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A SMALL EXAMPLE OF NON-LOCAL OPERATORS
HAVING NO TRANSMISSION PROPERTY

By

Yasushi ISHIKAWA

Abstract. We give an example of non-local pseudo-differential op-
erators which do not have the transmission property. The symbol of
this operator is given by the composition of a complete Bemstein
function by a quadratic form. The study is motivated by the bound-
ary problem of non-local operators.

Introduction

In connection with the theory of classical Markov processes and potential
theory, the subordination operation of processes appears naturally in the theory
of convolution semigroups (cf. e.g. [1], [20]). For example, the semigroup sub-
ordinated to a l-dimensional Brownian semigroup $\mu_{t}$ by means of a one-sided
stable semigroup $v_{t}^{\alpha}$ of index $\alpha\in(0,1)$ is a symmetric stable semigroup of index
$ 2\alpha$ : $\sigma_{t}=\int_{0^{\infty}}\mu_{s}dv_{t}^{\alpha}(s)$ $([1], (9.23)- 5))$ . In terms of “symbols” of generators for the
semigroups, the above subordination operation corresponds to the composition
$\sigma=fo\psi_{0}$ of the Bemstein function $f(\xi)=\xi^{\alpha}$ with the continuous negative de-
finite function $\psi_{0}(\gamma)=c\gamma^{2}$ . (That is, $(\sigma_{t}^{\wedge}u)=e^{-t\sigma}\hat{u}$ , where

$\wedge$ denotes the Fourier
transformation.) Here $\sigma$ is again a continuous negative definite function (cf. [1]
(9.20)).

On the other hand, the transmission property of a linear oprator $P$ on $R^{d}$ with
respect to the boundary $R^{d-1}$ means that $P$ is continuous $C_{0^{\infty}}(\overline{R_{+}^{d}})\rightarrow C^{\infty}(\overline{R_{+}^{d}})$ ,

$u-f(P\overline{u})|_{R_{+}^{d}}$ , where $\overline{u}$ is the extension of $u$ to $R^{d}$ by $0$ outside $R_{+}^{d}$ . Here and in the

sequel $C^{\infty}(\overline{R_{+}^{d}})$ denotes the space of functions in $C^{\infty}(R_{+}^{d})$ having continuous ex-
tensions (including derivatives of all orders) to the closure $\overline{R_{+}^{d}}$ of $R_{+}^{d}$ , and $C_{0^{\infty}}(\overline{R_{+}^{d}})$
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denotes the space of functions in $C^{\infty}(\overline{R_{+}^{d}})$ having compact supports in the relative
topology.

The property of transmission appears naturally in various boundary value
problems, such as the existence of the Feller semigroup in a bounded domain with
boundary conditions. For example, the existence of the ”sectional trace” $Pu|_{\partial D}$ of
Pu (where $P$ denotes the infinitesimal generator of the semigroup, which appears
to be an integro-differential operator of second order) on the boundary $\partial D$ plays
an important role in constructing the Feller semigroup in $D\cong R_{+}^{d}$ (cf. [6] Theorem
(4.6) and Introduction p. 548, [13] Section 1, [21] p. 22, see also pp. 5-10). Here
the transmission property of $P$ with respect to the boundary (from inside) is nat-
urally assumed.

However, it is known that the pseudo-differential operator $\sigma(D)$ induced by
the above negative definite symbol $\sigma$ (i.e.,

$\sigma(D)u(x)=\int_{R^{d}}e^{ix\cdot\gamma}\sigma(\gamma)\hat{u}(\gamma)\overline{d}\gamma$ , $\sigma=f\circ\psi_{0}$ ,

$\overline{d}\gamma=(1/2\pi)^{d}d\gamma)$ does not satisfy this property in general (see [12] for the ex-
amples). This suggests in particular that we should restrict the types of symbols
of infinitesimal generators so that the boundary condition is well defined in con-
structing the Feller semigroup. A more precise study is done in [19] on the rela-
tion between the regularity of the function related with the infinitesimal generator
at $x_{0}\in D$ near the boundary $\partial D$ , and the number of such jumps of underlying
process that have the directions of exiting $D$ from $x_{0}$ .

The aim of this note is to give an (counter-) example of a certain type of
general negative definite symbols for which the corresponding pseudo-differential
operator, although it has a proper probabilistic meaning, does not satisfy the
transmission property. Namely, we will show that the variable-coefficient pseudo-
differential operator $\sigma(x, D)$ having the symbol $\sigma(x, \gamma)$ , which is the composition
of a general continuous negative definite function $\psi(x, \gamma)$ of quadratic type with a
complete Bemstein function $f(\xi)$ , does not have the transmission property (The-
orems 2.3 and 3.3). Although it is suspected that most non-local operators may not
have the transmission property in general, this result may provide a small but concrete
example of such operators.

