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AN EXPLICIT FORMULA FOR THE SQUARE OF
THE RIEMANN ZETA-FUNCTION ON

THE CRITICAL LINE
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A. MIYAI

1. Introduction and Statement of the Results

Let as usual $s=\sigma+lt$ be a complex variable, $d(n)$ the number of positive
divisors of the integer $n$ , and $\zeta(s)$ the Riemann zeta-function. For a positive
integer $k$ , the fundamental explicit formulas for $|\zeta(1/2+iT)|^{2k}$ or its averaged
form with Gaussian weight $(\Delta\sqrt{\pi})^{-1}\exp(-(t/\Delta)^{2})$ are known for $k=1,2$ : namely,
Jutila’s explicit formula for $|\zeta(1/2+iT)|^{2}$ with the Atkinson function $f(T, n)$

((1.3), (1.4) below), and in the fourth power case, Motohashi’s explicit formula
for $(\Delta\sqrt{\pi})^{-1}\int_{-\infty}^{\infty}|\zeta(1/2+i(T+\iota))|^{4}\exp(-(t/\Delta)^{2})dt$ with spectral analytic quan-
tities ([7], [8]).

One of the most important features of these formulas consists in the fact that
one can derive non-trivial information on the size of $|\zeta(1/2+iT)|$ from them with-
out appealing to any general theory of exponential sums. Indeed, the Hardy-
Littlewood classical bounds $\zeta(1/2+iT)<<T^{1/6+\epsilon}$ follows immediately from the
formulas. The aim of the present paper is to give an altemative explicit formula
for $|\zeta(1/2+iT)|^{2}$ endowed with such a nature:

THEOREM. Let $\theta$ be a constant with $0<\theta<1$ and $\alpha$ a number satisfying
$\theta\leq\alpha<1$ . Then one has

(1.1) $|\zeta(\frac{1}{2}+iT)|^{2}=\sqrt{2}\sum_{2T/\pi+1\leq n\leq T_{C}(\alpha)}\frac{(-1)^{n}d(n)}{\sqrt{n}(1/4-T/(2\pi n))^{1/4}}\cos(f_{C}(T, n))$

$+2\sum_{1\leq n\leq T\alpha/(2\pi)}\frac{d(n)}{\sqrt{n}}\cos(T\log(T/(2\pi ne))-\pi/4)+O(T^{\epsilon})$

Received March 6, 2000.
Revised January 24, 2001.



248 Akio MIYAI

where $T_{C}(\alpha)=(1+\alpha)^{2}T/(2\pi\alpha)$ and

(1.2) $f_{C}(T, n)=2T$ arcosh $\sqrt{\pi n}/(2T)-2\pi n\sqrt{1}/4-T/(2\pi n)+\pi/4$ .

As for the order of $|\zeta(1/2+iT)|$ , one has

COROLLARY. The estimate $\zeta(1/2+iT)<<T^{1/6+\epsilon}$ follows from (1.1).

The formula (1.1) should be compared with Jutila’s formula ([5, Theorem 2],
see also Chapter 15 in Ivic [3]): under the same assumption for Theorem, one has

(1.3) $|\zeta(\frac{1}{2}+iT)|^{2}=\sqrt{2}\sum_{1\leq n\leq T(\alpha)}\frac{(-1)^{n}d(n)}{\sqrt{n}(1/4+T/(2\pi n))^{1/4}}\cos(f(T, n))$

$+2\sum_{1\leq n\leq T\alpha/(2\pi)}\frac{d(n)}{\sqrt{n}}\cos(T\log(T/(2\pi ne))-\pi/4)$

$+O(\log T)$ ,

where $T(\alpha)=(1-\alpha)^{2}T/(2\pi\alpha)$ and

(1.4) $f(T, n)=2T$ arsinh $\sqrt{\pi n}/(2T)+2\pi n\sqrt{1}/4+T/(2\pi n)+\pi/4$ .

The function $f(T, n)$ appeared for the first time in Atkinson’s now famous
formula ([1]) and plays important roles in the quadratic theory of $\zeta(s)$ (see, e.g.,
Ivic [3], [4]). Through many applications of the Atkinson formula, it tumed out
that, as far as one is concemed with mean values in short intervals, its “differ-
entiated form” (1.3) suffices for most purposes. Our formula (1.1) with the
function $f_{C}(T, n)$ gives an altemative form for Jutila’s formula with the Atkinson
function $f(T, n)$ .

From the fact that the formula (1.1) has the factor $(1/4-T/(2\pi n))^{-1/4}$ and
that $(d/dT)f_{C}(T, n)=2ar\cosh(\sqrt{\pi n}/(2T))$ holds, one can observe that the size
of $|\zeta(1/2+iT)|^{2}$ depends heavily on the behavior of the divisor function $d(n)$

with $n$ near $ 2T/\pi$ .
The bulk of the present paper is detailed analysis of applications of the

Voronoi formula to an expression for $|\zeta(1/2+iT)|^{2}$ ((2.1) below). It is closely
related to the transformation theory of Dirichlet polynomials developed by Jutila
([5], [6]). In applying saddle point method, as is described in section 4 and 5,
somewhat a delicate analysis around the saddle points is required.

