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THE INDEX AND CERTAIN STABILITY OF MINIMAL
ANTI INVARIANT SUBMANIFOLDS 1N SASAKIAN AND

K\"AHLER MANIFOLDS

By

Kazuyuki HASEGAWA

Abstract. The index forms of minimal anti invariant submanifolds
in Sasakian and K\"ahler manifolds are obtained. We give lower
bounds for the index of these submanifolds in terms of their intrinsic
quantities. Certain stability of the minimal submanifolds is also
considered, which is related to eigenspaces of the Laplacian.

0. Introduction

Recently, in [4], Itoh obtains several properties for minimal Legendrian
surfaces in five dimensional Sasakian manifolds. In his paper, the index form for
a minimal Legendrian surface is obtained, and a lower bound of the index in
terms of the genus of the surface is given. On the other hands, for a minimal
Lagrangian submanifold in a K\"ahler manifold, the index form are obtained in [3]

and [6]. A lower bound of the index in terms of the first Betti number is given in
[3], which is credited to Chen, Loung and Nagano, 1980. In [6], for a minimal
Lagrangian submanifold in a K\"ahler manifold, the notion of the hamiltonian
stability is defined and studied. From [5] and [6], the real projective space and the
Clifford torus in the complex projective space, which are minimal Lagrangian, are
unstable in the usual sense but hamiltonian stable. The main purpose of this
paper is to give lower bounds for the index of anti invariant (not necessarily
Legendrian or Lagrangian) minimal submanifolds in Sasakian and K\"ahler

manifolds in terms of intrinsic quantities of those submanifolds, and to study
certain stability of the minimal submanifolds, which is related to eigenspaces of
the Laplacian.
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We obtain the index forms of minimal anti invariant submanifolds in
Sasakian and K\"ahler manifolds. Using these, lower bounds of the index of these
submanifolds in terms of the first Betti number, the index and the nullity of the
identity map of the submanifold are given. We define and study i-partial stability
for an anti invariant submanifold, which is a generalization of the hamiltonian
stability in the case where the submanifold is Lagrangian. There are minimal
Legendrian submanifolds unstable in the usual sense but 1- or 2-partial stable.

In Section 1, we will prepare the preliminaries. The index form for a minimal
anti invariant submanifold in a Sasakian manifold will be obtained in Section 2.
Using this, lower bounds of the index are given and i-partial stability is studied in
Section 3. Finally, in the last section, similar theorems are obtained for minimal
anti invariant submanifolds in K\"ahler manifolds.

The author would like to express his sincere gratitude to Professor N. Abe
for his helpful advice and to Professor S. Yamaguchi for his constant encour-
agement.

1. Preliminaries

Let $P$ and $M$ be Riemannian manifolds of dimensions $m$ and $m+p$ , re-
spectively. The tangent bundles of $P$ and $M$ are denoted by $TP$ and $TM$, re-
spectively. Let $f:P\rightarrow M$ be an isometric immersion. Around each $x\in P$ , there
exist a neighborhood $U\subset P$ such that the restriction of $f$ to $U$ is an embedding
onto $f(U)$ . Therefore, we may identify $U$ with its image under $f$ . We denote the
metric on $M$ and the induced metric on $P$ by the same letter $g$ . Hence we may
consider the tangent space of $P$ at $x\in P$ as subspace of the tangent space of $M$

at $x$ , and write

$T_{X}M=T_{X}P\oplus T_{X}P^{\perp}$ ,

where $T_{X}P^{\perp}$ is the orthogonal complement of $T_{X}P$ in $T_{X}M$ . From this decom-
position, we obtain a vector bundle $TP^{\perp}=\bigcup_{x\in P}T_{X}P^{\perp}$ , called the normal bundle.
For a vector bundle $E,$ $\Gamma(E)$ denotes the set of smooth sections of $E$ . Let
V and $\nabla$ be the Levi-Civita connections of $M$ and $P$ , respectively. The Gauss-
Weingarten formulae are given by

$\overline{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ and $\overline{\nabla}_{X}v=-A_{v}X+\nabla_{X}^{\perp}v$

for $X,$ $Y\in\Gamma(TP)$ and $v\in\Gamma(TP^{\perp})$ , where $\nabla^{\perp}$ is the normal connection, $h$ is the
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second fundamental form and $A$ is the shape operator. Let $\overline{R}$ and $R$ be the
curvature tensor of V and $\nabla$ , respectively. The equation of Gauss is given by