The motivation for our study is the close relation between the transmission
property and the operators induced by general negative definite functions which
generate Feller semigroups under boundary conditions (cf. [3], [14]; see also $[2]-$

Introduction for a probabilistic interpretation). That is, the transmission property
of the operator $\sigma(x, D)$ to some direction is related to the (micro-) analyticity of
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the symbol $\gamma\mapsto\sigma(x, \gamma)$ to the corresponding direction. This relation is studied in
a simple case in [12]. Our result should be interesting since (1) according to Ph.
Courr\‘ege [7], the generator of a Feller semigroup is a pseudo-differential operator
$\sigma(x, D)$ for which the symbol $\sigma(x, \xi)$ is a general negative definite symbol, and
since (2) as we have noticed above, the subordination operation appears quite
naturally in the theory of Markov processes (cf. e.g., [15]).
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1. Preliminaries

A function $\psi$ : $R^{d}\rightarrow C$ is said to be negative definite if for all $n\in N$ and
all $(\gamma^{1}, \ldots, \gamma^{n})\in R^{d}\times\cdots\times R^{d}$ , matrix $(\psi(\gamma^{i})+\overline{\psi(\gamma^{j})}-\psi(\gamma^{i}-\gamma^{j}))$ is positive Her-
mitian, where $\overline{\psi(\gamma}$) denotes the complex conjugate of $\psi(\gamma)$ . We call a function
$\psi$ : $R^{d}\times R^{d}\rightarrow C$ a general negative definite function if it is continuous and for
each $x$ the function $\gamma-\rangle$

$\psi(x, \gamma)$ is negative definite. For example, the “symbol” of
a differential operator of uniformly elliptic type on $R^{d}$ : $\sum_{i}^{d_{j=1}}a^{ij}(x)D_{j}D_{j}$ where
$a^{ij}\in C^{\infty}(R^{d})$ , is a general negative definite function $\psi_{0}(x, \gamma)=\sum_{i,j=1}^{d}a^{ij}(x)\gamma_{i}\gamma_{j}$ .
A $C^{\infty}$ -function $f$ : $(0, \infty)\rightarrow R$ is said to be a Bemstein function if $f\geq 0$ and
$(-1)^{p}D^{p}f\geq 0$ for all integers $p\geq 1$ . A Bemstein function $f(\xi)$ has a (canonical)
integral representation

$f(\xi)=a+b\xi-\int_{0}^{\infty}(e^{-\xi s}-1)d\mu(s)$

where $a,$ $b\geq 0$ and $ d\mu$ is a positive measure satisfying $\int_{0^{\infty}}s/(1+s)d\mu(s)<\infty$ .
(cf. [1] (9.8)). A Bemstein function $f$ is said to be a complete Bemstein function
if the measure $\mu$ above is absolutely continuous with respect to Lebesgue measure
on $(0, \infty)$ . We assume further it is non-degenerate, that is, for some $n_{0}\in N$ and
$C>0$ ,

(1.1) $d\mu(s)\geq C\frac{ds}{(1+s)^{n_{0}}}$ on $(0, +\infty)$

where $ds$ denotes the Lebesgue measure on $(0, +\infty)$ .
For a given complete Bemstein function, we can make a composition of $f$

with the quadratic form $\psi_{0}$ above, which we write by $\sigma:\sigma(x, \gamma)\equiv(f\circ\psi_{0})(x, \gamma)$ .
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This again consitutes a (continous) general negative definite function ([1] (9.20)).
The symbol $\sigma(x, \gamma)$ induces the pseudo-differential operator $\sigma(x, D)$ on $C_{0}^{\infty}(R^{d})$

(and on $\mathscr{S}^{\prime}(R^{d})$ ) by

$\sigma(x, D)u=\int_{R^{d}}e^{ix\cdot\gamma}\sigma(x, \gamma)\hat{u}(\gamma)\overline{d}\gamma$

$=(2\pi)^{-d/2}\int_{R^{d}}e^{ix\cdot\gamma}\sigma(x, \gamma)\hat{u}(\gamma)d\gamma$

(cf. [14] Theorem 1.2, [15] Section 4).
In effect, $\sigma(x, \gamma)=f\circ\psi_{0}(x, \gamma)$ is in the symbolclass $S_{1,0}^{2}$ of pseudo-differential

operators if $f$ satisfies

(1.2) $\frac{f^{(k+1)}(s)}{f^{(k)}(s)}\leq\frac{k+1}{s}$ , $s>0$

for $k=0,1,2,$ $\ldots$ . Here the condition (1.2) holds for all complete Bemstein
functions. For the reference on these facts, see [15] Lemma 2.10.

We begin with the case $d=1$ (with the variable $x=x_{d}$ for the interpretation
after). For this purpose we state below a general theory shortly, and introduce (a
kind of) Hardy spaces of symbols due to [4].