In the last section, together with the proof of Corollary, averaged forms with
Gaussian weight are discussed in comparison with the existing formulas.
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NOTATION. Throughout the paper, $T$ stands for a large parameter and the
abbreviation $L=\log T$ is frequently used. It will be convenient in the proofs
to use the letter $c$ to denote certain positive numerical constants and, $\epsilon$ positive
constants which may be arbitrarily small, but are not necessarily the same ones
at each occurrence. For complex numbers $z_{1}$ and $z_{2}$ , the symbol $[z_{1}, z_{2}]$ stands
for the oriented segment from the point $z_{1}$ to $z_{2}$ . We reserve the letter $\eta$ for
$\exp(\pi i/4)$ . Symbols $T(\alpha)$ and $T_{C}(\alpha)$ are defined in (1.1) and (1.3). $I_{\alpha}$ is the
interval $[\alpha T/(2\pi), T/(2\pi)]$ . Also recall that arsinh(z) $=\log(z+(z^{2}+1)^{1/2})$ for
$|z|<1$ and arcosh $(z)=\log(z+(z^{2}-1)^{1/2})$ for $|z|>1$ .
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2. An Application of the Voronoi Formula

The following expression for $|\zeta(1/2+iT)|^{2}$ is the starting point of our proof:

(2.1) $|\zeta(\frac{1}{2}+iT)|^{2}=2\sum_{1\leq n\leq T/(2\pi)}\frac{d(n)}{\sqrt{n}}\cos(T\log T/(2\pi ne)-\pi/4)+O(L)$

where $L=\log T$ . This follows from the approximate functional equation for
$\zeta(1/2+iT)^{2}$ :

$\zeta(\frac{1}{2}+iT)^{2}=\sum_{1\leq n\leq T/(2\pi)}d(n)n^{-1/2-iT}+\chi^{2}(\frac{1}{2}+iT)1\leq n\leq T/(2\pi)$$\sum$ $d(n)n^{-1/2+iT}+O(L)$

combined with the functional equation $\zeta(1/2-iT)=\chi(1/2-iT)\zeta(1/2+iT)$ where
$\chi(s)=\pi^{s-1/2}\Gamma(1/2-s/2)\Gamma(s/2)^{-1}$ and the formula

$\chi(\frac{1}{2}-iT)=\exp(iT\log(T/2\pi e)-\pi/4)(1+O(T^{-1}))$ ,

which is obtained by Stirling’s formula.
Putting $\alpha$ a number satisfying $0<\theta\leq\alpha<1$ , we split the sum (2.1) into two

sums:

(2.2) $|\zeta((\frac{1}{2}+iT)|^{2}=\sum_{1}+\sum_{2}+O(L)$

where $\sum_{1}$ is the sum of the terms with $\alpha T/(2\pi)\leq n\leq T/(2\pi)$ and $\sum_{2}$ the others.
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The first sum $\sum_{1}$ is to be transformed by the Voronoi formula for $\Delta(X)$ , the
error term in the Dirichlet divisor problem:

(2.3) $D(X)=\sum_{1\leq n\leq X}/d(n)=X(\log X+2\gamma-1)+1/4+\Delta(X)$

where $\gamma$ is the Euler constant and the symbol $\sum_{1\leq n\leq X}^{\prime}$ denotes that the last term
in the sum is halved if $X$ is an integer. Voronoi’s classical formula for $\Delta(X)$ is

(2.4) $\Delta(X)=-\sqrt{X}\sum_{n=1}^{\infty}\frac{d(n)}{\sqrt{n}}(Y_{1}(4\pi\sqrt{nX})+\frac{2}{\pi}K_{1}(4\pi\sqrt{nX}))$

where $Y_{v}$ is the ordinary Bessel function of the second kind and $K_{v}$ is the modified
Bessel functions in usual notation and the series is boundedly convergent in any
closed finite subinterval of the interval $(0, \infty)$ , and uniformly convergent in any
such interval free from integers. By using the well-known asymptotic approxi-
mations for $Y_{v^{-}}$ and $K_{v}$ -Bessel functions (see, e.g., Ivic [3, (3.12), (3.13)]), one can
describe the series in (2.4) as the sum of the series with terms containing trigo-
nometric functions: namely, for a given positive integer $K$, one has

(2.5) $\Delta(X)=\sum_{k=1}^{K}a_{k}X^{3/4-k/2}\sum_{n=1}^{\infty}\frac{d(n)}{n^{1/4+k/2}}\sin(4\pi\sqrt{nX}-(-1)^{k}\pi/4)+O(X^{1/4-K/2})$ ,

where $a_{k}\prime s$ are computable absolute constants. We use the first two of them;

(2.6) $a_{1}=1/(\sqrt{2}\pi)$ and $a_{2}=-3/(32\sqrt{2}\pi^{2})$ .

