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1. Introduction

It is known that the solution of the Cauchy problem for heat equation is
analytic with respect to the space variable x for ¢ > 0, if the initial value belongs
to L2(R"). The purpose of this paper is to show that the solution of the Cauchy
problem for degenerate parabolic equations is analytic with respect to the space
variable x for ¢ > 0, if the initial values are in Gevrey classes.

We shall consider the following Cauchy problem for degenerate parabolic
equations on (0,7) x R" (T > 0),

P(t,x,0;, Dy)u(t,x) = f(t,x), (t,x)e(0,T)eR", (1)
0/u(0,x) = uj(x), xeR", j=0,....m—1, '
where D, = —id, and
P(t,x,0, D) =87+ > Y au(t,x)D2o]". (1.2)

j=1 o:finite
We assume that P is degenerate at ¢ = 0, namely, the coefficients aj,(t, x) satisfy
aja(t, x) = ta(ja)bja(t, X),

where o(jo) are nonnegative integers and b;,(¢,x) belong to C* ([0, T']; y<*?(R™)).
Denote by y<(R") the Gevrey class with exponent s (> 0), that is, the set of all
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functions a(x) defined on R”" such that for any 4 > 0 there is a constant C4 > 0
fulfilling

sup |Dfa(x)| < CqA™|a|t®
xeR"
for every multi-index « € N", where N ={0,1,2,...}.
M. Mikami [6] mentions sufficient conditions to be wellposed in H® by
using Newton’s polygon when the coefficients of P are independent of the space

variable x. We shall introduce Newton’s polygon associated with degenerate par-
abolic equation (1.2) (see S. Gindikin-L. R. Volevich [2]).

DerNITION 1.1, Let  ©(P) = {(j,®) e N""1;5,,(0,x) # 0} and v(P)=
{(V +a(jn)/j,|el/j) e R:; (j, ) € T(P)}, where R? =[0,0) x [0, ). Denote by
N(P) the smallest convex polygon in Ri possessing following properties,

(i) v(P)< N(P),

(ii) if (¢,r) e R%, (¢',r') e N(P), ¢’ < q and r <1, then (q,r) € N(P).

N(P) is called Newton’s polygon associated with P, and N(P) is represented
in the following figure where, for example, * = (1 + o(ja)/j,|a|/j) lie on it.

Y
*

*

N(P)
*

3 *
o(ja) |a
. emRE)
e X
o 1

Here, as the figure below, we introduce some notation for Newton’s polygon
N(P). For a number ry >0, let L, be the line passing the point Qo= (0,r9) which
is tangent to N(P). Denote by Q) = (1 + g1, r1) the vertex of N(P) such that gq; > g
and r; > rhold if (1 + ¢, r) belongs to N(P) and Lry. And denote by Q; = (1+g¢;, 1),
i=1,...,I the vertices of N(P) indexed in the clockwise direction beginning with
0. We note that Q; can be determined by ro. Conversely, 7o can be chosen for Q;
which is defined beforehand.
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LT()

Q41 = (00, 1)

For such picked Q; = (1 + ¢;,7;), put go = —1, qi+1 = o0 and r;41 =r; for
the sake of convenience, and let g; (i =0,...,/) stand for the slopes of the sides
0i0i:1, ie., oi = (rix1—r)/(qiv1—qi), i=0,...,1. It is evident to get the follow-
ing inequalities by the property (ii) of Newton’s polygon N(P)

O<q1 < - <q, ro<ri--<r, oy >0 > >0 =0.

Moreover denote by I'; the sides joining the two vertices Q;, Qi1 for i=1,...,
[—1,ie., ;= 0;0ip1. Besides let T = ()| T if /> 2 and T = @y if / = 1. For
I we shall define the principal part of P as follows.