Let $H$ be the vector space of all complex valued functions $f(t)$ on $R\backslash \{0\}$

which are $C^{\infty}$ and have a regular pole at infinity. That is, the extension of $f$ (to
$C)$ , also denoted by $f$ , satisfies that

(1.3) $(z+1)^{p}f(\frac{1}{i}\frac{1-z}{1+z})$

is a $C^{\infty}$ function on the unit circle $|z|=1$ for some integer $p$ . (Note that $t=$

$(1-z)/(1+z)$ is a linear transfomation on $C.$ )
The space $H$ can be interpreted as the space of $C^{\infty}$ functions $f(t)$ with the

property: there exist some $p\in Z$ and complex numbers $s_{p},$ $s_{p-1},$ $\ldots$ , such that for
all indices $k,$ $l$ and $n\in N$ it holds that

$\partial_{t}^{l}[t^{k}f(t)-\sum_{p-N\leq j\leq p}s_{j}\cdot t^{j+k}]$

is $O(|t|^{p-N-1+k-l})$ as $|\iota|\rightarrow+\infty$ .
We put $H_{-1}=$ {$f\in H;(1.3)$ holds with $p=-1$ }. Let $H_{-1}^{+}$ (resp. $H_{-1}^{-}$ ) be the

subspace of $H_{-1}$ consisting of those which can be extended analytically to the
lower (upper) half plane and vanish at infinity. Then $H$ is the direct sum

$H=H_{-1}^{+}+H_{-1}^{-}+C[t]$ ,
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where $C[t]$ is the space of polynomials in $t$ (cf. [9] Proposition 2.2.2). We denote

$H^{+}=H_{-1}^{+}+C[t]$ , $H^{-}=H_{-1}^{-}+C[t]$ .

Then the above sum may also be written as

$H=H^{+}+H^{-}$ , $H^{+}\cap H^{-}=C[t]$ .

Further we have a characterization of the space $H^{+}$ (resp. $H^{-}$ ):

PROPOSITION 1.1 (Boutet de Monvel [4] (1.9)). $H^{+}$ (resp. $H^{-}$ ) is the space of
Fourier transforms offunctions $\varphi(x)$ which vanish for $x<0$ (resp. $x>0$) and are
in $C^{\infty}(\overline{R}_{+})$ (resp. $C^{\infty}(\overline{R}_{-})$ ), rapidly decreasing at infinity for $x>0$ (resp. rapidly
decreasing at infinity for $x<0$). That is, every derivative tends to zero at infinity

faster than any power of $x$ and has a limit when $x\rightarrow+O$ (resp. $x\rightarrow-O$). Here we
put $R_{+}=(0, \infty)$ and $R_{-}=(-\infty, 0)$ .

We remark here that the space $C[t]$ corresponds, through the inverse Fourier
transform, to “polynomials” $\sum c_{k}\delta^{(k)}$ where $\delta^{(k)}=D_{x}^{k}\delta$ . That is, a (sub-) space of
distributions supported on $\{0\}$ .

For l-dimensional operator $\sigma(x, D)$ associated to the symbol $\sigma(x, \gamma)\in S_{1^{m}0}$ , we
always have the decomposition

(1.4) $\sigma(x, D)=\sigma_{0}(x, D)+(\sigma-\sigma_{0})(x, D)$

where $\sigma$ is properly supported and $\sigma-\sigma_{0}$ has a $C^{\infty}$ distribution kemel ([17]
Chapter 3. (1.4)). Hence we have only to treat those symbols which correspond
to properly supported operators modulo $C^{\infty}$ -functions.

Let $\sigma(x, \gamma)$ be the symbol of a pseudo-differential operator $\sigma(x, D)$ which
is properly supported. The support of $\gamma\mapsto\sigma(x, \gamma)$ can be decomposed into a
locally finite sum: $supp\sigma=\bigcup_{\lambda\in\Lambda}E_{\lambda}$ , each $E_{\lambda}$ is compact in $R$ . Regarding $\sigma$

as a hyperfunction, we can decompose $\sigma$ as $\sigma=\sum_{\lambda\in\Lambda}\sigma_{\lambda}$ where $supp\sigma_{\lambda}\subset E_{\lambda}$

(cf. [16] Lemma 1.4.4). To verify the transmission property of $\sigma(x, D)$ , we can
assume that each symbol $\sigma(x, \gamma)$ has a compact support with respect to $\gamma$

(and hence it vanishes at infinity). This is because the operator $\sigma=\sum_{\lambda}\sigma_{\lambda}$ has
the transmission property if and only if all $\sigma_{\lambda}\prime s$ have the transmission prop-
erty (cf. [12]). This means, in view of $($ 1.5 $)^{}$ of [4], we may assume the
symbol $\gamma\mapsto\sigma(x, \gamma)\in H$ can be decomposed as $\sigma(x, \gamma)=h^{+}\sigma(x, \gamma)+h^{-}\sigma(x, \gamma)$ ,

where $h^{+}\sigma(x, \gamma)=\lim_{\epsilon\rightarrow 0+}(-1/2\pi i)\int_{-\infty}^{+\infty}(\sigma(x, \gamma^{\prime})/(\gamma^{\prime}-\gamma+i\epsilon))d\gamma^{\prime}$ and $h^{-}\sigma(x, \gamma)=$