Here, before applying the Voronoi formula, we multiply every $teml$ in the
relevant sum $\sum_{1}$ by a trivial factor $1=\exp(-2\pi in)$ , which regulates the distri-
bution of the saddle points which appear in the exponential integrals.

Denote by $I_{\alpha}$ the interval $[\alpha T/(2\pi), T/(2\pi)]$ and write the first sum $\sum_{1}$ as

(2.7) $\sum_{1}={\rm Re} 2\eta^{-1}\sum_{0}$

where the letter $\eta$ stands for $\exp(\pi i/4)$ . Then the sum $\sum_{0}$ is transformed by using
(2.3), up to a possible error term $O(1)$ , into

(2.9) $\int_{J_{\alpha}}X^{-1/2}\exp(iT\log(T/(2\pi Xe))-2\pi iX)(\log X+2\gamma)dX$

$+\int_{I_{\alpha}}X^{-1/2}\exp(iT\log(T/(2\pi Xe))-2\pi iX)d\Delta(X)$ .
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By using the first derivative test, the first integral in (2.9) is estimated by
$O(1)$ . The main contribution comes from the second integral term. This we inte-
grate by parts to give, coupled with the classical estimation for $\Delta(X)$ ,

(2.10) $-\int_{I_{\alpha}}\Delta(X)\frac{d}{dX}\{X^{-1/2}\exp(iT\log(T/(2\pi Xe))-2\pi iX)\}dX+O(1)$ .

Thus, using the Voronoi formula (2.5) for $K=2$ , we have

(2.11) $\sum_{1}=-(1/(\sqrt{2}\pi)){\rm Re}(V_{1}^{(+)}+V_{1}^{(-)})+(3/(32\sqrt{2}\pi^{2})){\rm Re}(V_{2}^{(+)}-V_{2}^{(-)})+O(1)$

where

(2.12) $V_{1}^{(\pm I}=\eta^{\mp 1-1}\exp(iT\log T/(2\pi e))\sum_{n=1}^{\infty}\frac{d(n)}{n^{3/4}}$

$\times\int_{J_{\alpha}}X^{1/4}\exp(\pm 4\pi i\sqrt{nX})\frac{d}{dX}\{X^{-1/2}\exp(-iT\log X-2\pi iX)\}dX$

and

(2.13) $ V_{2}^{(\pm)}=i^{-1}\eta^{\mp 1-1}\exp$ ( $iT$ log $T/(2\pi e)$ ) $\sum_{n=1}^{\infty}\frac{d(n)}{n^{5/4}}$

$\times\int_{I_{\alpha}}X^{-1/4}\exp(\pm 4\pi i\sqrt{nX})\frac{d}{dX}\{X^{-1/2}\exp(-iT\log X-2\pi iX)\}dX$ .

The termwise integration is legitimate from the bounded convergence of the series
in the Voronoi formula.

3. Integral Terms Without Saddle Points

In the series $V_{j}^{(-)}(j=1,2)$ in (2.12) and (2.13), since the derivatives of
the functions $-4\pi\sqrt{nX}-T\log X-2\pi X$ are monotone and smaller than
$-cT^{-1/2}(\sqrt{n}+\sqrt{T})$ , the integrals involved are estimated by $cT^{1/4}(\sqrt{n}+\sqrt{T})^{-1}$

These contribute to the series $V_{j}^{(-)}(j=1,2)$ an amount $O(L)$ .
As for the integrals involved in the series $V_{j}^{(+)}(j=1,2)$ , saddle points can

occur. Denote the functions in the exponential integrals in the series $V_{j}^{(+)}$

$(j=1,2)$ by

$F(X)=F(T, X, n)=4\pi\sqrt{nX}-T\log X-2\pi X$ .
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For the terms with $ n\geq 2T/\pi$ , the saddle points, the roots of the equation
$F^{\prime}(X)=0$ ;

(3.1) $x-\sqrt{nx}+T/(2\pi)=0$

are given by

(3.2) $x_{n}^{\pm}=n/2-T/(2\pi)\pm n\sqrt{1}/4-T/(2\pi n)$ .