Pr(t,x,A,&) = A" + > 1709 b, (0, x)E“ 2™ (1.3)

(I+a(jo)/J;ll /i) € T

for t >0, x,£e€ R" and A€ C. Further we define a weight function associated
with N(P) as follows. |

i

wr(s, &) = 19]¢|". | (1.4)

i=1

DEFINITION 1.2. The operator P is said to be I'-parabolic at t =0 if there
exist constants Cy > 0 and 6y > 0 such that Pr satisfies the inequality below
|Pr(t7 X, ;Lv é)l = CO(M" + wr)m (15)

for t >0, x,£€ R" and ) € C with Re 1 > —dpwr.

We shall introduce the function spaces in which we consider the Cauchy
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problem (1.1). For s >0 and p > 0, denote by H,* the set of functions whose
element u € L>(R") such that

4" a(e) e LA(RY), (1.6)

where |¢] = 1/&l + -+ &2 and 4 means the Fourier transform of u. Denote
by H< the set of functions of u(x)e L?(R”) satisfying for any p (> 0).

Denote H¢> =H* =", H*, where H* = {f(x) €L KEYF(E) e LARY), (&) =
1+ lélz}. We know the following theorem on the wellposedness in H<* of the

Cauchy problem (1.1).

THEOREM 1.3 (Theorem 3 in K. Kajitani-M. Mikami [3]). Assume that the
differential operator P with the coefficients by (t,x) in C*([0, T]; ¢’ (R")) is de-
generate and I'-parabolic at t =0. Then there is T > 0 such that the Cauchy problem
(1.1) is wellposed in H for s satisfying 1 <so <s<ry' if ro>0and 1 <sp <
s< oo if rg =0, that is, for any u;j(x) e H and f(t,x) € C*([0,T); H') there
exists a unique solution u(t,x) e C*([0,T); H) of the Cauchy problem (1.1).

We need the above theorem of version of pseudo-differential operators in
order to prove our main below. Denote by the symbol class y*S"™
(k > 0,m € R) the set of all functions p(x,¢{) e C* (R} x R;) such that for any
r > 0 there exists a constant C, > 0 satisfying

1PV (6, &)] < Gt Pl 4 plreqeym=r,
for every multi-indices «, 8 € N”, where azz))(x, &) = d;Dba(x,&). is
valid for the following pseudo-differential operator
m m
P(t,x,2,8)=2"+>_ > by (6, x)E AT+ Y 17Uy (1, x,E)<EYF AT,
j=1 a:finite Jj=1 k:finite
where o(jk) are nonnegative integers, bu(t,x,&) belong to C*([0, T); y*S9%),
o(jk) and dj satisfy
U U (1 +M,i’i) cc N(P).
i=1 k:finite J J
Our main result is the following

THEOREM 1.4. Assume that 1 = 59 <s£r51 ifro>0and 1 =so <s< oo if
ro = 0 moreover the differential operator P with the coefficients bj,(t,x) belong-
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ing to C*([0,T];yV’(R")) is degenerate and T-parabolic at t = 0. Then for any
ui(x) e H and f(t,x) e C*([0,T]; HV) there exists a unique solution u(t,x) €
C*(([o, T];H;(l,}) (¢ > 0) of the Cauchy problem (1.1), where

0 —olh h
0<i<I-1 ; 1<h<j—1 +Jqi—o(ho)+j

1—r b
d=14 max |:_]< r’+q,~+1>}, max PaH} I

g; g
1<j<m o : finite

(1.7)

Here, denote by [p| the maximal integer not greater than p.

Here, we should mention that H<!> is contained in the set of analytic func-
tions by Lemma 2.2. Consequently shows the analytic regularity of
solutions to the Cauchy problem (1.1). To prove we transform the
operator P by exponential mapping and apply to the transformed
operator. This proof is given in the section 3. We shall consider the following
Cauchy problem with the coefficients depending only on ¢ and 2/ > k (2/,k € N)

{ duu(t, x) + ta(f)D2u(t, x) + t*b()Dyu(t,x) = 0, (¢,x) € (0,T) x R, (1.8)

u(0,x) = up(x).

The following simple example satisfies the conditions in but we can
show easily the analyticity of solutions without [Theorem 1.3. In the section 2 we
shall explain this fact.