$\lim_{\epsilon\rightarrow 0+}(1/2\pi i)\int_{-\infty}^{+\infty}(\sigma(x, \gamma^{\prime})/(\gamma^{\prime}-\gamma-i\epsilon))d\gamma^{\prime}$ , with $h^{+}\sigma\in H^{+},$ $h^{-}\sigma\in H^{-}$ for each
$x$ . We have the following
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LEMMA 1.2. Let $x\in R$ . If $\gamma-\rangle$
$\tilde{\sigma}(x, \gamma)$ is in $H^{+}$ (resp. $H^{-}$ ) then the distri-

bution kernel $\tilde{g}(x, y)$ of $\tilde{\sigma}(x, D)$ vanishes for $y<x$ (resp. $y>x$) and is in $C^{\infty}(\overline{R}_{+})$

(resp. in $C^{\infty}(\overline{R}_{-})$ ) rapidly decreasing at infinity for $y>x$ (resp. $y<x$); and the
converse holds.

PROOF. This lemma follows from Proposition 1.1 in view of

(1.5) $\tilde{g}(x, y)=\int e^{iy\cdot\gamma}\tilde{\sigma}(x, \gamma)\overline{d}\gamma$ ,

and the shift $y\rightarrow y-x$ . That is, we have

(1.6) $\tilde{\sigma}(x, D)f(x)=\int\int e^{i(x-y^{\prime})}$
‘

$\gamma\tilde{\sigma}(x, \gamma)f(y^{\prime})dy^{\prime}\overline{d}\gamma$

$=\int\int e^{i(x-y^{\prime})}\gamma\tilde{\sigma}(x, \gamma)\overline{d}\gamma f(y^{\prime})dy^{\prime}$ .

We write above as

(1.7) $\tilde{\sigma}(x, D)f(x)=\int g(x, x-y^{\prime})f(y^{\prime})dy^{\prime}$ .

We put $z=-y^{\prime}$ . Then by Proposition 1.1 $ z-\rangle$ $g(O, z)$ vanishes for $z<0$ , and
is $C^{\infty}(\overline{R}_{+})$ rapidly decreasing at infinity for $z>0$ . The shift in $y^{\prime}$ by $x(y^{\prime}\rightarrow y^{\prime}-x)$

corresponds to $-y^{\prime}\rightarrow x-y^{\prime}=x+z$ . Hence $x-y^{\prime}=y\mapsto\tilde{g}(x, y)=g(x, x-y^{\prime})$ van-
ishes for $y<x$ and is $C^{\infty}(\{y\geq x\})$ rapidly decreasing at infinity for $y>x$ and
has a limit as $y\rightarrow x+O$ . q.e.d.

2. Case $d=1$

In what follows in this section we shall confine ourselves to those symbols
$\sigma(x, \gamma)$ which can be written as $\sigma(x, \gamma)=(f\circ\psi_{0})(x, \gamma)$ , where $\psi_{0}(x, \gamma)=c(x)\gamma^{2}$ ,
$c(x)\in C^{\infty}(R),$ $c(x)>0,$ $c(x)$ is bounded including derivatives of all orders, and $f$

is a complete Bemstein function on $(0, +\infty)$ . That is, $\sigma$ has an expression

(2.1) $\sigma(x, \gamma)=a+bc(x)\gamma^{2}-\int_{0}^{\infty}(e^{-c(x)\gamma^{2}s}-1)d\mu(s)$ ,

with $a,$ $b,$ $d\mu(s)$ satisfying conditions in Section 1. It follows by an elementary
calculation that for each $x\gamma\mapsto\sigma(x, \gamma)\in S_{1,0}^{2}$ .

Let $Y=R_{+}$ or $Y=R_{-}$ . For a real valed function $u\in C^{\infty}(\overline{Y})$ we put $\overline{u}$ as
$\overline{u}=u$ in $Y$ and $\overline{u}=0$ outside of $Y$. We remark that we write the extension for
real $u$ as above as long as there is no fear of confusion with its complex con-
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jugate. On the other hand, we denote by the same $f$ the complex extension of $f$

when $f$ represents a Bemstein function.
We define the operator $P_{Y}$ on $C_{0^{\infty}}(\overline{Y})$ by $P_{Y}u=P\overline{u}|_{Y}$ .