$g(R(X, Y)Z,$ $W$ ) $=g(\overline{R}(X, Y)Z,$ $W$ ) $+g(h(X, W),$ $h(Y, Z))-g(h(X, Z),$ $h(Y, W))$

for $X,$ $Y,$ $Z,$ $W\in TP$ . The mean curvature vector $H$ is defined by $H=(1/m)$ Tr $h$ .
A submanifold $P$ is called minimal if $H=0$ on $P$ . For $v\in\Gamma(TP^{\perp})$ , set

$\Delta^{N}v=\sum_{i=1}^{m}(\nabla_{\nabla_{e_{j}}e_{j}}^{\perp}v-\nabla_{e}^{\perp_{i}}\nabla_{e}^{\perp_{i}}v)$ ,

$\tilde{R}(v)=\sum_{i=1}^{m}(\overline{R}(e_{j}, v)e_{i})^{\perp}$

and

$\tilde{A}(v)=\sum_{i=1}^{m}h(A_{v}e_{j}, e_{i})$ ,

where $e_{1},$
$\ldots,$

$e_{m}$ is an orthonormal frame field on $P$ and $(\cdot)^{\perp}$ denotes the normal
part of $($ . $)$ . The index form $I$ associated to the second variation formula for a
minimal submanifold $P$ given by

$I(v, v^{\prime})=\int_{P}\{g(\Delta^{N}v, v^{\prime})+g(\tilde{R}(v), v^{\prime})-g(\tilde{A}(v), v^{\prime})\}d\mu_{P}$ for $v,$
$v^{\prime}\in\Gamma(TP^{\perp})$ ,

where $d\mu_{P}$ is the volume element of $P$ . See [7], for example.
For a vector field $X$ (resp. l-form $\omega$ ) on a Riemannian manifold, its

metrically equivalent l-form (resp. vector field) is denoted by $X^{b}$ (resp. $\omega\#$ ). The
Laplacian operator acting on k-forms is denoted by $\Delta_{k}$ . For a symmetric $(0,2)-$

tensor $S$, we define a $(1, 1)$ -tensor $ s\#$ defined by $g(S\#(X), Y)=S(X, Y)$ for vector
fields $X,$ $Y$.

Let $M$ be a $2n+1$ dimensional manifold and $\varphi,$
$\xi,$

$\eta$ be a $(1, 1)$ -tensor field, a
vector field, l-form on $M$ respectively such that

$\varphi^{2}(X)=-X+\eta(X)\xi$ , $\varphi(\xi)=0$ , $\eta(\varphi(X))=0$ and $\eta(\xi)=1$

for any vector field $X$ on $M$. Then $M$ is said to have an almost contact structure
$(\varphi, \xi, \eta)$ and is called an almost contact manifold. If a Riemannian metric tensor
field $g$ is given on an almost contact manifold $M$ and satisfies

$g(\varphi(X), \varphi(Y))=g(X, Y)-\eta(X)\eta(Y)$ and $\eta(X)=g(\xi, X)$

for any vector fields $X$ and $Y$ on $M$, then $(\varphi, \xi, \eta, g)$ is called an almost contact
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metric structure and $M$ is called an almost contact metric manifold. If
$d\eta(X, Y)=g(X, \varphi(Y))$ for any vector fields $X$ and $Y$ on $M$, then an almost
contact metric structure is called a contact metric structure. If moreover the
stmcture is normal, that is, $N+d\eta\otimes\xi=0$ , then a contact metric stmcture is
called Sasakian structure and $M$ is called Sasakian manifold, where $N$ is the
Nijenhuis torsion for $\varphi$ . If $(M, \varphi, \xi, \eta, g)$ is a Sasakian manifold, then we have

$\overline{\nabla}_{X}\xi=-\varphi(X)$ and $(\overline{\nabla}_{X}\varphi)(Y)=g(X, Y)\xi-\eta(Y)X$ ,

where V is the Levi-Civita connection for $g$ . A Sasakian manifold of constant
$\varphi$-sectional curvature $c$ is called a Sasakian space form. The curvature tensor $\overline{R}$ of
a Sasakian space form of constant $\varphi$-sectional curvature $c$ is given by

$\overline{R}(X, Y)Z=\frac{c+3}{4}\{g(Y, Z)X-g(X, Z)Y\}$

$-\frac{c-1}{4}\{\eta(Y)\eta(Z)X-\eta(X)\eta(Z)Y+g(Y, Z)\eta(X)\xi-g(X, Z)\eta(Y)\xi$

$-g(\varphi(Y), Z)\varphi(X)+g(\varphi(X), Z)\varphi(Y)+2g(\varphi(X), Y)\varphi(Z)\}$ .

