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DERIVATION OF WIGNER’S SEMI-CIRCLE LAW
FOR A CLASS OF MATRIX ENSEMBLES

VIA BROWNIAN MOTION

By

Tsuyoshi HIRATSUKA* and Nariyuki MINAMI\dagger

Abstract. Introducing a fictitious time evolution in a random matrix
model having Gaussian entries, we prove that the empirical distri-
bution of the scaled eigenvalues of the random matrix converges in
probability to the Wigner’s semi-circle law.

1. Introduction

The semicircle law as a limiting distribution of eigenvalues of large random
matrices is well known since Wigner’s work in $1950\prime s$ . ([11]. See the introduction
of [9] for a nice historical account.) As a theorem in probability theory, the
following beautiful result was obtained as early as in $1970\prime s$ by L. Amold and
R. Wegmann. Namely let $\{X_{kl};k, 1\geq 1\}$ be a family of real random variables
defined on a common probability space $(\Omega, \mathscr{F}, P)$ . Assume that $\{X_{kl};l\geq k\geq 1\}$

are independent, among which $\{X_{kk}; k\geq 1\}$ are identically distributed with dis-
tribution function $G$ , and $\{X_{kl};l>k\geq 1\}$ are also identically distributed with
distribution function $H$ which has finite positive variance $v=\sigma^{2}$ . Suppose further
that $X_{kl}=X_{lk}$ , so that $Q^{(n)}=(X_{kl}/\sqrt{n})_{k,l=1}^{n}$ is a real symmetric $n\times n$ random
matrix. Then it was proved ([2], [1], [10]) that with probability one, the empirical
distribution

$\mu^{(n)}(dx)=\frac{1}{n}\sum_{j=1}^{n}\delta_{\lambda_{j}^{(n)}}(dx)$

of the eigenvalues
$\lambda_{1}^{(n)}\leq.$ . . $\leq\lambda_{n}^{(n)}$
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of $Q^{(n)}$ converges weakly to the semicircle law with “radius” $2\sqrt{v}$ defined by

(1) $\mu_{\}t}^{U}(dx)=\frac{1}{2\pi v}1_{[-\sqrt{4v},\sqrt{4v}1}(x)\sqrt{4v-x^{2}}dx$ .

Since then, many different approaches have been made to the semicircle law,
revealing its various different aspects. Among these works, Chan [3], Rogers and
Shi [8] considered fictitious time evolution of a Gaussian matrix ensemble, to obtain
another proof of the convergence (in probability) to the semicircle law. (The idea
of introducing a fictitious time evolution goes back to Dyson [4], and further dis-
cussed by McKean [6].) Namely, suppose each $X_{kl}$ above not only is a mean zero
Gaussian random variable, but also is the Omstein-Uhlenbeck process $\{X_{k/}(t)\}_{\iota\geq 0}$

leaving its Gaussian distribution invariant. If we let $Q^{(n)}(t)=(X_{k/}(t)/\sqrt{n})_{k,l=1}^{n}$ ,
then we have a matrix valued stationary Gaussian process, and the empirical dis-
tribution

$\mu_{l}^{(n)}=\mu_{l}^{(n)}(dx)=\frac{1}{n}\sum_{j=1}^{n}\delta_{\lambda_{j}^{(n)}(t)}(dx)$

of the eigenvalues

$\lambda_{1}^{(n)}(t)\leq.$ . . $\leq\lambda_{n}^{(n)}(t)$

of $Q^{(n)}(t)$ also forms a stationary stochastic process $\{\mu_{l}^{(n)}\}$ taking values in the
space $\mathscr{M}_{1}(R)$ of all probability measures on $R$ . It is easily seen that it has con-
tinuous sample paths, if $\mathscr{M}_{1}(R)$ is equipped with the topology of weak conver-
gence. Then Chan, Rogers and Shi proved that as $ n\rightarrow\infty$ , the sequence of pro-
cesses $\{\mu_{l}^{(n)}\},$ $n=1,2,$ $\ldots$ converges in distribution to the trivial deterministic
process $\{\mu_{t}\}$ such that $\mu_{l}=\mu_{w}^{v}$, for all $t\geq 0$ . If we look at one-dimensional
distributions of these processes, we obtain the convergence in probability of
$\mu^{(n)}=\mu_{0}^{(n)}$ to the semicircle law $\mu_{w}^{v}$ .

Now the purpose of the present paper is twofold: First, we shall simplify
the above summerized work by Chan, Rogers and Shi by directly deriving the
stochastic differential equation satisfied by the empirical measure process $\{\mu_{l}^{(n)}\}_{l}$ .
In fact, Chan et al. (and also Dyson and McKean) investigated the stochastic
differential equation satisfied by the eigenvalues $\lambda_{j}^{(n)}(\iota)$ of $Q^{(n)}(t)$ , but because of
the singularity of its coefficients, special effort was needed to prove the absense
of collision between the eigenvalues. But it should be noted that the empirical
measure process $\{\mu_{l}^{(n)}\}_{l}$ , which is the object of our study, is well defined without
caring the possible degeneracy of eigenvalues. On the other hand, the stochastic
differential equation goveming $\{\mu_{t}^{(n)}\}_{l}$ can be derived by simply applying It\^o’s
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formula to the trace of the resolvent of $Q^{(n)}(t)$ . Secondly, we treat a wider class
of Gaussian matrix ensembles so that it includes the so called GOE, GUE and
GSE (see Mehta [7] for definitions), thus showing again the universal nature of
Wigner’s semicircle law.

Let us now tum to the precise formulation of our result. For $s=0,1,2,3$ and
$1\leq k\leq l$ , let $X_{k,l}^{(s)}$ are independent real random variables obeying the Gaussian
distribution of mean zero and variance $(\sigma_{kl}^{(s)})^{2}$ . Let us further define $\{X_{k,l}^{(s)}(t)\}_{t\geq 0}$

to be the solution of the following stochastic differential equation:

(2) $\left\{\begin{array}{l}dX_{k,l}^{(s)}(t)=-\frac{1}{2}X_{k,l}^{(s)}(t)dt+\sigma_{kl}^{(s)}dB_{k,l}^{(s)}(l)\\X_{k,l}^{(s)}(0)=X_{k,l}^{(s)},\end{array}\right.$

where $B_{k}^{(s)_{l}}s$ are mutually independent l-dimensional standard Brownian motions,
which are also independent of $X_{k}^{(s}$}’ $s$ . Then each process $\{X_{k,l}^{(s)}(t)\}_{t\geq 0}$ is the
stationary Omstein-Uhlenbeck process which has the normal distribution
$N(O, (\sigma_{kl}^{(s)})^{2})$ as its invariant distribution. If we set, for $k>l$ ,

$X_{k,l}^{(s)}$
$:=\left\{\begin{array}{l}X_{l,k}^{(0)}\\-X_{l,k}^{(s)}\end{array}\right.$ $ifs=1,2,3ifs=0$

and

$B_{k}^{(s)_{l}}$
$:=\left\{\begin{array}{l}B_{l,k}^{(s)}\\-B_{l,k}^{(s)}\end{array}\right.$ $ifs=1,2,3ifs=0$

then we automatically have

$X_{k,l}^{(s)}(t)=\left\{\begin{array}{l}X_{l,k}^{(0)}(t)\\-X_{l,k}^{(s)}(t)\end{array}\right.$ $ifs=1,2,3ifs=0$

so that the $n\times n$ real matrix

$X_{n}^{(s)}(t)$ $:=(X_{j,k}^{(s)}(t))_{1\leq j,k\leq n}$

is symmetric for $s=0$ and skew-symmteric for $s=1,2,3$ .
Finally let

$Q^{(n)}(t)$ $:=\frac{1}{\sqrt{n}}\sum_{s=0}^{3}X_{n}^{(s)}(t)e_{s}$ ,
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where $e_{s}$ are $2\times 2$ matrices defined by

$e_{0}$
$:=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $e_{1}$ $:=(^{\sqrt{-1}}0$ $-\sqrt{-1}0)$

$e_{2}$
$:=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , $e_{3}$ $:=$ ( $\sqrt{-1}0$ ).