DEFINITION 2.1. We say that the transmission property to the left (to the right)
with respect to the origin holds for $P_{l}fP_{Y}$ is continuous $C_{0}^{\infty}(\overline{R}_{+})\rightarrow C^{\infty}(\overline{R}_{+})$ (resp.
$C_{0^{\infty}}(\overline{R}_{-})\rightarrow C^{\infty}(\overline{R}_{-}))$ .

REMARK. Our definition transmission property to the left (to the right) may
not coincides with the widely used ones such as transmission property with respect
to the boundary or two-sided transmission property (cf. [4]). However, in connec-
tion with the underlying jump process related to the symbol $f$ , our terminology
may well illustrates the direction of jumps at the boundary. Our definition coin-
cides with that in the former [12].

In view of the expressions (cf. (1.6), (1.7))

(2.2) $\sigma(x, D)u(x)=\int u(y^{\prime})g(x, x-y^{\prime})dy^{\prime}$ ,

we have from Lemma 1.2 and (1.4) the following

PROPOSITION 2.2. Let $\sigma(x, D)$ be the pseudo-dtfferencial operator with the
symbol $\sigma(x, \gamma)$ given by (2.1). Then for all $i\in N\sigma_{(i)}(x, \gamma)\in H^{+}$ (resp. $H^{-}$ ) in a right
neighborhood of $x=0$ in $\overline{R}_{-}$ (resp. in a left neighborhood of $x=0$ in $\overline{R}_{+}$ ) $lf$ and
only $lf\sigma(x, D)$ satisfies the transmission property to the left (to the right) with re-
spect to the origin. Here $\sigma_{(i)}(x, \gamma)=D_{x}^{i}\sigma(x, \gamma)$ .

PROOF. By Green’s formula (cf. [9] (2.2.38), (2.2.39))

(2.3) $ D\overline{u}=\overline{(Du)}-iu(O)\delta$ ,

hence

(2.4) $D\sigma_{Y}u=[D(\sigma\overline{u})]|_{Y}=[\sigma^{\prime}\overline{u}+\sigma D\overline{u}]|_{Y}$

$=[\sigma^{\prime}\overline{u}]|_{Y}+[\sigma(\overline{(Du)})]|_{Y}-i((\sigma\delta)|_{Y})\cdot u(O)$

$=\sigma_{Y}^{\prime}u+\sigma_{Y}(Du)-i(g(\cdot, \cdot))|_{Y}\cdot u(0)$ .

where $\sigma^{\prime}=D_{x}\sigma$ . Last equality follows from $\sigma(x^{\prime}, D)\delta(x)=\int\delta(y^{\prime})g(x^{\prime}, x-y^{\prime})dy^{\prime}=$

$g(x^{\prime}, x)$ in the sense of distributions.
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For the heiger order derivatives we have by the successive use of (2.3),

$ D^{k}\overline{u}=\overline{(D^{k}u)}-i\sum_{0\leq l\leq k-1}(D^{k-l-1}u)(0)D^{l}\delta$
.

Hence we can calculate

(2.5) $D^{k}(\sigma_{Y}u)=((D^{k}\sigma)\overline{u})|_{Y}=\sum_{i=0}^{k}\left(\begin{array}{l}k\\i\end{array}\right)(D_{x}^{i}\sigma)(D_{x}^{k-i}\overline{u})|_{Y}$

$=\sum_{i=0}^{k}\{\left(\begin{array}{l}k\\i\end{array}\right)(D_{x}^{i}\sigma)\overline{(D_{x}^{k-i}u)}-i\sum_{0\leq l\leq k-i-1}\left(\begin{array}{l}k\\i\end{array}\right)$

$\times(D_{x}^{j}\sigma)(D_{x}^{k-i-l-1}u)(0)D_{x}^{l}\delta$

$Y$

$=\sum_{i=0}^{k}\left(\begin{array}{l}k\\i\end{array}\right)(D_{x}^{i}\sigma)_{Y}(D^{k-i}u)-i\sum_{i=0}^{k}\sum_{0\leq l\leq k-i-1}\left(\begin{array}{l}k\\i\end{array}\right)$

$\times(D_{x}^{i}\sigma)\{(D^{k-l-l-\iota_{u)(0)D_{x}^{l}\delta\}|_{Y}}}$ .

Here

$(D_{x}^{i}\sigma)(D_{x}^{l}\delta)(x)=\int D^{l}\delta(y^{\prime})g^{(i)}(x, x-y^{\prime})dy^{\prime}$

$=\int\delta(y^{\prime})D_{y}^{l}g^{(i)}(x, x-y^{\prime})dy^{\prime}=D_{y}^{l}g^{(i)}(x, x)$ ,

where we put $g^{(i)}(x, \cdot)=\mathscr{F}^{-1}[(D_{x}^{i}\sigma)(x, \gamma)](x, \cdot)$ and $D_{y}g$ means the derivative of
$g(\cdot, \cdot-y)$ with respect to $y$ . Hence R.H. S. of $(2.5)=$

$\sum_{i=0}^{k}\left(\begin{array}{l}k\\i\end{array}\right)(D_{x}^{i}\sigma)_{Y}(D^{k-i}u)-i\sum_{i=0}^{k}\sum_{0\leq l\leq k-i-1}\left(\begin{array}{l}k\\i\end{array}\right)D_{y}^{l}g^{(i)}(\cdot, \cdot)\cdot(D^{k-i-l-1}u)(0)$ .