ExaMPLE 1.5. Let 1 <s< (2] —k)/(2] —2k —1). Assume that Re a(t) > C >
0 then for any uo(x) € H there is a unique solution u(t,x) € C*((0, T]; H i)
(¢ > 0) of the Cauchy problem (1.8). Consequently for any & > 0 there is C; > 0
such that

IDu(t, x)| < Co(er®1)™|q! (1.9)

for 0<t<T, xeR.

2. An Example

We shall investigate the case of (1.8) and prove the statement in Example 1.5
in this section. First of all, we transform u(z,x) into v(¢,x) by

o(t, x) = e POY(r %) = (27! J X EHTIE 0y ) g @2.1)
R



266 Hironobu HoNDA

Then, since
80 = elk + 1)t (D Ye Py 4 8" POy

= —r?a(t)D*v — t*{b(t)Dx — e(k + 1){Dx)}v,

(1.8) is transformed into the Cauchy problem below

(2.2)

0,0(t, x) + ta(t)D}o(t, x) + t*{b(1) Dx — e(k + 1)<Dx>}v(t,x) = 0,
v(0, x) = up(x).

The Cauchy problem (2.2) obviously has same degenerate form at =0 as
(1.8). Now we shall observe Newton’s polygon associated with (2.2). In this case,
Newton’s polygon associated with (2.2) consist of the two points (1 + k,1) and
(1+21,2) on R:. Putting Q; = (142/,2), we can take ro = (2/ -2k —1)/(2] - k).
The operator P for (1.8) is I'-parabolic at ¢t = 0 since Re a > 0. The Newton’s
polygon associated with (2.2) is represented in following picture.

Then, we get

LEMMA 2.1. Let 1 <s< (2] —k)/(2] —2k — 1). Assume that Re a(t) > 0 on
the Cauchy problem (2.2). Then for any ug(x) € C* ([0, T); HS?) there exists an
unique solution v(t,x) e C*([0,T]; H”) on x e R.

Though this lemma is proved in [3], we shall give a simple proof. We trans-
form (¢, x) into w(¢,x) by

w(t, x) = e MEPIy(1, x) = (27) 7 J e e AL(1,¢) de,
R

where

M - s
A1) = =T {1+ O T+ () o= T 23
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(Ed, =1/h?+|&)* and h>1, M >0 are some large parameters. Putting
Adt,€) = A (1,€) = M(1+<E57) 7 0, (24)
we can write
dw = —A(1, Dy)e MDDy 4 o= AEDY gy
= —A((t, Dy)w + t?a(t)D*w + t*{b(t) Dy — e(k + 1)<Dx>}w.

Therefore, we have

{ o (t,8) = [~Au(1,8) — t*a() D3 — t*{b(1) Dx — e(k + 1)<DHIW(2, &), (2.5)

w(0,¢) = e %9q0(2).

In advance, by noting ro <s 'w(0,-) € L? holds because of uoe H<. It is enough
for the proof of to derive w(t,-) € L?. We show w(¢,-) € L? by using
that if (d/dt)|w(z, &)]* = 2 Re w'w < 0 holds then (¢, &)|* < [w(0, &)|*. Therefore,
our task is to find some condition satisfying

—2Re w'w=A(t,&) + 1% Re a()E? + t*{Re b(1)é —e(k+1){&ED} =0, (2.6)
Noting A,(#,¢) = 0, we have
! Re a(t)&? + t*{Re b(1)¢& — e(k + 1)&E>}
> 1 Re a()¢* — t*{|Re b(1)| + ek + 1)}<&) = ¥ Re a(1)&? — Ct*<&).