Let $L$ be an m-dimensional Riemannian submanifold orthogonal to $\xi$ in $M$. Then
we have

$TL\perp\varphi(TL)$

and

$TM|_{L}=TL\oplus\varphi(TL)\oplus E\oplus span\{\xi\}$ (orthogonal direct sum),

where $E$ is an invariant vector bundle over $L$ with rank $E=2(n-m)=:p$ . Let $\pi$

be the projection from $TM|_{L}$ to $E$. We define $\alpha\in\Gamma(Hom(TL\otimes TL, E))$ by

$\alpha(X, Y)=\pi(\nabla_{X}^{\perp}\varphi(Y))$ for $X,$ $Y\in\Gamma(TL)$ .

The following equations hold:

(1.1) $\nabla_{X}^{\perp}\varphi(Y)=\varphi(\nabla_{X}Y)+\alpha(X, Y)+g(X, Y)\xi$ ,

(1.2) $g(h(X, Y),$ $\xi$ ) $=g(A_{\xi}X, Y)=0$

and

(1.3) $g(h(X, Y),$ $\varphi(Z))=g(h(X, Z),$ $\varphi(Y))$

for $X,$ $Y,$ $Z\in\Gamma(TL)$ .
Note that if $m=n$ , the submanifold $L$ is called Legendrian. Clearly if $L$ is
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Legendrian, then we have $\alpha=0$ . Here we give typical examples of minimal
Legendrian submanifold. The unit $(2n+1)$ -sphere $S^{2n+1}$ with standard metric is a
Sasakian space form of constant $\varphi$-sectional curvature 1. The unit n-sphere $S^{n}$

can be embedded as a totally geodesic Legendrian submanifold in $S^{2n+1}$ . Also, an
n-dimensional flat torus $T^{n}$ can be also embedded as a minimal Legendrian
submanifold in $S^{2n+1}$ by the similar way to the case of $n=2$ given in [1] and [2].

2. Index Forms

Let $(M, \eta, \xi, \varphi, g)$ be a $(2n+1)$ -dimensional Sasakian manifold and $L$ an
m-dimensional compact orientable minimal submanifold orthogonal to $\xi$ in $M$. In
this section, we give the index form associated to the volume for the minimal
submanifold $L$ . Set

$\Delta^{T}=\sum_{i=1}^{m}(\nabla_{\nabla_{e_{i}}e_{l}}-\nabla_{e_{j}}\nabla_{e_{i}})$ , Tr $\alpha=\sum_{i=1}^{m}\alpha(e_{j}, e_{i})$ and $(\delta\alpha)(X)=\sum_{i=1}^{m}(V_{e_{i}}\alpha)(e_{i}, X)$ ,

where $e_{1},$
$\ldots,$

$e_{m}$ is an orthonormal frame field on $L$ . We define symmetric $(0,2)-$

tensors $\beta$ and $\overline{r}$ on $L$ by

$\beta(X, Y)=\sum_{i=1}^{m}g(\alpha(e_{j}, X),$ $\alpha(e_{i}, Y))$ and $\overline{r}(X, Y)=\sum_{i=1}^{p}g(\overline{R}(v_{i}, X)v_{i},$ $Y$),

where $v_{1},$
$\ldots,$ $v_{p}$ is an orthonormal frame of $E$ . In the case where $p=0$ , that is, $L$

is Legendrian, we set $\overline{r}=0$ .