Further we have in the first term above

(2.6) $(D_{x}^{i}\sigma)_{Y}(D^{k-i}u)(x)=\int\overline{(D^{k-i}u})(y^{\prime})g^{(i)}(x, x-y^{\prime})dy^{\prime}|_{Y}$ .

We choose $Y=R$-below for simplicity. If for all $i\in N\gamma-\nu\sigma_{(i)}(x, \gamma)\in H^{+}$ ,

then by Lemma 1.2 and (2.6) we have $((\sigma_{(i)})_{R_{-}})u\in C^{\infty}(\overline{R}_{-})$ for all $u\in C_{0^{\infty}}(\overline{R}_{-})$ .
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Since each $g^{(i)}(x, y)$ is $C^{\infty}$ outside of the diagonal set $\{x=y\}$ (pseudo-local
property), this implies that $(\sigma_{R_{-}})u$ is in $C^{\infty}(\overline{R}_{-})$ for all $u\in C_{0}^{\infty}(\overline{R}_{-})$ if $D_{y}^{l}g^{(i)}(\cdot, \cdot)|_{R_{-}}$

is in $C^{\infty}(\overline{R}_{-})$ for all $l,$ $i=0,$
$\ldots,$ $k;k=1,2,$ $\ldots$ . By Lemma 1.2 this holds if $\gamma-t$

$\sigma_{(i)}(x, \gamma)\in H^{+}$ for all $i=0,1,2,$ $\ldots$ .

On the other hand, if for some $i\in N\gamma-\succ\sigma_{(l)}(x, \gamma)\not\in H^{+}$ , then by Lemma 1.2
the corresponding $g^{(i)}(x, x-\cdot)$ does not satisfy the property to be in $C^{\infty}(\overline{R}_{-})$ .
Then, in (2.6), we can find $\tilde{u}\in C^{\infty}(R_{-})$ which is m-flat for $m<k-i$ but is not
$(k-i)- flat$ in a (relatively closed) left neighborhood of $y^{\prime}=0$ . [Here we say $v$ is
m-flat at $y^{\prime}$ if $D^{j}v(y^{\prime})=0$ for all $j$ with $j\leq m.$ ] By Lemma 1.5.2 of [18] we
can approximate $\tilde{u}$ by $u\in C^{\infty}(\overline{R}_{-})$ up to the $(k-i-1)$ -norm in a (relatively
closed) left neighborhood of $y^{\prime}=0$ . Since $k\in N$ is arbitrary, for some $ u\in$

$C_{0^{\infty}}(\overline{R}_{-}),$ $(\sigma_{R_{-}})u$ is not in $C^{\infty}(\overline{R}_{-})$ by the above decomposition. This concludes
the assertion. q.e. $d$ .

Now we state our main result.

THEOREM 2.3. The $pseudo- d_{l}fferential$ operator $\sigma(x, D)$ having the symbol
$\sigma(x, \gamma)\equiv(f\circ\psi_{0})(x, \gamma)$ given by (2.1), such that $d\mu\not\equiv O$ and $f$ satisfy (1.1), does
not have the transmission property to either side with respect to the origin.

PROOF. Recall the canonical representation of $f$ :

$f(\xi)=a+b\xi-\int_{0}^{\infty}(e^{-\xi\cdot\zeta}-1)d\mu(\zeta)$ .

We assume $d\mu\not\equiv O$ and

(2.7) $d\mu(s)\geq C\frac{ds}{(1+s)^{n_{0}}}$

on $(0, +\infty)$ .
It is well known (cf. [1] (9.12)) that the Bemstein function $f(\xi)$ has the ca-

nonical holomorphic extension to the open half plane ${\rm Re}\xi>0$ , which we denote
by the same $f$ , such that

(2.8) $f(\xi+i\eta)\in \mathcal{O}\{\xi>0\}$ .

(Further $f(\xi+i\eta)\in C\{\xi\geq 0\}$ if and only if $\lim_{x\rightarrow 0}f(x)<\infty.$ ) However we have
by (2.7) that for all $\epsilon>0$

$f(\xi+i\eta)\not\in \mathcal{O}\{\xi>-\epsilon\}$ .