Hence, (2.6) holds if 1% > C,(£>/&* Re a(t) since 2/ > k. On the other hand,
1k < C(&)/E% Re a(t) implies

1< CEyTVER), (2.7)

because
C<& OO
E2Rea(r)  |E%alr)|

By the way, by s > 1 and Re a(#) > 0, (2.6) is estimated as
A1, &) + P Re a(£)E* + t*{Re b(1)& — e(k + 1){ED}
2 A(t,8) = t{Re b()E + ek + 1)<} = Al(t,€) — Cr*<E).
Noting and (2.7) we get (2.6) from the above if M satisfies

> ClEy

C<é>}ll—a(1+k)—ro <M.
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In fact we can choose M > 0 since 1 —a(1 +k) —ro <0. It follows from
that ro > (21 —2k —1)/(21 — k) implies w(z,-) € L?*(R). Hence [Lemma 2.1, namely
v(t,x) € HS, is verified.

Then transformation turns out v(t,x) = e Poy(r, x) € L*(R") on ac-
count of H¢> < L%(R"). Finally, we can see u(t,x) € H{.2,. We can easily show
the following fact.

LEMMA 2.2. If u(x) belongs to HS, then u(x) is in Gevrey class with ex-
ponent s, that is, for any p >0 there exists a constant C, >0

sup [DZu(x)| < Cp~jalt®,

xeR"

for every multi-index o € N". In particular, u(x) is a real analytic function if s = 1.

Using this lemma, we have (1.8).

3. Proof of

We shall prove in this section. First of all, we shall transform
u(t,x) in (1.1) into o(t,x) by

o(t, x) = e POy(t, x) = (Zn)_"J e S Op(r &) dE, (3.1)
Rn

similar to for some nonnegative integer 6. Then we remark that

oku(t, x) = &P (3, + Q) v(t,x), k=1,...,m,
where
Q(1,D,) = —e1°(D,>, Qu(t,Dy) = 3,Q(t, D) = —e5t°~'(Dy>. (3.2)

Therefore P of (1.2) can be rewritten such that
P(t,x,0,, Dy)u(t,x)

= (65" +D D b, x)D;a:"-f> (2:2)(, x))

j=1 a:finite

m
— eQ(t,D_\-)(at_*_Q’)mv(t’ .X)+ z Z ta(ja)bja(ta X)Dﬁen(’»D-\')(at+Q,)’”‘fu(t»x)
j=1 a:finite

m
_ eg(t’D‘){(az-*-Qt)m-i—Z Z to(ja)efﬂ(t,Dx)bja(t, x)eQ(”D‘)Dx“(a,+Q,)m_j}v(t, x).
j=1 a:finite
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Hence, we have the following new Cauchy problem for degenerate parabolic
equations on (0,7) x R" (T > 0)

P(t,x,0;,Dx)v(t,x) = e"Q(”D"‘>f(t, x), (4, x)e(0,T)xR", (33)
(at—l—Qt)jv(O,x):uj(x), xeR" j=0,....m—1, '
where
P(1,x,0, D) = (0, + Q)" + > _ > 1°bjq(t,x, D)DE(3: + Q)" (3.4)

j=1 a:finite

and bj,q(t,x,Dy) = e MtPIp (1, x)e=Px). We shall prove the following fact
bellow.

LeEMMA 3.1. If the operator P of the Cauchy problem (1.1) is I'-parabolic at
t =0, then P, which is transformed P by (3.1) with

_ f1—r; [o&|+j—h—jr,~ . .
(5—1+0Srrl;2;(_1{[j< s +q,+1)],1sn}r112§_1[ p +jqi—o(ha)+j—h

I<j<m o finite

(3.5)

is also T'-parabolic at t = 0.
We need the following lemma in order to prove the above lemma.

Lemma 3.2. We have

(A+Q,(8,8), j=1,

(A+Q(t,6)* +d7(1,0), j=2,

o((0 + Q)N (14,8 = (A+Qu(t,E)) > +d (1,6 G+ Qu(1,6) +dP (1,8), j=3,

J . ;
(A+Q(6,0) + D471 OG+Qu(1,8) ™, j=z4,
=2

\
where, for some constants CJ, CJ and some polynomials Ci(j)(t)

. . /2]
déj) — C£l§—2<f>, d3(]) Cjté 3<é> and d U _ té IZ C j) <5>, 4<] <J.
(3.7)