Here we consider $e_{s}$ as if they were scalar, so that its product with any $n\times n$

matrix $A$ actually means

$Ae_{s}=(_{a_{n1}e^{s}}^{a_{11}e_{s}}$ $a_{1n}ea_{nn}e_{s}^{s}$

which is a $2n\times 2n$ matrix, each $a_{jk}e_{s}$ being a $2\times 2$ block. With this definition,
$Q^{(n)}(\iota)$ is a stationary stochastic process whose values are $2n\times 2n$ Hermitian, self-
dual matrices in the sense that

$(I_{n}e_{2})Q^{(n)}(t)(I_{n}e_{2})^{T}=Q^{(n)}(t)$ ,

where $I_{n}$ is the $n\times n$ identity matrix and $T$ denotes the transpose.
Now let

$\lambda_{1}^{(n)}(t)\leq.$ . . $\leq\lambda_{2n}^{(n)}(t)$

be the eigenvalues of $Q^{(n)}(t)$ and define their empirical distribution by

$\mu_{t}^{(n)}(dx)=\frac{1}{2n}\sum_{j=1}^{2n}\delta_{\lambda_{j}^{(n)}(t)}(dx)$ .

It is clear that $\{\mu_{l}^{(n)}\}_{\iota\geq 0}$ is a stationary stochastic process taking values in $\mathscr{M}_{1}(R)$ .
Since $Q^{(n)}(t)$ is continuous in $t,$

$\mu_{t}^{(n)}$ is also continuous in $t$ as we have suggested.
This may be most easily seen by considering the Stieltjes transform of the mea-
sure $\mu_{t}^{(n)}(dx)$ , which tums out to be equal to the trace of the resolvent of $Q^{(n)}(t)$ .
Namely if for $z$ in the complex upper half-plane $H$ we set

$R_{Z}^{(n)}(t)=(Q^{(n)}(t)-zI_{2n})^{-1}$ ,

then we have

$\int_{R}\frac{1}{x-z}\mu_{l}^{(n)}(dx)=\frac{1}{2n}Tr(R_{z}^{(n)}(t))$ .
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The right hand side is continuously dependent on the entries of the Hermitian
matrix $Q^{(n)}(t)$ , and hence is continuous in $t$ . On the other hand, continuity in $t$ of
the left hand side implies that of $\mu_{t}^{(n)}$ , because a sequence of probability measures
$\{v_{n}\}_{n}$ converges weakly to a probability measure $v$ if and only if

$\int\frac{v_{n}(dx)}{x-z}\rightarrow\int\frac{v(dx)}{x-z}$

for each $z\in H$ .
In order to state our result, let $\mathscr{P}_{n}$ be the probability distribution of the

process $\{\mu_{l}^{(n)}\}$ induced on the space of all continuous functions from $[0, \infty$ ) to
$\mathscr{M}_{1}(R)$

$\mathscr{C}_{\mathscr{M}}$ $:=C([0, \infty);\mathscr{M}_{1}(R))$ .

$\mathscr{C}_{\mathscr{M}}$ is equipped with the topology of uniform convergence on compacta. Let also
$\delta_{v}$ be the probability measure concentrated on the constant path $\mu(t)\equiv\mu_{w}^{v}$ . Now
we can state our main result.

THEOREM. Suppose $\sigma_{kl}^{(s)}\prime s$ satisfy the $fo$ llowing conditions:
1. $\sup_{k\geq 1}\sigma_{kk}^{(0)}<\infty$ ;
2. $v=\sum_{s^{3}=0}(\sigma_{jk}^{(s)})^{2}$ does not depend on $j,$ $k(j<k)$ .
Then as $n\rightarrow\infty,$ $\mathscr{P}_{n}$ converges weakly to $\delta_{v}$ on $\mathscr{C}_{\mathscr{M}}$ .

Looking at the distribution of $\mu_{0}^{(n)}$ , we obtain the following

COROLLARY. Set $\mu^{(n)}=\mu_{0}^{(n)}$ , namely let $\mu^{(n)}$ be the empirical distribution of
the eigenvalues of $Q^{(n)}=\sum_{s=0}^{3}X_{n}^{(s)}e_{s}/\sqrt{n}$ . Then as a sequence of $\mathscr{M}_{1}(R)$ -valued
random variables, $\{\mu^{(n)}\}$ converges in probability to the semicircle law $\mu_{w}^{v}$ . That is,

if $\rho(\cdot, \cdot)$ is a metric on $\mathscr{M}_{1}(R)$ which generates the topology of weak convergence;
then for any $\epsilon>0$ ,

$P(\rho(\mu^{(n)},\mu_{w}^{v})>\epsilon)\rightarrow 0$ $(n\rightarrow\infty)$ .

Before closing this section, let us discuss some special cases. See Mehta [7]
for details.

(i) Suppose $\sigma_{jk}^{(s)}=\sqrt{v}/2$ for all $j>k$ and $s=0,1,2,3$ , with a positive con-
stant $v$ . In this case, every $X_{jk}^{(s)}(j<k)$ are identically distributed according to
$N(O, v/4)$ . If we further suppose $\sigma_{kk}^{(s)}=\sqrt{v/2}$, then the resulting matrix ensemble
coincides with the so called Gaussian symplectic ensemble (GSE).
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(ii) Suppose $\sigma_{jk}^{(0)}=\sigma_{jk}^{(1)}=\sqrt{v/2}(j<k)$ and $\sigma_{jk}^{(2)}=\sigma_{jk}^{(3)}=0$ . In this case,
$Q^{(n)}=Q^{(n)}(0)$ is unitarily equivalent to

$\frac{1}{\sqrt{n}}$ ( $n_{O}$ $X_{n}^{(0)}+\sqrt{-1}X_{n}^{(1)}O$ ),
so that each of the eigenvalues $\lambda_{j}^{(n)}$ of $Q^{(n)}$ is double. Hence if $\xi_{j}^{(n)}(j=1, \ldots, n)$

are the eigenvalues of $(X_{n}^{(0)}+\sqrt{-1}\chi_{n}^{(1)})/\sqrt{n}$ , we have

$\mu^{(n)}=\frac{1}{n}\sum_{j=1}^{n}\delta_{\xi_{j}^{(n)}}$ .

Now if we further suppose $\sigma_{kk}^{(0)}=\sqrt{v}$ , then the random Hermitian matrix
$X_{n}^{(0)}+\sqrt{-1}X_{n}^{(1)}$ forms the so called Gaussian unitary ensemble (GUE).

(iii) Finally suppose $\sigma_{jk}^{(0)}=\sqrt{v}(j<k)$ and $\sigma_{jk}^{(s)}=0(s=1,2,3)$ . Then $Q^{(n)}$

is unitarily equivalent to

$\frac{1}{\sqrt{n}}\left(\begin{array}{ll}X_{n}^{(0)} & O\\O & X_{n}^{(0)}\end{array}\right)$ ,

and again as in (ii), the empirical distribution of the eigenvalues of $Q^{(n)}$ is equal
to the empirical distribution of the eigenvalues of the $n\times n$ matrix $X_{n}^{(0)}/\sqrt{n}$ .
If $\sigma_{kk}^{(0)}=\sqrt{2v}$ , then the random real symmetric matrix $X_{n}^{(0)}$ forms the so called
Gaussian orthogonal ensemble (GOE).

2. Proof of the Main Theorem

2.1. A Tightness Criterion

As is usual in the proof of limit theorems for stochastic processes, we shall
first show the tightness of the sequence $\{\mathscr{P}_{n}\}_{n\geq 1}$ of probability measures on $\mathscr{C}_{\ovalbox{\tt\small REJECT}}$ ,

and then show the uniqueness of its limit point. For this purpose, we prepare a
tightness criterion of a fairly general nature, which we have formulated after an
analogous proposition in [5].

Let $f_{0}\geq 0$ be a continuous real valued function on $R$ which tends to infinity
as $|x|\rightarrow\infty$ . Let further $\{f_{j}\}_{j\geq 1}$ be a sequence of complex-valued bounded con-
tinuous functions on $R$ . We assume that the sequence $\{f_{j}\}_{j\geq 1}$ determines a prob-
ability measure on $R$ in the sense that if $\mu,$ $v\in \mathscr{M}_{1}(R)$ , and if $\langle\mu,f_{j}\rangle=\langle v, f_{j}\rangle$ for
every $j\geq 1$ , then one has $\mu=v$ . Finally let $\mathscr{C}_{C}$ be the space of all continuous
complex-valued paths.
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PROPOSITION 1. Suppose that for $n\geq 1$ and for $\mathscr{P}_{n}$ -almost every $\mu\in \mathscr{C}_{\mathscr{M}}$ ,
$\langle\mu_{t}, f_{0}\rangle=\int_{R}f_{0}(x)\mu_{t}(dx)$ is finite and is continuous in $t$ . Let $P_{n^{j}},$ $j\geq 0,$ $n\geq 1$ , be
the image measure of $\mathscr{P}_{n}$ induced on $\mathscr{C}_{C}$ by the mapping $\mu$ . $\mapsto\langle\mu., f_{j}\rangle$ . Iffor each
$j\geq 0$ , the sequence $\{P_{n^{j}}\}_{n\geq 1}$ ofprobability measures is tight on $\mathscr{C}_{C}$ , then $\{\mathscr{P}_{n}\}_{n}$ is
tight on $\mathscr{C}_{\mathscr{M}}$ .