408 Yasushi ISHIKAWA

Writing $\sigma(x, \gamma)=a+bc(x)\gamma^{2}-\int_{0^{\infty}}(e^{-c(x)\gamma^{2}s}-1)d\mu(s)((2.1))$ and putting $\gamma=$

$\gamma_{1}+i\gamma_{2}$ , we have

(2.9)

$\sigma(x, \gamma_{1}+i\gamma_{2})=a+b(x)\{(\gamma_{1}^{2}-\gamma_{2}^{2})+2i\gamma_{1}\gamma_{2}\}-\int_{0}^{\infty}(e^{-c(x)\{(\gamma_{1}^{2}-\gamma_{2}^{2})+i2\gamma_{1}\gamma_{2}\}\cdot s}-1)d\mu(s)$ ,

and we find by (2.8), (2.7) that $\gamma\mapsto\sigma(x, \gamma)$ has a holomorphic extension to
$\{\gamma_{1}+i\gamma_{2};\gamma_{1}^{2}>\gamma_{2}^{2}\}$ , but not to $\{\gamma_{1}+i\gamma_{2};(1+\epsilon)^{2}\gamma_{1}^{2}\geq\gamma_{2}^{2}\}$ for any $\epsilon>0$ .

Hence $\sigma(x, \gamma)$ belongs neither to $H^{+}$ nor to $H^{-}$ properly in a left or
right neighborhood of $x=0$ in $\overline{Y}$ respectively. This means $\gamma\mapsto\sigma(x, \gamma)$ contains
both components of $H_{-1}^{+}$ and $H_{-1}^{-}$ in a left or right neighborhood of $x=0$ in

$\overline{Y}$ . By Proposition 2.2, $\sigma(x, D)$ does not have the transmission property to either
side. q.e. $d$ .

3. General Case

Let $X=R^{d},$ $Y=R_{+}^{d}=\{x\in R^{d};x_{d}>0\}$ (resp. $Y=R_{-}^{d}=\{x\in R^{d};x_{d}<0\}$ ).
For $u\in C^{\infty}(\overline{Y})$ , we put $\overline{u}$ similarly as in Section 2: $\overline{u}=u$ in $Y$ and $\overline{u}=0$ outside
of $Y$. Let $P$ be a pseudo-differential operator on $Y$. We put $P_{Y}$ by $P_{Y}u=P\overline{u}|_{Y}$ .
We denote the space $R^{d}=R^{d-1}\times R$ , and accordingly we write $x=(x^{\prime}, x_{d})$ and
$\gamma=(\gamma^{\prime}, \gamma^{d})$ .

DEFINITION 3.1. We say that the transmission property with respect to $Y$ for
$P$ holds for $Y$ if $P_{Y}$ is continuous $C_{0^{\infty}}(\overline{Y})\rightarrow C^{\infty}(\overline{Y})$

Let $\sigma(x, D)$ be the pseudo-differential operator on $X$ with the symbol $\sigma(x, \gamma)\in$

$S_{1,0}^{2}$ given by the formula above (1.2). We consider the partial distribution kemel
(partial Fourier inversion) $\mathscr{F}_{\gamma_{d}\rightarrow \mathcal{Y}d}^{-1}\sigma(x, \gamma)=(1/2\pi)\int e^{iy_{d}\gamma_{d}}\sigma(x, \gamma)d\gamma_{d}$ . That is, we de-
compose $\sigma(x, D)u(x)$ as follows:

$\sigma(x, D)u(x)=\int\int e^{i(x-y^{\prime})}\gamma\sigma(x, \gamma)u(y^{\prime})dy^{\prime}(1/2\pi)^{d}d\gamma$

$=\int_{R^{d- 1}}\int_{R^{d- 1}}e^{i(x_{1}-y_{1^{\prime}},\ldots,x_{d- 1}-y_{d^{\prime}-1})}(\gamma_{1},\ldots,\gamma_{d- 1})$

$\times\{\int\int e^{i(x_{d}-y_{d})}\gamma_{d}\sigma(x, \gamma)dy_{d}^{\prime}\overline{d}\gamma_{d}u(yl, \ldots,yd-l,yd)\}dy_{1}^{\prime}\cdots dy_{d-1}^{\prime}\overline{d}\gamma_{1}\cdots\overline{d}\gamma_{d-1}$

$=\int_{R^{d}}\int_{R^{d- 1}}e^{i(x_{1}-y[,\ldots,x_{d- 1}-y_{d^{\prime}-1})\cdot(\gamma_{1},\ldots,\gamma_{d- 1})}$

$\times\{\int e^{i(x_{d}-y_{d^{\prime}})\gamma_{d}}\sigma(x, \gamma)\overline{d}\gamma_{d}\}u(\mathcal{Y}1, \ldots,\mathcal{Y}d)dy_{1}^{\prime}\cdots dy_{d}^{\prime}\overline{d}\gamma_{1}\cdots\overline{d}\gamma_{d-1}$ .
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We may write $\{$ . . $\}$ as a kemel $g(x, x_{d}-y_{d^{\prime}}; \gamma_{1}, \ldots, \gamma_{d-1})$ . This gives the par-
tial distribution kemel

$\mathscr{F}_{\gamma_{d}\rightarrow yd}^{-1}\sigma(x, \gamma)=\int e^{iyd\gamma_{d}}\sigma(x, \gamma)\overline{d}\gamma_{d}$

as a function of variables $x_{1},$
$\ldots,$

$x_{d},$ $\gamma_{1},$
$\ldots,$

$\gamma_{d-1}$ and $yd$ .
In effect, we can reduce the case with the help of following general result

to the situation in one-variable $\gamma_{d}$ with constant coefficient with respect to $x_{d}-$

direction.