The saddle points occur for the terms with $ n\geq 2T/\pi$ and, since the points $x_{n}^{+}$

always exceed the bounds $T/(2\pi)$ , only the points $x_{n}^{-}$ comes into question. We
denote $x_{\overline{n}}$ by $x_{n}$ for simplicity. According to the occurrence and the location of
$x_{n}$ in the interval $I_{\alpha}=[\alpha T/(2\pi), T/(2\pi)]$ , we have the following three cases;

[I]: $ 1\leq n<2T/\pi$ , the case with no saddle point,
[II]: $2T/\pi\leq n\leq T_{C}(\alpha)$ where $T_{C}(\alpha)=(1+\alpha)^{2}T/(2\pi\alpha)$ , the case with saddle

point coming into the interval $I_{\alpha}$ , and
[III]: $T_{C}(\alpha)<n$ , the case with the saddle points being outside the interval $I_{\alpha}$ .
Main contribution comes from the series $V_{1}^{(+)}$ and the computation of this

part is rather complicated. The series $V_{2}^{(+I}$ can be treated in much the same way
as the series $V_{1}^{(+)}$ , and in fact, easier than that. The series $V_{2}^{(+)}$ contributes to $\sum_{1}$

an amount $O(T^{\epsilon})$ . Hence we shall dwell on the computation on the series $V_{1}^{(+)}$

only.
In view of $F^{\prime}(X)=(2\pi/\sqrt{X})(\sqrt{n}-T/(2\pi\sqrt{X})-\sqrt{X})$ , the integrals in the

cases [I] and [III] are estimated as follows by using the first derivative test.
In the case [I], since $F^{\prime}(X)\leq-cT^{-1/2}(\sqrt{2T}/\pi-\sqrt{n})$ holds from $F^{\prime\prime}(X)>0$ ,

the integrals are estimated by $cT^{3/4}(2T/\pi-n)^{-1}$ These contribute to $\sum_{1}$ an
amount $O(T^{\epsilon})$ .

In the case [III], $F^{\prime\prime}(X)$ changes sign at the point $\tilde{x}_{n}$ with

(3.3) $\tilde{x}_{n}=\frac{1}{n}(\frac{T}{\pi})^{2}$ .

Since $\tilde{x}_{n}\leq T/(2\pi)$ holds in this case, $F^{\prime\prime}(X)$ may change sign in the interval
$I_{\alpha}$ . We divide the case further; the case $[III]_{1}$ : $T_{C}(\alpha)<n<2T/(\pi\alpha)$ and the case
$[IlI]_{2}$ : $n\geq 2T/(\pi\alpha)$ .

In the case $[III]_{1},\tilde{x}_{n}$ comes into the interval $I_{\alpha}$ . We split $I_{\alpha}$ into $I_{0}+I_{1}$

where $I_{0}=[\alpha T/(2\pi),\tilde{x}_{n}]$ and $I_{1}=[\tilde{x}_{n}, T/(2\pi)]$ . In the interval $I_{0}$ , since
$F^{\prime}(X)\geq cT^{-1/2}(\sqrt{n}-\sqrt{T_{C}(\alpha)})$ holds from $F^{\prime\prime}(X)\geq 0$ , the integrals are esti-
mated by $cT^{3/4}(n-T_{C}(\alpha))^{-1}$ In the interval $I_{1}=[\tilde{x}_{n}, T/(2\pi)]$ , since $ F^{\prime}(X)\geq$

$cT^{-1/2}(\sqrt{n}-\sqrt{2T}/\pi)$ holds from $F^{\prime\prime}(X)\leq 0$ , the integrals are estimated by
$cT^{3/4}(n-2T/\pi)^{-1}$
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In the case $[III]_{2}$ , since $F^{\prime}(X)\geq cT^{-1/2}(\sqrt{n}-\sqrt{2T}/\pi)$ holds from $F^{\prime\prime}(X)\leq 0$ ,
the integrals are estimated by $cT^{l/4}n^{-1/2}$ or $cT^{3/4}(n-2T/\pi)^{-1}$ . Thus the terms
in the case [III] contribute to $\sum_{1}$ an amount $O(T^{\epsilon})$ .

4. Integrals Round the Saddle Points (1)

It remains for us to compute the integral terms in the case [II]. One may
suppose $n\geq 2T/\pi+1$ with an admissible error. To evaluate the integrals by
changing the contour $I_{\alpha}$ , we give an approximation of the exponential part $iF(X)$

of the integrands in somewhat a general setting: let us put $X=x(1+\omega u)$ with
$\alpha T/(2\pi)\leq x\leq T/(2\pi)$ for small $u$ and a complex number $\omega$ with $|\omega|=1$ which
will be given later in each time the contour is changed. Then, by Taylor’s theo-
rem, we have an approximation;

(4.1) $iF(X)=4\pi i\sqrt{nx}-iT\log x-2\pi ix+2\pi i\omega(\sqrt{nx}-T/(2\pi)-x)u$

$+i\omega^{2}(T/2-(\pi/2)\sqrt{nx})u^{2}-i\omega^{3}(T/3-(\pi/4)\sqrt{nx})u^{3}$

$+O((T+\sqrt{nx})u^{4})$ .