The proof of this proposition will be given in the Appendix.
Let us apply this criterion to $\{\mathscr{P}_{n}\}$ in our Theorem. If we let $f_{0}(x)=x^{2}$ and

$f_{j}(x)=1/(x-z_{j})$ with a sequence $\{z_{j}\}$ which is dense in $H$ , then these functions
satisfy the requirements stated just before Proposition 1. Since $\mathscr{P}_{n}$ is the distri-
bution in $\mathscr{C}_{\mathscr{M}}$ of the process $\{\mu_{t}^{(n)}\},$ $P_{n}^{0}$ is that of the process

$\langle\mu_{l}^{(n)},f_{0}\rangle=\frac{1}{2n}\sum_{j=1}^{2n}(\lambda_{j}^{(n)}(t))^{2}=\frac{1}{2n}Tr(Q^{(n)}(t))^{2}$ ,

which is obviously finite and continuous in $t$ . Hence the first assumption of the
Proposition 1 is satisfied.

In order to verify the tightness of the sequence $\{P_{n^{j}}\}_{n\geq 1}$ for each $j\geq 0$ , we shall
derive the stochastic differential equation satisfied by the process $\{\langle\mu_{t}^{(n)}, f_{j}\rangle\}_{t\geq 0}$ .
But before doing so, let us prove that under the condition 1 of Theorem, one can
assume $\sigma_{kk}^{(0)}=0$ for all $k\geq 1$ , which we shall do in order to simplify the calcu-
lation. For this purpose, let $\tilde{Q}^{(n)}(t)$ be the same matrix as $Q^{(n)}(t)$ except that all
its diagonal entries are set to be zero, and let $\tilde{\mu}_{t}^{(n)}$ be the empirical measure of the
eigenvalues of $\tilde{Q}_{n}(t)$ . Then by the resolvent identity, we get for any $f_{Z}(x)=$

$1/(x-z)$ with $z\in H$ ,

$\langle\mu_{l}^{(n)},f_{Z}\rangle-\langle\tilde{\mu}_{l}^{(n)},f_{Z}\rangle$

$=|\int_{R}\frac{\mu_{t}^{(n)}(dx)}{x-z}-\int_{R}\frac{\tilde{\mu}_{t}^{(n)}(dx)}{x-z}|$

$=\frac{1}{2n}|Tr\{Q^{(n)}(t)-zI_{2n}\}^{-1}-Tr\{\tilde{Q}^{(n)}(t)-zI_{2n}\}^{-1}|$

$=\frac{1}{2n}|\frac{1}{\sqrt{n}}Tr\{diag(X_{11}^{(0)}(t), \ldots, X_{nn}^{(0)}(t))e_{0}\cdot\{\tilde{Q}^{(n)}(t)-zI_{2n}\}^{-1}\{Q^{(n)}(t)-zI_{2n}\}^{-1}\}|$

$\leq\frac{1}{2n}(1^{\max_{\leq j\leq n}\frac{1}{\sqrt{n}}}|X_{jj}^{(0)}(t)|)\cdot\sqrt{2n}\cdot\Vert\{\tilde{Q}^{(n)}(t)-zI_{2n}\}^{-1}\{Q^{(n)}(t)-zI_{2n}\}^{-1}\Vert$

$\leq\frac{1}{(1mz)^{2}}\frac{1}{\sqrt{n}}\max_{\leq 1j\leq n}|X_{jj}^{(0)}(t)|$ ,
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where $\Vert\cdot\Vert$ denotes the norm by the inner product $(A, B)=Tr(AB^{*})$ and * means
the adjoint. Hence for any $T>0$ and $\epsilon>0$ ,

$P(\sup_{0\leq t\leq T}|\langle\mu_{l}^{(n)},f_{Z}\rangle-\langle\tilde{\mu}_{l}^{(n)},f_{Z}\rangle|>\epsilon)$

$\leq P(\frac{1}{({\rm Im} z)^{2}}\frac{1}{\sqrt{n}}\max_{\leq 1j\leq n}\sup_{0\leq\iota\leq T}|X_{jj}^{(0)}(t)|>\epsilon)$

$\leq\sum_{j=1}^{n}P(\sup_{0\leq\iota\leq T}|X_{jj}^{(0)}(t)|>({\rm Im} z)^{2}\sqrt{n}\epsilon)$ .

In order to estimate the probability on the right hand side, let $\{Y(t)\}$ be the
stationary Omstein-Uhlenbeck process with the standard normal distribution
as its stationary measure. Then the process $\{X_{jj}^{(0)}(t)\}$ has the same distribution
as $\{\sigma_{jj}^{(0)}Y(t)\}$ . On the other hand, $\{Y(t)\}$ is equivalent in distribution to the pro-
cess $\{e^{-l}B(e^{2t})\},$ $\{B(t)\}$ being the standard Brownian motion. Hence letting $C=$

$\sup_{j\geq 1}\sigma_{jj}^{(0)}<\infty$ , we obtain the following bound:

$\sum_{j=1}^{n}P(\sup_{0\leq t\leq T}|X_{jj}^{(0)}(t)|>(1mz)^{2}\sqrt{n}\epsilon)$

$\leq nP(\sup_{0\leq t\leq T}|Y(t)|\geq\frac{({\rm Im} z)^{2}}{C}\epsilon\sqrt{n})$

$\leq nP(\sup_{0\leq t\leq e^{2T}}|B(t)|\geq\frac{({\rm Im} z)^{2}}{C}\epsilon\sqrt{n})$ ,

which tends to zero as $ n\rightarrow\infty$ . From these considerations, it is now clear that the
two sequences of processes $\{\mu_{l}^{(n)}\}$ and $\{\tilde{\mu}_{l}^{(n)}\}$ have the same limiting distribution
(if any) in $\mathscr{C}\parallel$ .

2.2. Stochastic Differential Equations for $\langle\mu_{l}^{(n)}, f_{0}\rangle$ and the Tightness of
$\{P_{n}^{0}\}_{n\geq 1}$

As was already noted, we have

$\langle\mu_{t}^{(n)},f_{0}\rangle=\frac{1}{2n}Tr(Q^{(n)}(t))^{2}=\frac{1}{2n^{2}}Tr(X_{n}(t))^{2}$ .

Since $X_{n}(t)=\sum_{s=0}^{3}X_{n}^{(s)}(t)e_{s}$ is Hermitian and self-dual, $X_{n}^{(0)}(t)$ is real sym-
metric and $X_{n}^{(s)}(t)$ is real skew-symmetric for $s=1,2,3$ . Since we are assuming
$X_{jj}^{(0)}(t)=0$ , it is not difficult to see that
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Tr $(X_{n}(t)^{2})=$ Tr $\{(\sum_{s=0}^{3}X_{n}^{(s)}(t)e_{s})^{2}\}$

$=2$ Tr $\{X_{n}^{(0)}(t)^{2}-\sum_{s=1}^{3}X_{n}^{(s)}(t)^{2}\}$

$=4\sum_{s=01}^{3}\sum_{\leq j<k\leq n}X_{jk}^{(s)}(t)^{2}$ .