Here, o((8; +Q,)’) stands for the symbol of (8,+ )’ and denote by [p] the
maximal integer not greater than p.
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ProoF. We use induction on j. The claim is trivial for j = 1,2, 3,4 such that

o3+ Q) = A+ Q,,
a((8, + Q)2) = (A+ Q)% + Qu(1,8),
a((8: + Q%) = (A+ Q) +3Qu(2,E) (A + Q) + Quui(1,E),
(0, +Q)*) = (A+ Q) (0((3 + Q)*)) + 3,(0((3: + Q)))
= (A4 Q)" +3Qu(A + Q)% + Qu(A + Q)

+3Q,(A+ Q) + 3Qu(A + Q) + 3Q% + Quut.

Next, assume (3.7) is true for j—1 (j =5). Then
O'((a, + Qt)j)(t? }*’ é)
= (A+Q)(o((6 + Q)™ + alo((@ +Q)7)

j-1
= (A+ Q) { A+Q) " +>da+ Q,)j‘l“’}

i=2
+a{(4+g +Zd(’ D+ Q)" }

R sl S . .
= (A+Q) + Y dVTV A+ Q)T+ (- DA+ Q) T
i=2

J-1 . A il
+30d A+ Q)T T+ Y (- 1 - )d T G+ Q) T,
i=2 i=2
: ‘ . . . =1 y
— A+ Q) +dV A+ Q) 2 +aV V) + ) dT T+ Q)
i=4

F (= DA +Q) 2+ 8,dY V(A + Q)" +Zad}11 D+ Q)™
i=4

. Jj=1 . o .
+0d9T) + 3+ 1 - 0d V0 + Q) T+ a5V
i=4

= (9 +{( = DQu+dg YA+ Q)+ (a7 + 0y VY (14 Q)

1 ‘ . - . .
+ 3 4@V V40 dT0 + (+1-DQud %y YA+ Q) T +0id TV +d Q.
i=4
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Thus putting
dy) = (j - 1)Qu+dy ™V
) = gl 4 a,dsz“”,
dif =™+ odTV + (+1-DQud GV, =451,
4V = 0,49 +aY0a,,
we have (3.7) inductively. Q.E.D.

Hereafter we begin to prove Lemma 3.1. We can see from (3.4),

a(P)(t,x, 4, z):a((a,m,)’"nfj S 17U buq(t, x, )&% (8 + Q) ™). (3.8)

J=1 o finite
It follows from that
o (0 + Qu(1, &)™)

m—j . .
= (A +Q(1,E)"7 + 3 d" (1,6 (2 + Qu(1,8)" 7!
1=2
= Jm oy pm-l <’” 1“j>£2t(t, <)

22— m-
+Z;t’""/ ,{(m ]>Q, (t,¢) +Z(ml_]2_l. Z>Qt(1,f)l = ld2(+zj (l’é)}

1=

' . .
=Ty g i, (3.9)
I=1

where
m—j m-—j
o= (")
and for /=2,... . m—j

4 -2
g§'""’(t,é)=( ! )Q’t”r +Z( 1—2—- )Q’(Ié)lzld”’ﬂ)(’é)'

1=

From (3.2) and (3.3), we can see

9" (1,8 = TG (1,8), 1=1,...,m~], (3.10)
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and the order in & of g('" “(1,&) is not greater than /. Then from (3.8), and
(.10),

a(P)(t,x,4,¢)
="+ i{gj’”)(z, &)+ 1" ba(t,x, é)é“}i’"‘f
= 2
b3S e, 8 S 6 1 2
=1 x =1
= +ZA’" REACEES MLl
+§§ajz“<’wbm<z,x, &g (1 ,f)}
="+ zm: > 17U bjq(t, x,E)E*A™
=4
+Z{ " (2,&) +ZZ: o)+ 3-G=hpy o (1, x, E)E*G " (1 ,é)}im‘f. (3.11)

We choose 6 such that

{(1+‘5]’ 1)’101(1+a(hoc)+5j— (j—h)’|a1+(j—h))} cc N(P).