PROPOSITION 3.2 (Grubb and H\"ormander [8], Theorem 1.6 (i), $(v)$ ). Let
$\sigma(x, \gamma)\in S_{1}^{m_{0}},$ $m\in R$ . The following two conditions are equivalent:

(a) $\sigma(x, D)$ has the transmission property with respect to $Y$

(b) For all $\alpha^{\prime}\in N^{d-1}$ and $\beta_{d}\in N$

(3.1) $\mathscr{F}_{\gamma_{d}\rightarrow \mathcal{Y}d}^{-1}\sigma_{(\overline{\beta})^{)}}^{(\overline{\alpha}^{\prime}}(x^{\prime}, 0,0, \gamma_{d})|_{Y}\in C^{\infty}(\overline{Y})$ .

Here $\tilde{\alpha}^{\prime}=(\alpha_{1}, \ldots, \alpha_{d-1},0)\in N^{d},\tilde{\beta}=(0, \ldots, 0,\beta_{d})\in N^{d}$ .

Hence by Lemma 1.2, we have only to see if, for each $x‘\in R^{d-1}$ , the function
$\gamma_{d}-’\sigma(x^{\prime}, 0,0, \gamma_{d})$ is not in $H^{+}$ (resp. $H^{-}$ ). Here we have our main

THEOREM 3.3. Given a complete Bernstein function

$f(\xi)=a+b\xi-\int_{0}^{\infty}(e^{-\xi s}-1)d\mu(s)$ ,

and a quadratic form $\psi_{0}(x, \gamma)=\sum_{i}^{d_{j=1}}a^{ij}(x)\gamma_{j}\gamma_{j}$ , we assume that (1.1) holds with
some $d\mu\not\equiv O$ , and that $a^{ij}\in C^{\infty}(R^{d}),$

$a_{ij}$ are bounded including derivatives of all
orders, $a^{ij}=a^{ji}$, and $(a^{ij}(x))\geq cI$ for some $c>0$ . Then the pseudo-differential
operator $\sigma(x, D)$ having the symbol $\sigma(x, \gamma)\equiv(f\circ\psi_{0})(x, \gamma)$ has the transmission
property with respect neither to $R_{+}^{d}$ nor to $R_{-}^{d}$ .

PROOF. Let $Y=R_{+}^{d}$ or $R_{-}^{d}$ . The composition $\sigma\equiv f\circ\psi_{0}$ reads

(3.2) $\sigma(x, \gamma)=a+b\sum_{i,j}a^{ij}(x)\gamma_{i}\gamma_{j}-\int_{0}^{\infty}(e^{-s\Sigma_{ij}a^{ij}(x)\gamma_{i}\gamma_{j}}-1)d\mu(s)$ .

Then we see $\sigma(x, \gamma)\in S_{1,0}^{2}$ . Observe that, writing $\gamma_{d}=\gamma_{d}+i\delta_{d}$ ,

$\sigma(x‘, 0,0, \gamma_{d})=a+b\{a^{dd}(x^{\prime}, 0)(\gamma_{d}^{2}-\delta_{d}^{2})+2ia^{dd}(x^{\prime}, 0)\gamma_{d}\delta_{d}\}$

$-\int(\exp[-s\cdot\{a^{dd}(x^{\prime}, 0)(\gamma_{d}^{2}-\delta_{d}^{2})+2ia^{dd}(x^{\prime}, 0)\gamma_{d}\delta_{d}\}]-1)d\mu(s)$ .
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The non-degeneracy condition for the hermitian matrix $(a^{ij})$ assures $a^{dd}>0$ ,

hence again (as in Theorem 2.3) we observe $\sigma(x^{\prime}, 0,0, \gamma_{d})$ has a holomorphic
extension only to $\{\gamma_{d}+i\delta_{d};\gamma_{d}^{2}>\delta_{d}^{2}\}$ for each $x^{\prime}\in R^{d-1}$ .

For each $x^{\prime}\in R^{d-1},$ $\sigma(x^{\prime}, 0,0, \gamma_{d})$ belongs to $H$, and neither to $H^{+}$ nor to $H^{-}$

properly, hence $\sigma(x, D)$ does not have the transmission property with respect to $Y$

by Propositions 2.3 and 3.2 ((b) is violated). q.e. $d$ .
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