On the other hand, each $X_{jk}^{(s)}(t)$ satisfies the stochastic differential equation (2).
Hence applying It\^o’s formula, we can proceed as follows:

$d\langle\mu_{l}^{(n)},f_{0}\rangle=\frac{4}{2n^{2}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}\{2X_{jk}^{(s)}dX_{jk}^{(s)}+(dX_{jk}^{(s)})^{2}\}$

$=\frac{2}{n^{2}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}[2X_{jk}^{(s)}\{-\frac{1}{2}X_{jk}^{(s)}dt+\sigma_{jk}^{(s)}dB_{jk}^{(s)}\}+(\sigma_{jk}^{(s)})^{2}dt]$

$=-\frac{2}{n^{2}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}(X_{jk}^{(s)})^{2}dt+\frac{2}{n^{2}}\sum_{1\leq j<k\leq n}(\sum_{s=0}^{3}(\sigma_{jk}^{(s)})^{2})dt+dM_{n}(t)$

$=-\frac{1}{2n^{2}}$ Tr $X_{n}(t)^{2}dt+\frac{2}{n^{2}}\frac{n(n-1)}{2}vdt+dM_{n}(t)$

$=-\langle\mu_{t}^{(n)},f_{0}\rangle dt+(1-\frac{1}{n})vdt+dM_{n}(t)$ ,

where we have used the second condition of Theorem and have set

$M_{n}(t)=\frac{4}{n^{2}}\int_{0^{t}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}\sigma_{jk}^{(s)}X_{jk}^{(s)}dB_{jk}^{(s)}$

$=:\frac{4}{n^{2}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}M_{n,jk}^{(s)}(t)$ .

Having obtained the stochastic differential equation goveming $\langle\mu_{t}^{(n)}, f_{0}\rangle$ , let us
now prove the tightness of the sequence of processes $\{\langle\mu_{t}^{(n)}, f_{0}\rangle\}_{n\geq 1}$ .

Actually much stronger assertion holds:

PROPOSITION 2. With probability one, we have $\lim_{n\rightarrow\infty}\langle\mu_{\iota}^{(n)}, f_{0}\rangle=v$ uniformly
in $t\in[0, T]$ for any $T>0$ .
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PROOF. For notational simplicity, set $ Z_{n}(\iota)=\langle\mu_{t}^{(n)}, f_{0}\rangle$ . Then $Z_{n}(t)$ satisfies

$Z_{n}(t)=Z_{n}(0)+\int_{0^{l}}\{(1-\frac{1}{n})v-Z_{n}(s)\}ds+M_{n}(t)$ .

By Doob’s martingale inequality, the orthogonality of martingales $M_{n,jk}^{(s)}(t),$ $s=$

$0,1,2,3,$ $j<k$ , and $X_{jk}^{(s)}\sim N(0, (\sigma_{jk}^{(s)})^{2})$ , one shows for each $T>0$ and $a>0$ ,

$P(\sup_{0\leq\iota\leq T}M_{n}(t)^{2}>a)\leq\frac{1}{a}E[M_{n}(T)^{2}]$

$=\frac{1}{a}\frac{16}{n^{4}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}E[\int_{0^{T}}(\sigma_{jk}^{(s)}X_{jk}^{(s)}(t))^{2}dt]$

$=\frac{1}{a}\frac{16}{n^{4}}\sum_{\leq 1j<k\leq n}\sum_{s=0}^{3}(\sigma_{jk}^{(s)})^{4}T$

$\leq 16\frac{v^{2}T}{an^{4}}\frac{n(n-1)}{2}=\mathcal{O}(\frac{1}{an^{2}})$ .

Letting $a=n^{-}$ with $0<\alpha<1$ , we have

$\sum_{n}P(\sup_{0\leq\iota\leq T}|M_{n}(t)|^{2}>n^{-\alpha})\leq const.\sum_{n}\frac{1}{n^{2-\alpha}}<\infty$ ,

and hence by the Borel-Cantelli’s lemma, we get for any $T>0$ ,

$\sup_{0\leq t\leq T}|M_{n}(t)|^{2}=C^{0}(n^{-\alpha})$
$(n\rightarrow\infty)$

with probability one.
Next we prove that $Z_{n}(0)\rightarrow v$ almost surely. For this purpose we note that

$E[Z_{n}(0)]=\frac{2}{n^{2}}\sum_{\leq 1j<k\leq n}\sum_{s=0}^{3}E[X_{jk}^{(s)}(0)^{2}]$

$=\frac{2}{n^{2}}\sum_{\leq 1j<k\leq n}\sum_{s=0}^{3}(\sigma_{jk}^{(s)})^{2}$

$=(1-\frac{1}{n})v\rightarrow v$ ,

and that
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$E[(Z_{n}(0)-E[Z_{n}(0)])^{2}]=\frac{4}{n^{4}}\sum_{1\leq 1<k\leq n}\sum_{s=0}^{3}E[(X_{jk}^{(s)}(0)^{2}-(\sigma_{jk}^{(s)})^{2})^{2}]$

$=\frac{12}{n^{4}}\sum_{\leq 1j<k\leq n}\sum_{s=0}^{3}(\sigma_{jk}^{(s)})^{4}$

$\leq\frac{6v^{2}}{n^{2}}$ .

Since the right hand side is summable in $n$ , we see that $Z_{n}(0)-E[Z_{n}(0)]\rightarrow 0$

almost surely.
Now let us fix an $\omega$ from our basic probability space for which the above

two assertions on $M_{n}(t)$ and $Z_{n}(0)$ hold. Since $Z_{n}(t)\geq 0$ , we see from the equa-
tion for $Z_{n}(t)$ ,

$0\leq Z_{n}(t)\leq Z_{n}(0)+vt+M_{n}(t)$ .

Hence $Z_{n}(t),$ $n=1,2,$ $\ldots$ , are uniformly bounded on each finite interval $[0, T]$ .
If we denote this bound by $C_{T}$ , then the same equation shows that

$|Z_{n}(t)-Z_{n}(s)|\leq(2v+C_{T})|t-s|+|M_{n}(t)-M_{n}(s)|$

for $s,$ $t\in[0, T]$ . Since the sequence of functions $\{M_{n}(\cdot)\}$ are equi-continuous on
$[0, T]$ , we see from this inequality that $\{Z_{n}(\cdot)\}_{n}$ is also equi-continuous on $[0, T]$ .
By the Ascoli-Arzel\‘a’s theorem, any subsequence of $\{Z_{n}\}$ contains a further sub-
sequence which converges uniformly to some $z(\cdot)$ on each finite interval $[0, T]$ .
This limit $z(\cdot)$ satisfies the equation

$z(t)=v+\int_{0^{t}}(v-z(s))ds$ ,

and hence we conclude $z(t)\equiv v$ . $\square $

2.3. The Stochastic Differential Equation for $\langle\mu_{t}^{(n)}, f_{Z}\rangle$ and the Tightness
of $\{P_{n}^{j}\}_{n\geq 1}$

In order to obtain the desired stochastic differential equation, we shall apply
It\^o’s formula to

$\langle\mu_{t}^{(n)},f_{Z}\rangle=\frac{1}{2n}Tr(Q^{(n)}(t)-zI_{2n})^{-1}=:\frac{1}{2n}$ Tr $R(t)$ ,

where we set $R(t)=R_{Z}^{(n)}(t)=(Q^{(n)}(t)-zI_{2n})^{-1}$ But for this purpose, we need
some formula for the derivatives of the right hand side with respect to the entries
of $Q^{(n)}(\iota)$ . Namely let $Q=\sum_{s^{3}=0}Q^{(s)}e_{s}$ be a $2n\times 2n$ self-dual Hermitian matrix
so that $Q^{(0)}$ is real symmetric, and $Q^{(s)}(s=1,2,3)$ are real skew-symmetric. If
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we let $R=(Q-zI_{2n})^{-1}=\sum_{s=0}^{3}R^{(s)}e_{s}$ for a $z\in H$ , then since $R$ is also self-dual,
$R^{(0)}$ is symmetric and $R^{(s)}(s=1,2,3)$ are skew-symmetric. Now it is easy to see
for $k\neq l,$ $1\leq k,$ $l\leq n$ , that

$\frac{\partial R}{\partial Q_{k,l}^{(0)}}=-R\{(E^{kl}+E^{lk})e_{0}\}R$ ;

$\frac{\partial R}{\partial Q_{k,l}^{(s)}}=-R\{(E^{kl}-E^{lk})e_{s}\}R$ , $s=1,2,3$ ,

and

$\frac{\partial^{2}R}{\partial(Q_{k,l}^{(0)})^{2}}=2R\{(E^{k/}+E^{lk})e_{0}\}R\{(E^{kl}+E^{lk})e_{0}\}R$ ;