h= J

This is clear for i = /. Therefore, nonnegative integer 6 has to be the minimam
integer satisfying

0>j(1 —r)o7 +jgi+Jj

and
8> (ja| +j—h—jr)o; +jgi—olha)+j—h h=1,...,j—1
for i=0,1,...,/ — 1. Hence, we can choose
1- i —h—jr;
0=1+ max {[}( I ~+1)], max ['aH—] i +jqi—-o(hoc)+j—h]}.
0<i</-1 Oj 1<h<j-1 g
I<j<m o finite

(3.12)
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Moreover, we need prepare following to complete the proof of
[Lemma 3.1.

LEMMA  3.3. Let  aq(t,x,D,) = e ¥0Pq(1, x)e¥ Py for  a(t,x) €
C* ([0, T); »V’(R")). Denote by aq(t,x,&) the symbol of aq(t,x,Dy). Then we
can write

aq(t,x,&) = a(t, x) + et’a; (¢, x,&) + r(t, x, &), (3.13)

where ai(t,x,&) € y'S° and r(t, x, &) satisfying there are constants C; >0, rz >0
and e, > 0 such that

) (6%, E)] < Carg "o+ Bl 314
(B) a

for 0<t<T, x,£e€R", o,fe N".

This lemma can be obtained by simple modification of the proof in K.
Kajitani-S. Wakabayashi [4]. The proof of will be given in Appendix.
In conclusion, the choice of § as (3.12) and enable to be written by

m Jy
o(P)(t,x,4,&) = A"+ 3> 17N by (1, x,8) + (1, x, &)} A", (3.15)
=1 k=1
where by (1, x,&) € C*([0, T]; <V 877) with by (0, x,&) = by(0,x) and r(z, x, &) sat-
isfying [3.14). Thus is proved.

Now we prove It follows from that if P satisfies
the conditions in then P does so. Hence, we can apply
to the Cauchy problem for P, and we can obtain the solution v(z,x) of (3.3) in
C* ([0, T]; H). Putting u(z, x) = e~"P>p(¢, x), we get the solution of the Cauchy
problem (1.1) which is contained in C*((0, T'}; H;}f) for any ¢ > 0 and 6 chosen
in (3.12). Thus we completed the proof of

Appendix

PROOF OF LEMMA 3.3. The symbol of the product of the operators e Px),
a(t,x) and €%+ is given by

R2n

= 0s — JJ e~ VUL FAL g(r x + y) dydy, (A.1)
R
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where dn = (2n)™" dn. Putting
—Q(t,& + 1) +Q1,8) = e’ (KE + 1) = (&)
n 1
= ety | &+ om)ce+ om>! a0
j=1
= 8t6}7 : w(é’ ’7)’
(A.1) can be rewrited by using Stokes formula

aq(t,x,&) = 0s — J e O eI Mg (1, x + y) dydy
JJRr>

=05 — dn e “Ma(t,x +z+ iat‘sw(f, n)) dz
JR" JR"—igtow(&,n)
= 0S5 — dn| e ¥"a(t,x+y+ iet’w(&, 7)) dy
JR" JR"
=os—| dn N e a(t, x + y + et w(E, 1)U n s g (111/<ED) dydn

+ 05— Lﬁn L"e"'y"’a(t, x+y+iet®w(E ) (1= xn1ieip(171/<ED)) dydn
= bi(t,x,&) + by(t, x, &), (A.2)

where yy.jap5(t) =1 if 1 <1/4, Antiasp (D) =0 if £>1/2 and
1D oy (D] < GOV, (A.3)

if k<N+|a+p| and j=1,2,.... Thus, by Taylor expansion, we obtain

3,8 = o= 3 [ ay o, x+ iorw(Em) ) tstarn(11/ <) v

lyl<N
+rN(t,X,é), (A4)

where

1
rn(t,x, &) =os— Y Ny ”J (1 - N e 181 {ay (1, x + Oy + ist’w(&,n))
WI=N 0

X An+iasp (111/<ED)} dydnds. (A.5)
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Put for 0 <j <N —1,