LEMMA 2.1. The $fo$llowing equations hold:

(2.1) $\Delta^{N}(\rho\xi)=(\Delta p)\xi+2\varphi(grad\rho)+\rho m\xi+\rho$ Tr $\alpha$ ,

(2.2) $\Delta^{N}(\varphi(X))=\varphi(\Delta_{1}X^{b})^{\#}-\varphi((Ric_{L})^{\#}(X))-2div(X)\xi$

$+\varphi(X)+(\delta\alpha)(X)-2\sum_{i=1}^{m}\alpha(e_{i}, \nabla_{e_{j}}X)$ ,

(2.3) $g(\tilde{R}(\varphi(X)), \varphi(Y))=-Ric_{M}(X, Y)+Ric_{L}(X, Y)$

$+g(\overline{A}(\varphi(X)), \varphi(Y))+\beta(X, Y)+g(X, Y)-\overline{r}(X, Y)$ ,

(2.4) $g(\tilde{R}(\varphi(X)), \xi)=0$ ,

(2.5) $g(\tilde{R}(\xi), \xi)=-m$
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and

(2.6) $\tilde{A}(\xi)=0$ ,

where $p\in C^{\infty}(L)$ is a smooth function and $X,$ $Y\in\Gamma(TL)$ .

PROOF. Let $e_{1},$
$\ldots,$

$e_{m}$ be an orthonormal frame field on $L$ . Since $\Delta^{N}\xi=$

$ m\xi+Tr\alpha$ , we have

$\Delta^{N}(p\xi)=(\Delta\rho)\xi+2\varphi(gradp)+p\Delta^{N}\xi=(\Delta p)\xi+2\varphi(gradp)+\rho m\xi+p$ Tr $\alpha$ .

From (1.1) and $\overline{\nabla}_{X}\xi=-\varphi(X)$ , it follows that

$\Delta^{N}\varphi(X)=\sum_{i=1}^{m}(\nabla_{\nabla_{e_{i}}e_{j}}^{\perp}\varphi(X)-\nabla_{e}^{\perp_{i}}\nabla_{e}^{\perp_{i}}\varphi(X))$

$=\varphi(\Delta^{T}X)-2(divX)\xi+\varphi(X)+(\delta\alpha)(X)-2\sum_{i=1}^{m}\alpha(e_{i}, \nabla_{e_{j}}X)$

$=\varphi(\Delta_{1}X^{b})^{\#}-\varphi((Ric_{L})^{\#}(X)-2(divX)\xi$

$+\varphi(X)+(\delta\alpha)(X)-2\sum_{i=1}^{m}\alpha(e_{j}, \nabla_{e_{j}}X)$ ,

where we used the Weitzenbock formula to get the last equality.
Next we consider the curvature part. From the invariance of $\overline{R}$ , we have

$g(\tilde{R}(\varphi(X), \varphi(Y))=\sum_{i=1}^{m}g(\overline{R}(e_{i}, \varphi(X))e_{j},$ $\varphi(Y))=-\sum_{i=1}^{m}g(\overline{R}(\varphi(e_{j}), X)Y,$ $\varphi(e_{j}))$

$=-\sum_{i=1}^{m}g(\overline{R}(\varphi(e_{j}), X)Y,$ $\varphi(e_{j}))-\sum_{i=1}^{m}g(\overline{R}(e_{i}, X)Y,$ $e_{j}$ )

$-\sum_{k=1}^{p}g(\overline{R}(v_{i}, X)Y,$ $v_{j}$ ) $-g(\overline{R}(\xi, X)Y,$ $\xi$ )

$+\sum_{i=1}^{m}g(\overline{R}(e_{j}, X)Y,$ $e_{j}$ ) $+\sum_{k=1}^{p}g(\overline{R}(v_{i}, X)Y,$ $v_{i}$ ) $+g(\overline{R}(\xi, X)Y,$ $\xi$ )

$=-Ric_{M}(X, Y)+Ric_{L}(X, Y)+g(\overline{A}(\varphi(X)), \varphi(Y))$

$+\beta(X, Y)+g(X, Y)-\overline{r}(X, Y)$
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where $v_{1},$ $\ldots$ , $v_{p}$ is orthonormal frame section of $E$ . And the equations

$g(\tilde{R}(\varphi(X)), \xi)=\sum_{i=1}^{m}g(\overline{R}(e_{i}, \varphi(X))e_{j},$ $\xi$ ) $=\sum_{i=1}^{m}g(\overline{R}(e_{j}, \xi)e_{j},$ $\varphi(X))=0$

and

$g(\tilde{R}(\xi), \xi)=\sum_{i=1}^{m}g(\overline{R}(e_{i}, \xi)e_{i},$ $\xi$ ) $=-m$

hold. Finally, from (1.2), it follows that $\tilde{A}(\xi)=0$ . Q.E.D.