$\frac{\partial^{2}R}{\partial(Q_{k,l}^{(s)})^{2}}=2R\{(E^{kl}-E^{lk})e_{s}\}R\{(E^{kl}-E^{lk})e_{s}\}R$ , $s=1,2,3$ ,

where we have defined the matrix $E^{kl}$ as $(E^{kl})_{ij}=\delta_{ik}\delta_{jl}$ for $i,j,$ $k,$ $l=1,2,$
$\ldots,$

$n$ .
Now remembering that $X_{kk}^{(s)}(t)=0$ for all $s$ and $k$ , and that $X_{kl}^{(s)}=\pm X_{lk}^{(s)}$

according to $s=0$ or $s\neq 0$ , we apply It\^o’s formula to Tr $R(t)$ , to obtain
$ d\langle\mu_{t}^{(n)},f_{Z}\rangle$

$=\frac{1}{2n}d\{TrR(t)\}$

$=\frac{1}{2n}\sum_{s=0}^{3}\sum_{1\leq k<l\leq n}Tr\{\frac{\partial R(t)}{\partial Q_{k,l}^{(s)}}\}\frac{1}{\sqrt{n}}dX_{kl}^{(s)}(t)$

$+\frac{1}{4n}\sum_{s=01}^{3}\sum_{\leq k<l\leq n}$ Tr $\{\frac{\partial^{2}R(t)}{\partial(Q_{k,l}^{(s)})^{2}}\}\frac{1}{n}(dX_{k/}^{(s)}(t))^{2}$

$=-\frac{1}{2n\sqrt{n}}\sum_{1\leq k<l\leq n}Tr[R(t)\{(E^{kl}+E^{/k})e_{0}\}R(t)]\{-\frac{1}{2}X_{kl}^{(0)}(t)dt+\sigma_{kl}^{(0)}dB_{kl}^{(0)}(t)\}$

$-\frac{1}{2n\sqrt{n}}\sum_{1\leq k<l\leq n}\sum_{s=1}^{3}Tr[R(t)\{(E^{kl}-E^{lk})e_{s}\}R(t)]\{-\frac{1}{2}X_{kl}^{(s)}(\iota)dt+\sigma_{kl}^{(s)}dB_{kl}^{(s)}(t)\}$

$+\frac{2}{4n^{2}}\sum_{1\leq k<l\leq n}$ Tr $[R(t)\{(E^{kl}+E^{lk})e_{0}\}R(\iota)\{(E^{kl}+E^{lk})e_{0}\}R(t)](\sigma_{k/}^{(0)})^{2}d\iota$

$+\frac{2}{4n^{2}}\sum_{1\leq k<l\leq n}\sum_{s=1}^{3}$ Tr $[R(\iota)\{(E^{kl}-E^{lk})e_{s}\}R(t)\{(E^{kl}-E^{lk})e_{s}\}R(t)](\sigma_{kl}^{(s)})^{2}dt$
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$=\frac{1}{4n\sqrt{n}}\sum_{s=0}^{3}\sum_{k,l=1}^{n}Tr\{R(t)(X_{kl}^{(s)}(t)E^{kl}e_{s})R(t)\}dt$

$-\frac{1}{2n\sqrt{n}}\sum_{s=0}^{3}\sum_{k,l=1}^{n}Tr\{R(t)(\sigma_{kl}^{(s)}E^{kl}e_{s}dB_{kl}^{(s)})R(t)\}$

$+\frac{1}{2n^{2}}\sum_{s=0}^{3}\sum_{k,l=1}^{n}(\sigma_{kl}^{(s)})^{2}Tr\{R(t)(E^{kl}e_{s})R(t)(E^{kl}e_{s})R(t)\}dt$

$+\frac{1}{2n^{2}}\sum_{kl=1,)}^{n}(\sigma_{kl}^{(0)})^{2}Tr\{R(t)(E^{kl}e_{0})R(t)(E^{lk}e_{0})R(t)\}dt$

$-\frac{1}{2n^{2}}\sum_{s=0}^{3}\sum_{k,l=1}^{n}(\sigma_{kl}^{(s)})^{2}Tr\{R(t)(E^{kl}e_{s})R(t)(E^{lk}e_{s})R(t)\}dt$

$=:a_{1}^{(n)}(t)dt-dM_{n}(t)+a_{2}^{(n)}(t)dt+a_{3}^{(n)}(t)dt+a_{4}^{(n)}(t)dt$ .

Let us examine $a_{i}^{(n)}(t),$ $i=1,2,3,4$ , and $M_{n}(\iota)$ separately.
To begin with, we can rewrite the expression for $a_{1}^{(n)}(t)$ as follows:

$a_{1}^{(n)}(t)=\frac{1}{4n\sqrt{n}}\sum_{s=0}^{3}Tr\{R(t)(X_{n}^{(s)}(t)e_{s})R(t)\}$

$=\frac{1}{4n}Tr\{R(t)Q^{(n)}(t)R(t)\}$

$=\frac{1}{4n}$ {Tr $R(t)+zTr(R(t))^{2}$ }

$=\frac{1}{2}\langle\mu_{t}^{(n)},f_{Z}\rangle+\frac{Z}{2}\{\mu_{t}^{(n)},\frac{\partial}{\partial z}f_{Z}\}$ .

In treating $a_{2}^{(n)}(t),$ $a_{3}^{(n)}(t)$ and $a_{4}^{(n)}(t)$ , we need the following formula: for general
complex $2n\times 2n$ matrices $A=\sum_{t=0}^{3}A^{(t)}e_{l}$ and $B=\sum_{\iota^{3_{=0}}}B^{(l)}e_{l}$ , one has

$Tr\{(E^{\alpha\beta}e_{s})A(E^{\gamma\delta}e_{s})B\}=2(A_{\beta\gamma}^{(s)}B_{\delta\alpha}^{(s)}-\sum_{t\neq s}A_{\beta\gamma}^{(l)}B_{\delta\alpha}^{(t)})$ , $s=0,1,2,3$ .

We apply this formula to $A=R(t)=\sum_{s^{3}=0}R^{(s)}e_{s}$ and $B=(R(\iota))^{2}=\sum_{s^{3}=0}(R^{2})^{(s)}e_{s}$ .
If we note that $R_{kk}^{(s)}=(R^{2})_{kk}^{(s)}=0$ holds for $s=1,2,3$ and $1\leq k\leq n$ , we get
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$a_{3}^{(n)}(t)=\frac{1}{2n^{2}}\sum_{k,T=1}^{n}(\sigma_{kl}^{(0)})^{2}Tr\{(E^{kl}e_{0})R(t)(E^{lk}e_{0})(R(\iota))^{2}\}$

$=\frac{2}{2n^{2}}\sum_{k,l=1}^{n}(\sigma_{kl}^{(0)})^{2}\{R_{l/}^{(0)}(R^{2})_{kk}^{(0)}-\sum_{l\neq 0}R_{ll}^{(t)}(R^{2})_{kk}^{(l)}\}$

$=\frac{1}{n^{2}}\sum_{k,l=1}^{n}(\sigma_{kl}^{(0)})^{2}R_{ll}^{(0)}(R^{2})_{kk}^{(0)}$ ,

and

$a_{4}^{(n)}(t)=\frac{-1}{2n^{2}}\sum_{s=1}^{3}\sum_{k,l=1}^{n}(\sigma_{kl}^{(s)})^{2}Tr\{(E^{kl}e_{s})R(t)(E^{lk}e_{s})(R(t))^{2}\}$

$=\frac{-2}{2n^{2}}\sum_{s=1}^{3}\sum_{k,l=1}^{n}(\sigma_{kl}^{(s)})^{2}\{R_{ll}^{(s)}(R^{2})_{kk}^{(s)}-\sum_{t\neq s}R_{l/}^{(t)}(R^{2})_{kk}^{(t)}\}$

$=\frac{1}{n^{2}}\sum_{k,l=1}^{n}\{\sum_{s=1}^{3}(\sigma_{kl}^{(s)})^{2}\}R_{/l}^{(0)}(R^{2})_{kk}^{(0)}$ .