pi(t,x,&) =0s—> “e Yag (t, x + iet’w(E,m) ()7 v iers (11/<ED) dydn

ly|=j

= Z y!_lag{a(y) (1, x + iet°w(¢, 1)) }y=o- (A.6)
Iv1=/
Since

1
102w (&, 7)] <copo'°"|cxl'J (& + 0ny™1" b,

|0%e(&)] < Crpy™[aft<e>™,

where (&) = E(E)7!, we can see p;(t,x,&) € C°([0, T];7'S~). Hence it follows
from that there is p(¢,x,&) which satisfies that there is r > 0 such that

ozDL(p(t,x, &) — Zp,txé Colrpo) ™o+ BINKE N (A7)

for0<t<T, x,eR", o,fec N, N=1,2,....
We define

r(ta X, é) = aQ(t, X, é) _p(taxa é)
It follows from (A.2), (A.4) and (A.6) that we have

N-1
r(t>x7 é) = (ij(ta X, g) ——p(tv X, é)) + VN(Z, X, ‘f) + b2.(ta X, 6)
j=0

for any positive integer N.
We shall prove that r(z,x,&) satisfies (3.14). We now estimate ry(z,x,<).
Integration by part gives for lp = 2([n/2] + 1)

rNEz))(z, X, é)

1
= S [[ a= oM ter iy i,y o,y

[y|=N

x 0708 {a(yp) (£, x + Oy + ist®W(&, M) A nriarp (111/<ED)} dydndb.  (A.8)
We put

Fi(t,x,& y,m) = <pd 70D, Yo yd>™0 (D,

x 010 {agp) (8, x + Oy + iet®W(E, 1)) X n+1wrp (111/ <ED)}-
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Then since |7| < <&)/2, on Supp xnip.+p, WE Can estimate

IFi(1,%,& pom)| < Ci(rpy) 2V Plla+ BIINICyY o iy o< ey V V!

Therefore integrating this term we can estimate from (A.8)
I (%, )| < Calrpy) ™ AN+ B> (A.9)
As to by(t,x,£), we have from (A.2)

b (1%, ) = [[ 7 1ny <D,y i<y oDy

x 0D {a(t,x + y + iet® w(E M1 = xnsiasp (111/<ED))} dydn.  (A.10)
We put |

Fa(t,x,& y,m) = <>~ <Dyy <y 0<D, H"
x 05 DE{a(t,x + y + iet’ w(&, 1)) (1 — X 1urp (I1/<EX))}-

Then we get from (A.3)

ID}Fy(t,x,& y,m)| < Ca(rpy) ™ a4 B4+ 4|1 p> 70 ()70
for any A e N". It follows that for any 4

\F>(t, %, & 1)| < Ca(rps) P M+ B+ 2|1y o,

where

F(t,x, &) = je-"y"'m,x, & y,1) dy.

Therefore there is ¢ > 0 such that

|Fa(t, x,&m)| < Cs(rp3)_|“+ﬂ||a + B|Ind> oem20<O

because of |n| > <&)/2 and we get from (A.10)
1625 (£, x,8)] < Cs(rp3) ™ * Mo 4 Blle0<. (A.11)

Hence we get from (A.7), (A.9) and (A.11)

Dﬁaé{ (ij (¢,x,&) — p(t, x, é)) +rn(t,x, &) + ba(t, x, f)}'

< Co(rpa) "IN Yo+ BIKE T + Cs(rp) ™+ Bllem .

P (,x,8)| =
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for any positive integer N. Taking the minimum with respect to N, we can see for
some & > 0

r®) (2, x, &) < Cor71#hl|g 4 Blle <,
(B) a

Taylor expansion yields
p(t,x, &) =a(t,x+ iet‘sw(«f, 0)) + et’ai(t,x,&) = a(t, x) + ta; (1, x, &)

where a;(t,x,¢) € y1S°. Hence, we can prove [3.13). Q.E.D.
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