We define $\mathscr{F}$ : $\Gamma(TL)\rightarrow\Gamma(TL)$ by

$\mathscr{F}(X)$ $:=(\Delta_{1}X^{b})^{\#}+2X-(Ric_{M}|_{L})^{\#}(X)+\beta^{\#}(X)-\overline{r}^{\#}(X)$

for $X\in\Gamma(TL)$ .

THEOREM 2.2. Let $L$ be a compact orientable minimal submanifo $ld$

orthogonal to $\xi$ in a Sasakian manifold M. Then the index form I is given by

$I(p\xi,\rho^{\prime}\xi)=\int_{L}((\Delta\rho)p^{\prime})d\mu_{L}$ ,

$I(p\xi, \varphi(X))=\int_{L}2g(grad\rho, X)d\mu_{L}=-\int_{L}2p(divX)d\mu_{L}$

and

$I(\varphi(X), \varphi(Y))=\int_{L}g(\mathscr{F}(X), Y)d\mu_{L}$ ,

where $X,$ $Y\in\Gamma(TL)$ .

The index for a Legendrian minimal surface in a 5-dimensional Sasakian
manifold is obtained in [4].

3. The Index and Partial Stability

Let $(M, \eta, \xi, \varphi, g)$ be a $(2n+1)$ -dimensional Sasakian manifold and $L$ an
m-dimensional compact orientable minimal submanifold orthogonal to $\xi$ in $M$.
The first Betti number of $L$ is denoted by $b_{1}(L)$ . Set $F:=(Ric_{M})|_{L}-2g-\beta+\overline{r}$ .
The index of $I$ is denoted by Index $(L)$ .
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THEOREM 3.1. Let $M$ be a Sasakian mamfold and $L$ a compact orientable
minimal submanifold orthogonal to $\xi$ . If $F$ is positive definite, then

Index $(L)\geq b_{1}(L)$ .

PROOF. Take a nontrivial harmonic l-form $\alpha$ . From Theorem 2.2 and
positive definiteness of $F$, we have

$I(\varphi(\alpha^{\#}), \varphi(\alpha^{\#}))=\int_{L}\{-F(\alpha^{\#}, \alpha^{\#})\}d\mu_{L}<0$

which shows the required lower bound for the index of $L$ . Q.E.D.

If $L$ is a connected compact Riemann surface, then $b_{1}(L)=2g$ , where $g$ is the
genus of $L$ . Hence Theorem 4.1 is a generalization of Theorem 6.1 in [4].

Let $E_{j}$ be the eigenspace of the i-th eigenvalue $\lambda_{i}(L)$ of $\Delta_{0}$ . We say that $L$ is
i-partial stable if $i$ is the minimum natural number satisfying

$I(\varphi(gradf), \varphi(gradf))\geq 0$ for all
$f\in\bigoplus_{l\geq i}E_{l}$

.

One can define the stability of this kind for an anti invariant minimal
submanifold in a K\"ahler manifold. In the final section, we consider a general-
ization of the theorem on the hamiltonian stability for a Lagrangian submanifold
in an Einstein-K\"ahler manifold proved in [6]. The unit tangent sphere bundle of $L$

is denoted by $UL$ .

THEOREM 3.2. Let $M$ be a Sasakian mamfold and $L$ a compact orientable
minimal submanifold orthogonal to $\xi$ .

(i) If $\lambda_{j}(L)\geq\max_{v\in UL}F(v, v)$ , then $L$ is i-partial stable.
(ii) If $L$ is i-partial stable, then we have $\lambda_{j}(L)\geq\min_{v\in UL}F(v, v)$ .

