$ . For each $x\in X$ put $\mathscr{H}_{X}=\{P\in \mathscr{P}$ : $P$ is a sequential neigh-
borhood of $x$ in $X$ }. If $x\in I$ , then $\{x\}$ is open in $X$ , thus $\{x\}\in \mathscr{P}$ , so I is a $\sigma-$

closed discrete subspace of $X$ . For each $n\in N$ , and $P\in \mathscr{P}_{n}$ , put

$D_{n}=$ { $x\in X:\mathscr{P}_{n}$ is not point-finite at $x$},

$W_{n}(P)=(P\backslash D_{n})\cup\{x\in X\backslash I : P\in \mathscr{H}_{X}\}$ .

Then $W_{n}(P)\subset P$ . And put $\mathscr{W}_{n}=\{W_{n}(P):P\in \mathscr{P}_{n}\}$ . Then $\mathscr{W}_{n}$ is point-finite.
In fact, for each $x\in X$ we can assume that $x\in X\backslash I$ by the point-finiteness of the
family $\{P\backslash D_{n} : P\in \mathscr{P}_{n}\},$ $\mathscr{H}_{\lambda}\cap \mathscr{P}_{n}$ is finite by Lemma 1, thus $\mathscr{W}_{n}$ is point-finite.
And $\mathscr{W}_{n}$ is compact-finite by Lemma 2.

For each $x\in X$ , take $\mathscr{B}_{x}=\{\{x\}\}$ if $x\in I$ , take $\mathscr{B}_{X}=\{W_{n}(P):n\in N,$ $ P\in$

$\mathscr{H}_{X}\cap \mathscr{P}_{n}\}$ if $x\in X\backslash I$ , we shall show that the subset $\bigcup_{x\in X}\mathscr{B}_{X}$ of $\bigcup_{n\in N}\mathscr{W}_{n}\cup\{\{x\}$ :
$x\in I\}$ is a weak base for $X$ . First, for each $x\in X$ and any open neighborhood
$G$ of $x$ in $X$ , suppose that $x\in X\backslash I$ , then there are an $n\in N$ and a $P\in \mathscr{H}_{X}\cap \mathscr{P}_{n}$

with $P\subset G$ , thus $x\in W_{n}(P)\subset P\subset G$ . Secondly, for each $x\in X\backslash I$ , and $U,$ $ V\in$

$va_{X}$ , there are $n,$ $m\in N$ and $P\in \mathscr{H}_{x}\cap \mathscr{P}_{n},$ $Q\in \mathscr{H}_{X}\cap \mathscr{P}_{m}$ such that $U=W_{n}(P)$ ,

$V=W_{m}(Q)$ , thus there are a $k\geq\max\{n, m\}$ and $R\in \mathscr{H}_{X}\cap \mathscr{P}_{k}$ with $R\subset P\cap Q$ ,

hence $W_{k}(R)\subset W_{n}(P)\cap W_{m}(Q)$ . Thirdly, $\mathscr{B}_{x}$ is an sn-network of $x$ in $X$ . In fact,
for each $x\in X\backslash I,$ $n\in N$ and $P\in \mathscr{H}_{x}\cap \mathscr{P}_{n}$ , let $\{x_{j}\}$ be a sequence converging to $x$

in $X$ , then $\{x_{j}\}$ is eventually in $P$ , so $(\{x_{l} : i\in N\}\cup\{x\})\cap D_{n}$ is finite by Lemma
3, hence $\{x_{j}\}$ is eventually in $(P\backslash D_{n})\cup\{x\}\subset W_{n}(P)$ , therefore $W_{n}(P)$ is a se-
quential neighborhood of $x$ in $X$ . Thus $\mathscr{B}_{x}$ is an sn-network of $x$ in $X$ . Suppose
that a subset $G$ of $X$ satisfies $B\subset G$ for some $B\in \mathscr{B}_{\chi}$ for each $x\in G$ , then $G$ is a
sequentially neighborhood of each point in $G$ , then $G$ is open in $X$ because $X$ is
a sequential space, so $\mathscr{B}_{X}$ is a wn-network of $x$ in $X$ .
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In a word, $\bigcup_{\mathfrak{r}\in X}\mathscr{B}_{X}$ is a \sigma -compact-finite weak base for X. $\square $

The main technique in the proof of Theorem 1 is the $W_{n}(P)$ constructed,
which generate directly a weak base for a space $X$ . The $\mathscr{H}_{\chi}$ in proof of Theorem
is exactly a wn-network $\mathscr{P}_{X}$ of $x$ in $X$ , it is convenient in proof by using the
sequential neighborhoods instead of the usual weak neighborhoods. Next, we give a
direct proof of some properties of g-metrizable spaces by the $W_{n}(P)$ .

COROLLARY 1 [3, 6, 11]. The following are equivalent for a regular space $X$ :
(1) $X$ is a g-metrizable space.
(2) $X$ is a k-space with a $\sigma$-hereditarily closure-preserving weak base.
(3) $X$ is a gf-countable space with a $\sigma$-hereditarily closure-preserving weak

base.