Hence from the second condition of our Theorem,

$a_{3}^{(n)}(t)+a_{4}^{(n)}(t)=\frac{v}{n^{2}}\{\sum_{k,l=1}^{n}R_{l/}^{(0)}(R^{2})_{kk}^{(0)}-\sum_{k=1}^{n}R_{kk}^{(0)}(R^{2})_{kk}^{(0)}\}$

$=\frac{v}{n^{2}}$ ( $\frac{1}{2}$ Tr $R(t)$) $(\frac{1}{2}$ Tr $R(t)^{2})-\frac{v}{n^{2}}\sum_{k=1}^{n}R_{kk}^{(0)}(R^{2})_{kk}^{(0)}$

$=v\langle\mu_{t}^{(n)}, f_{Z}\rangle\{\mu_{t}^{(n)},$ $\frac{\partial}{\partial z}f_{Z}\}-a_{5}^{(n)}(t)$ ,

where we have set

$a_{5}^{(n)}(t)=:\frac{v}{n^{2}}\sum_{k=1}^{n}R_{kk}^{(0)}(R^{2})_{kk}^{(0)}$ .

Collecting these terms, we obtain

(3) $d\langle\mu_{l}^{(n)},f_{\approx}\rangle=\{\frac{1}{2}\langle\mu_{l}^{(n)},f_{z}\rangle+\frac{Z}{2}\langle\mu_{\iota}^{(n)},\frac{\partial}{\partial z}f_{Z}\}+v\langle\mu_{t}^{(n)}, f_{z}\rangle\{\mu_{l}^{(n)},\frac{\partial}{\partial z}f_{Z}\}\}dt$

$+(a_{2}^{(n)}(t)-a_{5}^{(n)}(t))dt+dM_{n}(t)$ .
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Now let $P_{n^{Z}}$ be the probability distribution of the process $\{\langle\mu_{\iota}^{(n)}, f_{Z}\rangle\}_{t}$ induced
on $\mathscr{C}_{C}$ . Since the sequence of the probability distribution of $\langle\mu_{0}^{(n)}, f_{Z}\rangle$ is tight,
and since

$|\frac{1}{2}\langle\mu_{\iota}^{(n)}, f_{Z}\rangle+\frac{Z}{2}\{\mu_{l}^{(n)},\frac{\partial}{\partial z}f_{Z}\}+\frac{v}{2}\langle\mu_{l}^{(n)},f_{Z}\rangle\{\mu_{l}^{(n)},\frac{\partial}{\partial z}f_{z\rangle}|$

$\leq\frac{1}{2}\frac{1}{{\rm Im} z}+\frac{|z|}{2}\frac{1}{({\rm Im} z)^{2}}+\frac{v}{2}\frac{1}{{\rm Im} z}\frac{1}{({\rm Im} z)^{2}}$

is bounded in $n$ and $t$ , the tightness of the sequence $\{P_{n^{Z}}\}_{n}$ of probability mea-
sures on $\mathscr{C}_{C}$ is an immediate consequence of the following proposition.

PROPOSITION 3. With probability one, we have

$\lim_{n\rightarrow\infty}a_{2}^{(n)}(t)=\lim_{n\rightarrow\infty}a_{5}^{(n)}(t)=0$

umformly on $[0, \infty$ ), and

$\lim_{n\rightarrow\infty}M_{n}(t)=0$

umformly on each interval $[0, T],$ $T>0$ .

PROOF. For a general complex $2n\times 2n$ matrix $A=\sum_{s=0}^{3}A^{(s)}e_{s},$ $A^{(s)}=$

$(A_{jk}^{(s)})_{j,k=1}^{n}$ , we have

$A^{*}=A^{(0)*}e_{0}-\sum_{s=1}^{3}A^{(s)*}e_{s}$

and hence

$Tr(A^{*}A)=2$ Tr $(\sum_{s=0}^{3}A^{(s)*}A^{(s)})=2\sum_{s=0j}^{3}\sum_{k=1}^{n}|A_{jk}^{(s)}|^{2}$ .

If we apply this to $R=(Q-zI_{2n})^{-1}$ or $R^{2}$ with $Q$ self-dual Hermitian and
${\rm Im} z>0$ , then

$\sum_{s=0j}^{3}\sum_{k=1}^{n}|R_{jk}^{(s)}|^{2}=\frac{1}{2}Tr(R^{*}R)\leq\frac{n}{({\rm Im} z)^{2}}$

and
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$\sum_{s=0j}^{3}\sum_{k=1}^{n}|(R^{2})_{jk}^{(s)}|^{2}=\frac{1}{2}$ Tr $((R^{*})^{2}R^{2})\leq\frac{n}{(1mz)^{4}}$ .

We now estimate, for a fixed $z\in H,$ $a_{5}^{(n)}(t)$ and $a_{2}^{(n)}(t)$ as follows:

$|a_{5}^{(n)}(t)|\leq\frac{v}{n^{2}}\sqrt{\sum_{k--1}^{n}|R_{kk}^{(0)}(t)|^{2}}\sqrt{\sum_{k--1}^{n}|(R^{2})_{kk}^{(0)}|^{2}}$

$\leq\frac{v}{n^{2}}\sqrt{\frac{1}{2}Tr\{R(t)^{*}R(t)\}}\sqrt{\frac{1}{2}Tr\{(R(t)^{2})^{*}(R(t)^{2})\}}$

$\leq\frac{v}{n^{2}}\sqrt{\frac{n}{({\rm Im} z)^{2}}}\sqrt{\frac{n}{({\rm Im} z)^{4}}}$ ;

$|a_{2}^{(n)}(t)|=\frac{1}{2n^{2}}\sum_{s=0j}^{3}\sum_{k=1}^{n}(\sigma_{jk}^{(s)})^{2}Tr\{(E^{k/}e_{s})R(t)(E^{kl}e_{s})R(t)^{2}\}$

$=\frac{2}{2n^{2}}\sum_{s=0j}^{3}\sum_{k=1}^{n}(\sigma_{jk}^{(s)})^{2}\{R_{kj}^{(s)}(R^{2})_{jk}^{(s)}-\sum_{\iota\neq s}R_{kj}^{(l)}(R^{2})_{jk}^{(t)}\}|$

$\leq\frac{1}{n^{2}}\sum_{s=0j}^{3}\sum_{k=1}^{n}(\sigma_{jk}^{(s)})^{2}\sum_{t=0}^{3}|R_{kj}^{(t)}(R^{2})_{jk}^{(t)}|$

$\leq\frac{v}{n^{2}}\sum_{t=0j}^{3}\sum_{k=1}^{n}|R_{kj}^{(t)}(R^{2})_{jk}^{(\iota)}|$

$\leq\frac{v}{n^{2}}\sqrt{\frac{1}{2}Tr\{R(t)^{*}R(t)\}}\sqrt{\frac{1}{2}Tr\{(R(t)^{2})^{*}(R(t)^{2})\}}$

$\leq\frac{v}{n^{2}}\sqrt{\frac{n}{({\rm Im} z)^{2}}}\sqrt{\frac{n}{({\rm Im} z)^{4}}}$ .

Hence we arrive at

$\sup_{\iota\geq 0}|a_{2}^{(n)}(t)|=\mathcal{O}(n^{-1})$ ; $\sup_{\iota\geq 0}|a_{5}^{(n)}(\iota)|=\mathcal{O}(n^{-1})$

as $ n\rightarrow\infty$ .
In order to treat $M_{n}(\iota)$ , we introduce the matrix valued Brownian motion

$\tilde{B}(t)=\sum_{s=0}^{3}\tilde{B}^{(s)}(t)e_{s}$ with $\tilde{B}_{jk}^{(s)}(t)=\sigma_{jk}^{(s)}B_{jk}^{(s)}$ . Then we get
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$dM_{n}(t)=\frac{1}{2n\sqrt{n}}$ Tr $\{R(t)^{2}d\tilde{B}(t)\}$

$=\frac{1}{n\sqrt{n}}$ Tr $\{(R(t)^{2})^{(0)}d\tilde{B}^{(0)}(t)-\sum_{s=1}^{3}(R(t)^{2})^{(s)}d\tilde{B}^{(s)}(t)\}$

$=\frac{2}{n\sqrt{n}}\sum_{s=0}^{3}\sum_{1\leq j<k\leq n}(R(t)^{2})_{jk}^{(s)}\sigma_{jk}^{(s)}dB_{jk}^{(s)}$ ,

so that

$E[|M_{n}(t)|^{2}]=\frac{4}{n^{3}}\sum_{s=01}^{3}\sum_{\leq j<k\leq n}(\sigma_{jk}^{(s)})^{2}\int_{0^{T}}|(R(t)^{2})_{jk}^{(s)}|^{2}dt$

$\leq\frac{2v}{n^{3}}\int_{0^{T}}\frac{1}{2}Tr\{(R(t)^{*})^{2}(R(t))^{2}\}dt$

$\leq\frac{2vT}{n^{2}({\rm Im} z)^{4}}$ .