PROOF. Let $f_{T}$ be an l-th eigen function of $\Delta_{0}$ , and set $F_{\max}$ $:=\max_{v\in UL}F(v, v)$

and $F_{\min}:=\min_{v\in UL}F(v, v)$ . First, assume that $l\geq i$ and $\lambda_{j}(L)\geq F_{\max}$ . For $f=$

$\sum_{l\geq i}f_{T}$ We have

$I(\varphi(gradf), \varphi(gradf))$

$=\int_{L}\{\sum_{l\geq i}\lambda_{l}(L)g(gradf_{l}, gradf_{l})-F(gradf, gradf)\}d\mu_{L}$

$\geq\int_{L}\{\sum_{l\geq i}\lambda_{l}(L)g(gradf_{l}, gradf_{l})-F_{\max}g(gradf, gradf)\}d\mu_{L}$

$\geq 0$ .
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Hence $L$ is i-partial stable. If $L$ is i-partial stable, then we obtain

$0\leq I(\varphi(gradf_{i}), \varphi(gradf_{i}))$

$\leq\int_{L}\{\lambda_{j}(L)g(gradf_{i}, gradf_{i})-F_{\min}g(gradf_{i}, gradf_{i})\}d\mu_{L}$

$\leq(\lambda_{l}(L)-F_{\min})\int_{L}g(gradf_{i}, gradf_{i})d\mu_{L}$ . Q.E.D.

The following corollary can be proved immediately from Theorem 3.2.

COROLLARY 3.3. Assume that $M$ is an $\eta$-Einstein mamfold with $Ric_{M}=$

$ag+b\eta\otimes\eta(a, b\in R)$ and $L$ is Legendrian. Then $L$ is i-partial stable if and only if
$\lambda_{i}(L)\geq a-2$ .

Minimal submanifolds in the unit sphere are unstable in the usual sense. But,
considering values of the first and second eigenvalues of $\Delta_{0}$ for $S^{n}$ , a totally
geodesic Legendrian submanifold $S^{n}$ in $S^{2n+1}$ is l-partial stable (resp. 2-partial
stable) if $n=1,2$ (resp. $n\geq 3$ ).

Let $X$ be a vector field on $L$ . Then the l-parameter group generated by $X$ is
a variation of the identity map. It is well-known that the identity map of a
Riemannian manifold $P$ is a harmonic map. We consider the relations between
the index for the minimal submanifold $L$ and that for the identity map of $L$ . The
Jacobi operator $\mathscr{J}_{id_{P}}$ associated to the identity map $id_{P}$ is given by

$\mathscr{J}_{id_{P}}(X)=(\Delta_{1}X^{b})^{\#}-2(Ric_{P})^{\#}(X)$

for $X\in\Gamma(P)$ ([8]). The index and nullity of $id_{P}$ are denoted by Index $(id_{P})$ and
$Nu11(id_{P})$ , respectively. We give lower bounds for Index $(L)$ in terms of index and
nullity of the identity map of $L$ .

LEMMA 3.4. Let $M$ be a Sasakian mamfold and $L$ a compact minimal
submanifo $ld$ orthogonal to $\xi$ . Then the equation

$\mathscr{F}(X)=\mathscr{J}_{id_{L}}(X)-F^{\#}(X)+2(Ric_{L})^{\#}(X)$

holds for $X\in\Gamma(L)$ .

From Theorem 2.2 and Lemma 3.4, we obtain

THEOREM 3.5. Let $M$ be a Sasakian manifold and $L$ a compact orientable
minimal submanifold orthogonal to $\xi$ .
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(i) If $F-2Ric_{L}$ is positive semi-definite, we have

Index $(L)\geq Index(id_{L})$ .

(ii) If $F-2Ric_{L}$ is positive definite, we have

Index $(L)\geq Index(id_{L})+Nu11(id_{L})$ .

From Theorem 3.5, if $F-2Ric_{L}$ is positive definite and $L$ is a compact,
orientable, stable (Index$(L)=0$ ), minimal submanifold orthogonal to $\xi$ , then the
identity map is a local minimum of the energy functional. The space of Killing
vector fields on $L$ , which is denoted by $i(L)$ , are contained in $Ker\mathscr{J}_{id_{L}}$ . Therefore
if $F-2Ric_{L}$ is positive definite, then Index $(L)\geq\dim i(L)$ .