To calculate the saddle-point terms, we give some facts on the saddle points
$x_{n}=n/2-T/(2\pi)-n\sqrt{1}/4-T/(2\pi n)$ with $2T/\pi+1\leq n\leq T_{C}(\alpha)$ . Note that

(4.2) $2\pi x_{n}/T=(\sqrt{\pi n}/(2T)+\sqrt{\pi n}/(2T)-1)^{-2}$ .

In the second order approximation in (4.1) for $x=x_{n}$ , one has

(4.3) $T/2-(\pi/2)\sqrt{nx_{n}}=\pi\sqrt{nx_{n}}\sqrt{1}/4-T/(2\pi n)$ .

This follows, combined with (4.2), from that the left hapd side is equal to
$\pi\sqrt{nx_{n}}(\sqrt{T}/(2\pi n)\sqrt{T}/(2\pi x_{n})-1/2)$ .

Since $T/2-(\pi/2)\sqrt{nx_{n}}=\pi\sqrt{nx_{n}}\sqrt{1}/4-T/(2\pi n)=T/4-\pi x_{n}/2$ holds by the
equation (3.1) satisfied by $x_{n}$ , combining this with (4.3), we have

$4\pi\sqrt{nx_{n}}=(T-2\pi x_{n})/\sqrt{1}/4-T/(2\pi n)$ ,

which is, by the definition of $x_{n}$ ,

$=-4\pi n\sqrt{1}/4-T/(2\pi n)+2\pi n$ .

Also from (4.2) one has

$\log(T/(2\pi x_{n}))=2ar\cosh(\sqrt{\pi n}/(2T))$ .
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From these and

$-2\pi x_{n}=-\pi n+T+2\pi n\sqrt{1}/4-T/(2\pi n)$ ,

we are led to

(4.4) $T\log(T/\{2\pi e))+4\pi\sqrt{nx_{n}}-T\log x_{n}-2\pi x_{n}$

$=2T$ arcosh $\sqrt{\pi n/(2T)}-2\pi n\sqrt{1/4-T/(2\pi n)}+\pi n$ .

This gives the function denoted by $f_{C}(T, n)$ in (1.2) in Theorem.
Let $\delta$ be an arbitrarily small positive number, fixed throughout in this and

next sections. We divide the case [II] into two cases, $[II]_{1}$ : 2 $ T/\pi+1\leq n\leq$

$2T/\pi+T^{1/3+\delta}$ and $[II]_{2}$ : $2T/\pi+T^{1/3+\delta}<n\leq T_{C}(\alpha)$ .
In the case $[I1]_{1}$ , note that $T/3-(\pi/4)\sqrt{nx}\geq T/12-cT^{1/3+\delta}$ holds. Putting

$u_{1}=T^{-1/3}L$ ,

we change the contour $I_{\alpha}$ to $C_{1}+C_{2}+C_{0}+C_{0}^{\prime}+C_{3}+C_{4}$ where $C_{1}=[\alpha T/(2\pi)$ ,
$(\alpha T/(2\pi))(1-\eta u_{1})],$ $C_{2}=[(\alpha T/(2\pi))(1-\eta u_{1}), x_{n}(1-\eta u_{1})],$ $C_{0}=[x_{n}(1-\eta u_{1}), x_{n}]$ ,
$C_{0}^{\prime}=[x_{n},x_{n}(1+iu_{1})],$ $C_{3}=[x_{n}(1+iu_{1}),(T/(2\pi))(1+iu\mathfrak{l})]$ and $C_{4}=[(T/(2\pi))(1+iu_{1})$ ,
$T/(2\pi)]$ . Here, in the approximation (4.1) of $iF(X),$ $\omega$ is chosen as $\omega=-\eta$ on
$C_{1},$ $C_{2}$ and $C_{0}$ , and as $\omega=i$ on $C_{0}^{\prime},$ $C_{3}$ and $C_{4}$ . The variable $X$ is changed by
$X=x(1+\omega u)$ into $u$ with $0\leq u\leq u_{1}$ on $C_{1},$ $C_{0},$ $C_{0}^{\prime}$ and $C_{4}$ , where $x=\alpha T/(2\pi)$ ,

$x_{n}$ or $T/(2\pi)$ . In view of $x_{n}\leq\tilde{x}_{n}$ , the conditions ${\rm Re}(i\omega(\sqrt{nx}-T/(2\pi)-x)u)\leq 0$ ,
${\rm Re}(i\omega^{2}(T/2-(\pi/2)\sqrt{nx})u^{2})\leq 0$ and ${\rm Re}(-i\omega^{3}(T/3-(\pi/4)\sqrt{nx})u^{3})\leq 0$ are sat-
isfied on each of the contours $C\prime s$ . Note that, on the contours $C_{0}^{\prime},$ $C_{3}$ and $C_{4}$ ,
${\rm Re}(i\omega^{2}(T/2-(\pi/2)\sqrt{nx})u^{2})=0$ holds. The error term $O((T+\sqrt{nx})u^{4})$ in (4.1)
is estimated by $cT^{-1/3}L^{4}$ . Thereby, on the contour $C_{2}$ and $C_{3}$ , the integrands are
estimated by small.factors $\exp(-cL^{3})$ and these contribute to $\sum_{1}$ an amount
$O(1)$ . The integrals on $C_{1},$ $C_{0},$ $C_{0}^{\prime}$ and $C_{4}$ contribute to $\sum_{1}$ an amount $O(T^{\delta+\epsilon})$ ,

for the number of terms in the case [II]] is $O(T^{1/3+\delta})$ : this follows from the estimate