PROOF. It only needs to show that (3) $\Rightarrow(1)$ . Let $\mathscr{P}=\bigcup_{n\in N}\mathscr{P}_{n}$ be a $\sigma-$

hereditarily closure-preserving weak base for a $gf$-countable space $X$ , here each
$\mathscr{P}_{n}$ is a family of closed subsets of $X$ by the regularity of $X[6$ , Proposition
2.5.2]. For each $n\in N$ defined $D_{n},$ $W_{n}(P)$ and $\mathscr{W}_{n}$ as in proof of Theorem 1. To
complete the proof, it suffices to show that $\mathscr{W}_{n}$ is locally finite in $X$ for each
$n\in N$ by the proof of Theorem. For each $P\in \mathscr{P}_{n}$ there is a subset $D_{n}(P)$ of
$D_{n}$ such that $W_{n}(P)=(P\backslash D_{n})\cup D_{n}(P)$ because $W_{n}(P)\subset P\subset(P\backslash D_{n})\cup D_{n}$ . For
each $x\in X$ , if $x\not\in D_{n}$ , then $\mathscr{P}_{n}$ is locally finite at $x$ , thus $\mathscr{W}_{n}$ is locally finite at
$x$ . If $x\in D_{n}$ , there is at most finitely many sets $\{P_{i} : i\leq m_{1}\}$ of $\mathscr{P}_{n}$ such that
$x\in W_{n}(P_{i})$ for $\mathscr{W}_{n}$ is point-finite. Let $\{H_{k} : k\in N\}$ be a decreasing wn-network
of $x$ in $X$ , there is a $k\in N$ such that at most finitely many members $Q_{j}(j\leq m_{2})$

of $\mathscr{P}_{n}$ with $ H_{k}\cap(Q_{j}\backslash \{x\})\neq\emptyset$ as $\mathscr{P}_{n}$ is hereditarily closure-preserving. Let $U=$

$X\backslash (\cup\{P\backslash \{x\}:P\in \mathscr{P}_{n}\backslash \{Q_{j}:j\leq m_{2}\}\})\cup(D_{n}\backslash \{x\})$ . If $x\in P\in \mathscr{P}_{n}\backslash \{Q_{j}:j\leq m_{2}\}$ ,
then $H_{k}\cap P=\{x\}$ , thus $P\backslash \{x\}$ is closed in $X$ by the closeness of $P$ and the
definition of weak bases, and $D_{n}\backslash \{x\}$ is closed in $X$ by Lemma 3, so $U$ is an
open neighborhood of $x$ in $X$ . For each $P\in \mathscr{P}_{n}$ , if $ U\cap W_{n}(P)\neq\emptyset$ , then $ U\cap$

$(P\backslash D_{n})\neq\emptyset$ , so $ U\cap(P\backslash \{x\})\neq\emptyset$ or $x\in W_{n}(P)$ , therefore $P=Q_{j}$ for some
$j\leq m_{2}$ or $P=P_{j}$ for some $i\leq m_{1}$ , and $\mathscr{W}_{n}$ is locally finite in $X$ . Consequently, $X$

has a $\sigma$-locally finite weak base. $\square $

Y. Tanaka [11] proved that a Lindelof space with a $\sigma$-hereditarily closure-
preserving weak base has a countable weak base. The result is true for spaces
with a $\sigma$-weakly hereditarily closure-preserving weak base.
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COROLLARY 2. Every Lindelof space with a $\sigma$-weakly hereditarily closure-
preserving weak base has a countable weak base.

PROOF. Let $\mathscr{P}=\bigcup_{n\in N}\mathscr{P}_{n}$ be a $\sigma$-weakly hereditarily closure-preserving weak
base for a Lindelof space $X$ , here each $\mathscr{P}_{n}$ is a weakly hereditarily closure-
preserving family of $X$ . First, we shall show that $X$ is a $gf$-countable space. For
each $x\in X\backslash I$ , put $\mathscr{H}_{X}=$ { $P\in \mathscr{P}$ : $P$ is a sequential neighborhood of $x$ in $X$}. If
there are an $n\in N$ and an uncountable subset $\{B_{\alpha} : \alpha<\omega_{1}\}$ of $\mathscr{H}_{X}\cap \mathscr{P}_{n}$ , then for
each $\alpha<\omega_{1}$ and any open neighborhood $U$ of $x$ in $X,$ $ B_{\alpha}\cap U\cap(X\backslash \{x\})\neq\emptyset$

because $X\backslash \{x\}$ is not closed in $X$ . By the induction method, there is a subset
$\{x_{\alpha} : \alpha<\omega_{1}\}$ of $X$ such that each $ x_{\alpha}\in B_{\alpha}\cap$ $(X\backslash \{x_{\beta} : \beta<\alpha\})\cap(X\backslash \{x\})$ , then
$\{x_{\alpha} : \alpha<\omega_{1}\}$ is an uncountable and closed discrete subspace of $X$ , a contra-
diction with Lindel\"ofness of $X$ , thus $\mathscr{H}_{X}\cap \mathscr{P}_{n}$ is a countable family for each
$n\in N$ . Hence $X$ is $gf$-countable. By Theorem 1, $X$ has a $\sigma- compact- finite$ weak
base. To complete the proof, it is sufficient to show that every compact-finite
family is countable in $X$ . Let $\mathscr{Q}$ be any compact-finite family of $X$ , if $\mathscr{Q}$ is not
countable, then $\mathscr{Q}$ contains an uncountable subset $\{Q_{\alpha} : \alpha<\omega_{1}\}$ . For each $\alpha<\omega_{1}$