Next we consider the case where $M$ is a Sasakian space form with constant $\varphi-$

sectional curvature $c$ . Then we have

$Ric_{M}(X, Y)=\frac{n(c+3)+c-1}{2}g(X, Y)$ ,

$Ric_{L}(X, Y)=\frac{(m-1)(c+3)}{4}g(X, Y)-\beta(X, Y)-g(A_{\varphi(X)}, A_{\varphi(Y)})$

and

$\overline{r}(X, Y)=-\frac{(c+3)p}{4}g(X, Y)$

for $X,$ $Y\in TL$ .
From these equations, we obtain the following lemma.

LEMMA 3.6. For $X,$ $Y\in TL$,

$F(X, Y)=\frac{(m+1)c+3m-5}{2}g(X, Y)-\beta(X, Y)$

and

$F(X, Y)-2Ric_{L}(X, Y)=(c-1)g(X, Y)+2g(A_{\varphi(X)}, A_{\varphi(Y)})+\beta(X, Y)$

holds.

PROOF. For $X,$ $Y\in TL$ , we have

$F(X, Y)=\frac{n(c+3)+c-1}{2}g(X, Y)-2g(X, Y)-\beta(X, Y)-\frac{(c+3)p}{4}g(X, Y)$

$=\frac{(m+1)c+3m-5}{2}g(X, Y)-\beta(X, Y)$
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and

$F(X, Y)-2Ric_{L}(X, Y)=\frac{n(c+3)+c-1}{2}g(X, Y)-2\cdot\frac{(m-1)(c+3)}{4}g(X, Y)$

$+2g(A_{\varphi(X)}, A_{\varphi(Y)})+2\beta(X, Y)$

$-2g(X, Y)-\beta(X, Y)-\frac{(c+3)p}{4}g(X, Y)$

$=(c-1)g(X, Y)+2g(A_{\varphi(X)}, A_{\varphi(Y)})+\beta(X, Y)$

By Theorems 3.1, 3.5 and Lemma 3.6, we obtain

COROLLARY 3.7. Let $M$ be a Sasakian space form of constant $\varphi$-sectional
curvature $c$ and $L$ a compact orientable minimal submanifold orthogonal to $\xi$ .

(i) If $(m+1)c+3m-5>0$ and $\beta=0$ , we have

Index $(L)\geq b_{1}(L)$

(ii) If $c\geq 1$ , we have

Index $(L)\geq Index(id_{L})$ .

(iii) If $c>1$ , we have

Index $(L)\geq Index(id_{L})+Nu11(id_{L})$ .

Thus we have obtained two lower bounds for Index $(L)$ , namely, $b_{1}(L)$ and
Index $(id_{L})$ . These estimates are independent of each other as the following table
shows.

4. Minimal Anti Invariant Submanifolds in K\"ahler Manifolds

In this section, for compact orientable minimal anti invariant submanifolds in
K\"ahler manifolds, we obtain similar results corresponding to Sasakian cases.
Since arguments for K\"ahlerian cases are similar to those for Sasakian cases, we
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omit proofs. Let $(M, g, J)$ be a $2n$-dimensional K\"ahler manifold with Hermitian
metric $g$ and complex structure $J$, and $L$ an m-dimensional compact orientable
minimal anti invariant submanifold. Then we have

$TM|_{L}=TL\oplus J(TL)\oplus E$ (orthogonal direct sum),

where $E$ is an invariant vector bundle over $L$ with rank $E=2(n-m)=:p$ . Let $\pi$

be the projection from $TM|_{L}$ to $E$ . For $X,$ $Y\in\Gamma(TL)$ , we define

$\alpha(X, Y)=\pi(\nabla_{X}^{\perp}J(Y))$ ,

$\beta(X, Y)=\sum_{i=1}^{m}g(\alpha(e_{j}, X),$ $\alpha(e_{j}, Y))$

and

$\overline{r}(X, Y)=\sum_{k=1}^{p}g(\overline{R}(v_{j}, X)v_{j},$ $Y$ ),

where $e_{1},$
$\ldots,$

$e_{m}$ is an orthonormal frame field on $L,$ $v_{1},$
$\ldots,$ $v_{p}$ is an orthonormal

frame of $E$ and $\overline{R}$ is the curvature tensor of $M$. By the similar calculation in
Section 2, we obtain

THEOREM 4.1. For the index form I for $L$ , it holds

$I(JX, JY)=\int_{L}\{g((\Delta_{1}X^{\#})^{b}, Y)-Ric_{M}(X, Y)+\beta(X, Y)-\overline{r}(X, Y)\}d\mu_{L}$ ,

where $X,$ $Y\in\Gamma(TL)$ .