Hence by the martingale inequality,

$P(\sup_{0\leq t\leq T}|M_{n}(t)|^{2}>a)\leq\frac{1}{a}E[|M_{n}(T)|^{2}]=\mathcal{O}(\frac{1}{an^{2}})$ .

The rest is the same as in the proof of Proposition 2. $\square $

2.4 Identification of the Limiting Process. Completion of the Proof of
Theorem

The results of the previous two subsections show that the sequence $\{\mathscr{P}_{n}\}_{n}$

consisting of the probability distributions of the empirical measure process $\{\mu_{l}^{(n)}\}$

satisfies the conditions of Proposition 1, and hence is tight. To prove the weak
convergence $\mathscr{P}_{n}\rightarrow\delta_{v}$ on $\mathscr{C}_{\mathscr{M}}$ , let $\mathscr{P}_{\infty}$ be any weak limit of $\{\mathscr{P}_{n}\}$ along a subse-
quence $\{n^{\prime}\}$ . If we define, for each $T>0$ and $z\in H$ ,

$\Phi_{T,z}(\mu.)=1\wedge\int_{0^{T}}|\langle\mu_{t},f_{Z}\rangle-\langle\mu_{0},f_{z}\rangle$

$-\int_{0^{t}}\{\frac{1}{2}\langle\mu_{s},f_{Z}\rangle+\frac{Z}{2}\langle\mu_{s},\frac{\partial}{\partial z}f_{Z}\}+v\langle\mu_{s},f_{Z}\rangle\langle\mu_{s},\frac{\partial}{\partial z}f_{Z}\}\}ds|dt$ ,

then $\Phi_{T,z}(\cdot)$ is a bounded continuous functional on $\mathscr{C}_{\mathscr{M}}$ .
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Hence by the stochastic differential equation for $\langle\mu_{l}^{(n)}, f_{\approx}\rangle$ and Proposition 3,

$E^{p_{x}}[\Phi_{T,-}-]=\lim_{n\rightarrow\infty}E^{\mathscr{J}_{n};}[\Phi_{T,\approx}]$

$=\lim_{n\rightarrow\infty}E[\Phi_{T,z}(\mu^{(n^{\prime})})]$

$=\lim_{n\rightarrow x}E[1\wedge\int_{0^{T}}|M^{(n^{\prime})}(t)+\int_{0^{l}}(a_{2}^{(n^{\prime})}(s)-a_{5}^{(n^{\prime})}(s))ds|dt]$

$=0$ .

This shows that if we let $ M(t, z;\mu):=\langle\mu_{l},f_{-}-\rangle$ , then for $\mathscr{P}_{x}$ -almost all $\mu\in \mathscr{C}\parallel$ ,
$M(t, z;\mu)$ satisfies the partial differential equation

(4) $\frac{\partial M}{\partial t}=(vM+\frac{1}{2}Z)\frac{\partial M}{\partial z}+\frac{1}{2}M$ .

It was shown by Rogers and Shi [8] that for any $\mu_{0}\in \mathscr{M}_{1}(R)$ , the unique solution
of this partial differential equation under the initial condition $ M(O, z)=\langle\mu_{0}, f_{\approx}\rangle$

converges to

$\frac{1}{2v}(-z+\sqrt{z^{2}-4v})=\int_{R}\frac{1}{x-\Leftrightarrow}-\mu^{v},.(dx)$

as $\iota\rightarrow\infty$ . Since the process $\{\mu_{l}\}$ is stationary under the probability measure $\mathscr{P}_{\infty}$ ,

this shows that the process $\{M(t, z;\mu)\}$ is the trivial non-random process which
equals to $\int(x-z)^{-1}\mu_{\iota}^{v}(dx)$ independently of $\iota\geq 0$ . Since $z\in H$ is arbitrary, we
see $\mathscr{P}_{x}=\delta_{v}$ . This completes the proof of our Theorem.

2.5 Almost Sure Convergence in the Path Space

Suppose $\sigma_{jk}^{(0)}=\sqrt{v}$ for $(j<k),$ $\sigma_{kk}^{(0)}=\sqrt{2v}$ , and $\sigma_{jk}^{(s)}=0$ for $s=1,2,3$ . Then
as was noted in the introduction, $\mu_{t}^{(n)}$ is equal to the empirical distribution of the
eigenvalues of $X_{n}^{(0)}(t)/\sqrt{n}$ . On the other hand, $X_{n}^{(0)}(\iota)/\sqrt{n}$ satisfies the conditions
of the theorem of Amold and Wegmann which we quoted at the beginning of
this paper. Hence we have the weak convergence $\lim_{n\rightarrow\infty}\mu_{0}^{(n)}=\mu_{w}^{v}$ with proba-
bility one. If we use this fact, then we can prove the following assertion, which is
stronger than our main theorem.

PROPOSITION 4. With probability one, we have the weak convergence
$\lim_{n\rightarrow\infty}\mu_{t}^{(n)}=\mu_{w}^{v}$ umformly in $t\in[0, T]$ , for any $T>0$ .
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PROOF. With probability one, we can pick and fix an $\omega\in\Omega$ for which the
following conditions hold:

(i) $\mu_{0}^{(n)}(\omega)(\cdot)\rightarrow\mu_{w}^{v}$ ;
(ii) the conclusion of Proposition 2 is valid;
(iii) the conclusion of Proposition 3 is valid for the choice of $z=z_{j},$ $j\geq 1$ ,

where $\{z_{j}\}$ is supposed to be dense in $H$ .
Now let $\delta_{n}^{\omega}$ be the probability measure on $\mathscr{C}_{\mathscr{M}}$ which is concentrated on the

single path $\{\mu_{l}^{(n)}(\omega)\}_{l}$ . Then (ii) means in particular that the image measures of
$\delta_{n}^{\omega}$ induced on $\mathscr{C}_{C}$ by the mapping $\mu$ . $\mapsto\langle\mu.,f_{0}\rangle$ , where $f_{0}(x)=x^{2}$ , is tight. On
the other hand, from (i), (ii) and the stochastic differential equation (4), we see
that the sequence of functions $\langle\mu_{l}^{(n)}, f_{z_{j}}\rangle$ , where $f_{Z}(x)=1/(x-z)$ , is uniformly
bounded and equi-continuous on each interval $[0, T],$ $T>0$ . Hence by Ascoli-
Arzel\‘a’s theorem, the sequence of image measures of $\delta_{n}^{\omega}$ under the mapping
$\mu$ . $\mapsto\langle\mu., f_{z_{j}}\rangle$ is tight. Hence by Proposition 1, the sequence $\{\delta_{n}^{(\omega)}\}_{n}$ of probability
measures on $\mathscr{C}_{\mathscr{M}}$ is tight, or equivalently the sequence $\{\mu^{(n)}\}_{n}$ of functions is
relatively compact in $\mathscr{C}_{\mathscr{M}}$ . Let $\mu^{(\infty)}$ be any of its limit along a subsequence $\{n^{\prime}\}$ .
Letting $ n=n^{\prime}\rightarrow\infty$ in the equation (4), we see that $ M^{(\infty)}(t, z):=\langle\mu_{t}^{(\infty)}, f_{Z}\rangle$

satisfies the partial differential equation (4) for $z=z_{j}$ . Since $\{z_{j}\}$ is dense in $H$ ,

this is true for all $z\in H$ . But $\mu_{0}^{(\infty)}=\mu_{w}^{v}$ and $ M(t, z)\equiv\langle\mu_{w}^{v}, f_{Z}\rangle$ is a solution of
(4), we must have $ M^{(\infty)}(t, z)=\langle\mu_{w}^{v}, f_{Z}\rangle$ for all $z\in H$ and $t\geq 0$ . Hence $\mu_{t}^{(\infty)}=\mu_{w}^{v}$

for all $t\geq 0$ , completing the proof of Proposition 4. $\square $

A Proof of the Tightness Criterion

In this appendix, we give a proof of Proposition 1.
By the tightness of the sequence $\{P_{n}^{0}\}_{n=1}^{\infty}$ , we can choose, for each $\epsilon>0$ , a

compact subset $K_{0}$ of $\mathscr{C}_{R}$ such that

$\inf_{n\geq 1}P_{n}^{0}(K_{0})\geq 1-\frac{\epsilon}{2}$ .