$\sum_{2T/\pi+1\leq n\leq 2T/\pi+T^{1/3+\delta}}\frac{d(n)}{n^{3/4}}x^{3/4}\int_{0^{u_{1}}}(1+\omega u)^{-1/4}\exp(iF(x(1+\omega u)))du<<T^{\delta+\epsilon}$

for $\omega=i$ or $\eta$ and $x=\alpha T/(2\pi),$ $x_{n}$ or $T/(2\pi)$ .

5. Integrals Round the Saddle Points (2)

To evaluate the integrals in the case $[II]_{2}$ : 2 $T/\pi+T^{1/3+\delta}<n\leq T_{C}(\alpha)$ , we
split the interval $I_{\alpha}$ into $I_{0}+I_{1}$ where $I_{0}=[\alpha T/(2\pi),\tilde{x}_{n}]$ and $I_{1}=[\tilde{x}_{n}, T/(2\pi)],\tilde{x}_{n}$
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being defined in (3.3). Since $x_{n}\leq\tilde{x}_{n}$ holds, the saddle point does not come into
$I_{1}$ and since $F^{\prime\prime}(X)\leq 0$ holds there, the integrals on $I_{1}$ are estimated by the way
similar to that on the interval $I_{1}$ in the case $[III]_{1}$ in section 3. These contribute
to $\sum_{1}$ an amount $O(T^{\epsilon})$ .

As for the contour $I_{0}=[\alpha T/(2\pi),\tilde{x}_{n}]$ , note first that $T/3-(\pi/4)\sqrt{nx}\geq T/12$

holds for $x$ in the interval $I_{0}$ . We change the interval $I_{0}$ into $C_{1}+C_{2}+C_{0}+$

$C_{0}^{\prime}+C_{3}+C_{4}$ , where $C\prime s$ are indicated in the following together with evaluating
the integrals on each of them.

Let us put

(5.1) $u_{1}(x)=u_{1}(x, n)=\min\{(T/3-(\pi/4)\sqrt{nx})^{-1/3}, (T/2-(\pi/2)\sqrt{nx})^{-1/2}\}L$ .

We define the contour $C_{1}$ by $[\alpha T/(2\pi), (\alpha T/(2\pi))(1-\eta u_{1}(\alpha T/(2\pi)))]$ . In the
approximation (4.1), $\omega$ is given by $\omega=-\eta$ and the variable $X$ is changed into $u$

with $0\leq u\leq u_{1}$ by $X=x_{1}(1-\eta u)$ with $x_{1}=\alpha T/(2\pi)$ . On this contour, the con-
ditions ${\rm Re}(i\omega^{2}(T/2-(\pi/2)\sqrt{nx_{1}})u^{2})\leq 0$ and ${\rm Re}(-i\omega^{3}(T/3-(\pi/4)\sqrt{nx_{1}})u^{3})\leq 0$

are satisfied and the error terms $O((T+\sqrt{nx})u^{4})$ in (4.1) are estimated by
$cT^{-1/3}L^{4}$ . Since $T/(2\pi)+x_{1}-\sqrt{nx_{1}}=\sqrt{\alpha T/2\pi}(\sqrt{T_{C}(\alpha)}-\sqrt{n})$ holds, the inte-
grals on this contour are estimated by $cT^{3/4}(T_{C}(\alpha)-n)^{-1}$ and contribute to $\sum_{1}$

an amount $O(T^{\epsilon})$ , here one may suppose that $n<T_{C}(\alpha)-1$ .
The contour $C_{2}$ is defined by the curve $X=x(1-\eta u_{1}(x, n))$ with $\alpha T/(2\pi)\leq$

$x\leq x_{n}$ . Here in the approximation (4.1), $\omega$ is chosen to be $-\eta$ . On this curve, the
conditions ${\rm Re}(i\omega^{2}(T/2-(\pi/2)\sqrt{nx})u_{1}(x, n)^{2})<0$ and ${\rm Re}(-i\omega^{3}(T/3-(\pi/4)\sqrt{nx})\cdot$

$u_{1}(x, n)^{3})<0$ are satisfied and $o((T+\sqrt{nx})u^{4})\ll\tau^{-1/3}L^{4}$ holds. Thereby, by the
definition (5.1) of $u_{1}(x, n)$ , the integrals are estimated by small factors $\exp(-cL^{2})$ .