For the case where $L$ is Lagrangian, see [3] and [6]. We define

$\mathscr{F}(X)=(\Delta_{1}X^{\#})^{b}-(Ric_{M}|_{L})^{\#}(X)+\beta$ tt $(X)-\overline{r}^{\#}(X)$

and obtain

$\mathscr{F}(X)=\mathscr{J}_{id_{L}}(X)+2(Ric_{L})^{\#}(X)-(Ric_{M}|_{L})^{\#}(X)+\beta^{\#}(X)-\overline{r}^{\#}(X)$

for $X\in\Gamma(TL)$ . Set $F:=(Ric_{M})|_{L}-\beta+\overline{r}$ .

THEOREM 4.2. Let $M$ be a Kahler manifold and $L$ a compact orientable
minimal anti invariant submamfold. If $F$ is positive definite, we have

Index $(L)\geq b_{1}(L)$ .
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Theorem 4.2 is a generalization of the inequality mentioned in [3] for a
minimal Lagrangian submanifold.

Since the anti invariance of the tangent bundle of $L$ in $M$, we can define i-

partial stability.

THEOREM 4.3. Let $M$ be a Kahler mamfold and $L$ a compact orientable
minimal anti invariant submanifold.

(i) If $\lambda_{j}\geq\max_{v\in UL}F(v, v)$ , then $L$ is i-partial stable.
(ii) If $L$ is i-partial stable, then we have $\lambda_{j}\geq\min_{v\in UL}F(v, v)$ .

COROLLARY 4.4. Assume that $M$ is an Einstein-Kahler manifold with
$Ric_{M}=ag(a\in R)$ and $L$ is Lagrangian. Then $L$ is i-partial stable $lf$ and only $lf$

$\lambda_{j}(L)\geq a$ .

Especially, $L$ is hamiltonian stable, that is, l-partial stable if and only if
$\lambda_{1}(L)\geq a$ . Therefore Theorem 4.3 is a generalization of Theorem 4.4 in [6].

THEOREM 4.5. Let $M$ be a Kahler mamfold and $L$ a compact orientable

minimal anti invariant submanifold in $M$.
(i) If $F-2Ric_{L}$ is positive semi-definite, we have

Index $(L)\geq Index(id_{L})$ .

(ii) If $F-2Ric_{L}$ is positive definite, we have

Index $(L)\geq Index(id_{L})+Nu11(id_{L})$ .

Next we consider the case where $M$ is a complex space form with constant
holomorphic sectional curvature $c$ . Then the curvature tensor $\overline{R}$ of $M$ satisfies

$\overline{R}(X, Y)Z=\frac{1}{4}c\{g(Y, Z)X-g(X, Z)Y+g(JY, Z)JX$

$-g(JX, Z)JY+2g(X, JY)JZ\}$

for $X,$ $Y,$ $Z\in TM$ . Then we have

$Ric_{L}(X, Y)=\frac{c(m-1)}{4}g(X, Y)-g(A_{JX}, A_{JY})-\beta(X, Y)$ for $X,$ $Y\in TL$ ,

$\overline{r}(X, Y)=-\frac{cp}{4}g(X, Y)$ for $X,$ $Y\in TL$
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and

$Ric_{M}(X^{\prime}, Y^{\prime})=\frac{c(n+1)}{2}g(X^{\prime}, Y^{\prime})$ for $X^{\prime},$ $Y^{\prime}\in TM$ .

Hence the following equations hold:

$F(X, Y)=\frac{c(m+1)}{2}g(X, Y)-\beta(X, Y)$

and

$F(X, Y)-2Ric_{L}(X, Y)=cg(X, Y)+2g(A_{JX}, A_{JY})+\beta(X, Y)$

for $X,$ $Y\in TL$ .

COROLLARY 4.6. Let $M$ be a complex space form of constant holomorphic
sectional curvature $c$ and $L$ a compact orientable minimal anti invariant sub-

mamfold.
(i) If $c>0$ and $\beta=0$ , we have

Index $(L)\geq b_{1}(L)$

(ii) If $c>0$ , we have

Index $(L)\geq Index(id_{L})+Nul1(id_{L})$ .
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