Then we have

$A_{T}$
$:=\sup_{c(\cdot)\in K_{0}}\sup_{t\in[0,T]}|c(t)|<\infty$

for any $T>0$ . On the other hand,

M $\tau_{;=\{\mu\in \mathscr{M}_{1}(R);\langle\mu,f_{0}\rangle\leq A_{T}\}}$

is a compact subset of $\mathscr{M}_{1}(R)$ for any $T>0$ , and

$\inf_{n\geq 1}\mathscr{P}_{n}$ ( $\mu_{t}\in M^{T}$ , for any $t\in[0,$ $T]$ and $T\geq 0$ ) $\geq\inf_{n\geq 1}\mathscr{P}_{n}(K_{0})\geq 1-\epsilon/2$ .
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Next, for every $j\geq 1$ , we can choose a compact subset $K_{j}$ of $\mathscr{C}_{C}$ such that

$\inf_{n\geq 1}P_{n^{j}}(K_{j})\geq 1-\frac{\epsilon}{2^{j+1}}$

because of the tightness of the sequence $\{P_{n}^{j}\}_{n=1}^{\infty}$ . Let ff be the Borel subset of
$\mathscr{C}_{\ovalbox{\tt\small REJECT}}$ defined by

$\mathscr{K}$

$:=\bigcap_{T>0}\{\mu(\cdot)\in \mathscr{C}_{\ovalbox{\tt\small REJECT}}; \mu_{l}\in M^{T}, t\in[0, T]\}\cap\bigcap_{j\geq 1}\{\mu(\cdot)\in \mathscr{C}_{\ovalbox{\tt\small REJECT}};\langle\mu(\cdot),f_{j}\rangle\in K_{j}\}$
.

Then it is easily seen that

$\inf_{n\geq 1}\mathscr{P}_{n}(ff)\geq 1-\epsilon$ .

Now to finish the proof, we need to verify that the set X is compact in $\mathscr{C}_{\ovalbox{\tt\small REJECT}}$ .
For this purpose, let $\{v^{(n)}(\cdot)\}_{n=1}^{\infty}$ be any sequence in X. Since, for every

$j\geq 1$ , the sequence $\{\langle v^{(n)}(\cdot),f_{j}\rangle\}_{n=1}^{\infty}$ is contained in $K_{j}$ which is compact in $\mathscr{C}_{C}$ ,

we can choose a subsequence $\{v^{(n_{l})}(\cdot)\}_{l=1}^{\infty}$ of $\{v^{(n)}(\cdot)\}_{n=1}^{\infty}$ such that, for every $j$ ,

there exists a $c^{j}(\cdot)\in K_{j}$ which satisfies

$\langle v^{(n_{l})}(\cdot),f_{j}\rangle\rightarrow c^{j}(\cdot)$ $(l\rightarrow\infty)$ .

On the other hand, for every $t\geq 0,$ $\{v^{(n)}(t)\}_{n=1}^{\infty}$ is a sequence in the compact
set $M‘\subset \mathscr{M}_{1}(R)$ , so we can choose a subsequence $\{n_{l_{m}(t)}\}_{m=1}^{\infty}$ (which depends
on t) of $\{n_{l}\}_{l=1}^{\infty}$ and $v(t)\in \mathscr{M}_{1}(R)$ such that

$v^{(n_{l_{m}})}(t)\rightarrow v(t)$ .

Since we have

$\langle v(t),f_{j}\rangle=\lim_{m\rightarrow\infty}\langle v^{(n_{l_{m}})}(t),f_{j}\rangle=c^{j}(t)$ ,

for all $j\geq 1$ , according to the assumption for $\{f_{j}\}_{j}$ , this $v(t)$ is uniquely deter-
mined by $\{n_{l}\}_{l=1}^{\infty}$ and does not depend on the choice of its subsequence. Hence
for every $\iota\geq 0$ , we have

$\lim_{l\rightarrow\infty}v^{(n_{l})}(t)=v(t)$

and

$\langle v(t),f_{j}\rangle=c^{j}(t)$ .

Next let us prove that $v(t)$ is a continuous function of $t\geq 0$ . In fact, let $t\geq 0$

and let $\{t_{k}\}_{k=1}^{\infty}$ be a sequence in $[0, \infty$ ) which converges to $t$ . Then there exists a
$T\in(O, \infty)$ such that $t\in[0, T]$ and $t_{k}\in[0, T]$ for every $k\geq 1$ . Since $v(t_{k})\in M^{T}$
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and $M^{T}$ is compact in $\mathscr{M}_{1}(R)$ , we can choose a subsequence $\{t_{k_{m}}\}_{m=1}^{\infty}$ and $\tilde{v}$

such that

$\lim_{m\rightarrow\infty}v(t_{k_{m}})=\tilde{v}$ in $\mathscr{M}_{1}(R)$ .

Hence, according to the continuity of $c^{j}(\cdot)$ , we have, for every $j\geq 1$ ,

$\langle\tilde{v},f_{j}\rangle=\lim_{m\rightarrow\infty}\langle v(t_{k_{m}}),f_{j}\rangle=\lim_{m\rightarrow\infty}c^{j}(t_{k_{m}})=c^{j}(t)=\langle v(t),f_{j}\rangle$ .

Since $\{f_{j}\}_{j=1}^{\infty}$ determines the probability measure uniquely,

$\tilde{v}=v(t)$ .

That is, the limit

$\lim_{m\rightarrow\infty}v(t_{k_{m}})=v(t)$

is independent of the choices of the subsequence $\{k_{m}\}_{m=1}^{\infty}$ , and one has

$\lim_{k\rightarrow\infty}v(t_{k})=v(t)$ .

Thus we have proved that $\{v^{(n_{l})}(t)\}_{l=1}^{\infty}$ converges to $v(t)$ for each $t\geq 0$ .
Let us finally prove that this convergence is uniform in $t\in[0, T]$ for any

$T>0$ . For this purpose, let $\rho$ be a metric on $\mathscr{M}_{1}(R)$ which generates the topology
of the weak convergence of probability measures. If the convergence were not
uniform on some interval $[0, T]$ , then we would have

$\lim_{l\rightarrow\infty}\sup_{l}\sup_{\in[0,T]}\rho(v^{(n_{l})}(t), v(t))>0$ .

Then there would exist a $\delta>0$ , a subsequence $\{n_{l_{m}}\}_{m=1}^{\infty}$ of the sequence $\{n_{l}\}_{l=1}^{\infty}$ ,
and a sequence $\{t_{n_{l_{m}}}\}_{m=1}^{\infty}$ in $[0, T]$ such that

$ p(v^{(n_{l_{m}})}(t_{n_{l_{m}}}), v(t_{n_{l_{m}}}))\geq\delta$ .

Furthermore, there exists a subsequence $\{n_{m}^{\prime}\}_{m=1}^{\infty}$ of the subsequence $\{n_{l_{m}}\}$ ,
$\tau\in[0, T]$ , and $\mu^{*}\in M^{T}$ such that

$\lim_{m\rightarrow\infty}t_{n_{m}^{\prime}}=\tau$ and $\lim_{m\rightarrow\infty}v^{(n_{m}^{\prime})}(t_{n_{m}^{\prime}})=\mu^{*}$ .

Thus letting $ m\rightarrow\infty$ , we have

$\rho(\mu^{*}, v(\tau))\geq\delta$
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This means that,

$|\langle\mu^{*},f_{j}\rangle-\langle v(\tau),f_{j}\rangle|>0$

for some $j\geq 1$ . Denote by $\eta$ the left hand side of this inequality. Then there
exists an $m_{0}\geq 1$ such that, for every $m\geq m_{0}$ ,

$|\langle v^{(n_{m}^{\prime})}(t_{n_{m}^{\prime}}),f_{j}\rangle-\langle v(t_{n_{m}^{\prime}}),f_{j}\rangle|>\frac{\eta}{2}$ .

This implies

$\lim\sup_{tm\rightarrow\infty}\sup_{\in[0,T]}|\langle v^{(n_{m}^{\prime})}(t),f_{j}\rangle-\langle v(t),f_{j}\rangle|\geq\frac{\eta}{2}$ ,

which contradicts the uniform convergence on $[0, T]$ of $\{\langle v^{(n_{l})}(t),f_{j}\rangle\}_{l=1}^{\infty}$ to
$ c_{j}(t)=\langle v(t),f_{j}\rangle$ .
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