At the end point $x=x_{n}$ of the curve $C_{2}$ , since $T/2-(\pi/2)\sqrt{nx_{n}}\geq cT^{2/3+\delta/2}$

holds from (4.3), note that one has

(5.2) $u_{1}(x_{n}, n)=(T/2-(\pi/2)\sqrt{nx_{n}})^{-1/2}L$ .

The segment $C_{0}$ passing through the saddle point $x_{n}$ is defined by $C_{0}=$

$[x_{n}(1-\eta u_{1}(x_{n}, n)), x_{n}(1+\eta u_{0})]$ where, using (4.3),

(5.3) $u_{0}=(T/2-(\pi/2)\sqrt{nx_{n}})^{-1/2}T^{\delta/5}$

$=cx_{n}^{-1/4}(n-2T/\pi)^{-1/4}T^{\delta/5}$ .

On the segment $C_{0}$ , in the approximation (4.1), $\omega$ is chosen to be $\eta$ and the
variable $X$ is changed into $u$ with $-u_{1}(x_{n}, n)\leq u\leq u_{0}$ by $X=x_{n}(1+\eta u)$ . The
main contribution of the series $V_{1^{+}}$ comes from the integrals on $C_{0}$ , this is to be
evaluated later.
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Since $u_{0}\leq cT^{-1/3-\delta/20}$ holds from (5.3), if one puts

(5.4) $u_{2}=(T/3-(\pi/4)\sqrt{nx_{n}})^{-1/3}L$ ,

the inequality $u_{0}<u_{2}$ holds. We define the segment $C_{0}^{\prime}$ by $C_{0}^{\prime}=[x_{n}(1+\eta u_{0})$ ,
$x_{n}(1+\eta u_{2})]$ , where $\omega$ is chosen to be $\eta$ in the approximation (4.1). On this
contour, since

$|\exp(i\eta^{2}(T/2-(\pi/2)\sqrt{nx_{n}})u^{2}-i\eta^{3}(T/3-(\pi/4)\sqrt{nx_{n}})u^{3})|$

$\leq\exp(-(T/2-(\pi/2)\sqrt{nx_{n}})u_{0}^{2}+2^{-1/2}(T/3-(\pi/4)\sqrt{nx_{n}})u_{2}^{3})$

$\leq\exp(-cT^{2\delta/5})$

holds and the error terms $O((T+\sqrt{nx})u^{4})$ are estimated by $cT^{-1/3}L^{4}$ , the inte-
grals on $C_{0}^{\prime}$ are very small. Also note that, under the condition $n\geq 2T/\pi+$

$T^{1/3+\delta}$ , since

(5.5) $\tilde{x}_{n}-x_{n}\geq cT^{2/3+\delta/2}$

holds, the end point $x_{n}(1+\eta u_{2})$ of the segment $C_{0}^{\prime}$ is contained in the half plane
$\sigma<\tilde{x}_{n}$ . The assertion (5.5) follows, in view of $\sqrt{x_{n}}=2^{-1}(\sqrt{n}-\sqrt{n-2T}/\pi)$ , from

$\tilde{x}_{n}-x_{n}=(\sqrt{\tilde{x}_{n}}+\sqrt{x_{n}})(n^{-1/2}T/\pi-2^{-1}(\sqrt{n}-\sqrt{n-2T/\pi}))$

$=2^{-1}n^{-1/2}(\sqrt{\tilde{x}_{n}}+\sqrt{x_{n}})(\sqrt{n}\sqrt{n-2T}/\pi-(n-2T/\pi))$

$=n^{-1/2}(\sqrt{x_{n}\tilde{x}_{n}}+x_{n})\sqrt{n-2T}/\pi$ .

On account of this, the point $x_{n}(1+\eta u_{2})$ can be written also as $x_{n}(1+\eta u_{2})=$

$x_{n}^{\prime}(1+iu_{3})$ for some $x_{n}^{\prime}$ with $x_{n}\leq x_{n}^{\prime}\leq\tilde{x}_{n}$ and $u_{3}$ with $T^{-1/3}L<<u_{3}<<T^{-1/3}L$ . In
fact one may take $x_{n}^{\prime}=x_{n}(1+2^{-1/2}u_{2})$ and