take a $q_{\alpha}\in Q_{\alpha}$ , thus $\{q_{\alpha} : \alpha<\omega_{1}\}$ is countable because $\mathscr{Q}$ is weakly hereditarily
closure-preserving, so $q$ is belong to uncountable many members of $\{Q_{\alpha} : \alpha<\omega_{1}\}$

for some $q\in X$ , hence $\mathscr{Q}$ is not point-finite, a contradiction. $\square $

Put $S_{1}=\{0\}\cup\{1/n:n\in N\}$ with the usual topology. Next, spaces with a
$\sigma- compact- finite$ weak base are characterized by products.

THEOREM 2. The $fo$llowing are equivalent for a space $X$:
(1) $X$ has a $\sigma- compact- finite$ base.
(2) $X\times S_{1}$ has a $\sigma- compact- finite$ weak base.
(3) $X\times S_{1}$ has a $\sigma$-weakly hereditarily closure-preserving weak base.

PROOF. Put $Z=X\times S_{1}$ .
(1) $\Rightarrow(2)$ . Suppose that $\mathscr{P}=\bigcup_{x\in X}\mathscr{P}_{X},$ $\mathscr{Q}=\bigcup_{s\in S_{1}}\mathscr{Q}_{s}$ is a $\sigma- compact- finite$

weak base of the space $X$ and $S_{1}$ , respectively. For each $z=(x, s)\in Z$ , put
$\mathscr{H}_{Z}=\{P\times Q:P\in \mathscr{P}_{X}, Q\in \mathscr{Q}_{s}\}$ , then $\mathscr{H}_{z}$ is an sn-network of $z$ in Z. Since $X$ is a
k-space and $S_{1}$ is a locally compact space, $Z$ is a k-space. And any compact
subset of $Z$ is metrizable, then $Z$ is a sequential space, thus $\mathscr{H}_{Z}$ is a wn-network
of $z$ in $Z$ . Hence $\bigcup_{z\in Z}\mathscr{H}_{Z}$ is a $\sigma- compact- finite$ weak base of Z.

(2) $\Rightarrow(3)$ is obvious. (3) $\Rightarrow(1)$ . Let $\mathscr{P}$ be a $\sigma$-weakly hereditarily closure-
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preserving weak base for a space Z. For each $x\in X,$ $n\in N$ , put $z_{n}=(x, 1/n)$ ,

then the sequence $\{z_{n}\}$ converges to $(x, 0)$ in $Z$ , thus the family { $P\in \mathscr{P}$ : $P$ is a
sequential neighborhood of $(x, 0)$ in $Z$ } is countable by Lemma 1, so the point
$(x, 0)$ is $gf$-countable in $Z$ . Since $X$ is homeomorphic to a closed subspaces
$X\times\{0\}$ of $Z,$ $X$ is a $gf$-countable space with a $\sigma$-weakly hereditarily closure-
preserving weak base, $X$ has a $\sigma- compact- finite$ weak base by Theorem 1. $\square $

COROLLARY 3. The following are equivalent for a regular space $X$ ;

(1) $X$ is a g-metrizable space.
(2) $X\times S_{1}$ has a $\sigma- locally- finite$ weak base.
(3) $X\times S_{1}$ has a $\sigma$-hereditarily closure-preserving weak base. $\square $

EXAMPLE. There is a space $X$ with a $\sigma$-weakly hereditarily closure-preserving
weak base such that $X$ does not any $\sigma- compact- finite$ weak base or any $\sigma-$

hereditarily closure-preserving weak base.
Let $X$ be the non-metrizable, paracompact spaoe with a $\sigma$-weakly hereditarily

closure-preserving base in Example 9 in [1]. Then $X$ has not any $\sigma$-hereditarily
closure-preserving base by Theorem 5 in [1]. It has been shown that $X$ is not a
k-space in [1], thus $X$ has not any $\sigma- compact- finite$ weak base. By the con-
struction of $X,$ $X$ has a unique non-isolated point $\overline{0}$ . If $X$ has a $\sigma$-hereditarily
closure-preserving weak base $\mathscr{P}$ , for each $\overline{0}\in P\in \mathscr{P},$ $P$ is open by the definition
of weak base, and for each $x\in X\backslash \{\overline{0}\},$ $\{x\}\in \mathscr{P}$ because $\{x\}$ is open in $X$ , thus
$X$ has a $\sigma$-hereditarily closure-preserving base, a contradiction. Hence $X$ has not
any $\sigma$-hereditarily closure-preserving weak base. $\square $
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