$u_{3}=u_{2}(\sqrt{2}+u_{2})^{-1}$

By putting

$u_{4}=(T/3-(\pi/4)\sqrt{n\tilde{x}_{n}})^{-1/3}L=(T/12)^{-1/3}L$ ,

the segment $C_{3}$ with the starting point $x_{n}(1+\eta u_{2})=x_{n}^{\prime}(1+iu_{3})$ is defined by
$C_{3}=[x_{n}^{\prime}(1+iu_{3}),\tilde{x}_{n}(1+iu_{4})]$ and $C_{4}$ by $C_{4}=[\tilde{x}_{n}(1+iu_{4}),\tilde{x}_{n}]$ . Note that on
these contours $C_{3}$ and $C_{4}$ , in the approximation (4.1), the conditions
${\rm Re}(i\omega^{2}(T/2-(\pi/2)\sqrt{nx}))=0$ and ${\rm Re}(-i\omega^{3}(T/3-(\pi/4)\sqrt{nx}))<0$ with $\omega=j$

are satisfied, and the error terms $O((T+\sqrt{nx})u^{4})$ are estimated by $cT^{-1/3}L^{4}$ . Since
$u_{4}>u_{3}\geq cT^{-1/3}L$ holds, the integrals on $C_{3}$ are estimated by $\exp(-cL^{3})$ . On the
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segment $C_{4}$ , since $\sqrt{n\tilde{x}_{n}}-T/(2\pi)-\tilde{x}_{n}=(T/(2\pi n))(n-2T/\pi)$ holds, the integrals
are estimated by $cT^{3/4}(n-2T/\pi)^{-1}$ , which contribute to $\sum_{1}$ an amount $O(T^{\epsilon})$ .

Thus we are left with the integrals on the contour $C_{0}$ passing through the
saddle point $x_{n}$ :

$\int_{C_{0}}X^{1/4}\exp(4\pi i\sqrt{nX})\frac{d}{dX}\{X^{-1/2}\exp(-iT\log X-2\pi iX)\}dX$ .

These we integrate by parts to give

(5.6) $-2\pi i\sqrt{n}\int_{C_{0}}X^{-3/4}(1+(8\pi i\sqrt{nX})^{-1})\exp(4\pi i\sqrt{nX}-iT\log X-2\pi iX)dX$ ,

by using (5.2) and (5.3), with an admissible error term $O(\exp(-cL^{2}))$ . In the
approximation (4.1) of $iF(x_{n}(1+\eta u))$ on the contour $C_{0}$ , the terms $-i\eta^{3}(T/3-$

$(\pi/4)\sqrt{nx_{n}})u^{3}+O((T+\sqrt{nx_{n}})u^{4})$ are negligible. This follows, by using (4.3),
from the estimate

$\sum_{2T/\pi+\tau^{l/3+\delta}<n\leq T_{C}(\alpha)}d(n)n^{-3/4}x_{n}^{3/4}(T+\sqrt{nx}n)(x_{n}(n-2T/\pi))^{-1}<<T^{\epsilon}$
.

In view of (4.3), (4.1), (5.2) and (5.3), the integral (5.6) is equal to

(5.7) $-2\pi i\eta\sqrt{n}x_{n^{1/4}}\exp(4\pi i\sqrt{nx_{n}}-iT\log x_{n}-2\pi ix_{n})$

$\times\int_{-\infty}^{\infty}(1+O(u+(nx_{n})^{-1/2}))\exp(-(T/2-(\pi/2)\sqrt{nx_{n}})u^{2})du$ .

The error term in (5.7) contributes to $\sum_{1}$ an amount $O(T^{\epsilon})$ . Combining these with
(2.2), (2.11), (2.12), (4.3) and (4.4), we are led to the formula (1.1) in Theorem.

6. An Exponential Sum Bounding $|\zeta(1/2+iT)|^{2}$

The proof of Corollary is carried out in a familiar way by means of the well-
known inequality

(6.1) $\zeta(\frac{1}{2}+iT)^{2}<<L\int_{-L^{2}}^{L^{2}}|\zeta(\frac{1}{2}+i(T+\iota))|^{2}dt+L$

due to Heath-Brown [2, Lemma 3], and an exponential integral ([2, (A.38)]); for
${\rm Re} B>0$ ,

(6.2) $\int_{-\infty}^{\infty}\exp(At-Bt^{2})dt=\sqrt{\pi/B}\exp(A^{2}/(4B))$ .
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We substitute the formula (1.1) for the integrand in (6.1) multiplied by
$\exp(-(t/\Delta)^{2})$ with $\Delta=T^{1/3}L$ . If we choose $\alpha=1-T^{-1/3}$ in (1.1), the first
sum in the formula may be degenerated to $O(T^{\epsilon})$ . As for the second sum in
(1.1), denoting $g(T, n)=T\log(T/(2\pi ne))-\pi/4$ , by Taylor’s theorem one has,
for $|t|\leq\Delta L^{3}$ ,

$g(T+\iota)=g(T, n)+(\log T/(2\pi n))t+\iota^{2}/(2T)+O(|t|^{3}T^{-2})$ ,

the error term $O(|t|^{3}T^{-2})$ being negligible. Hence, by using (6.2) with $A=$

$\log(T/(2\pi n))i$ and $B=(2T)^{-1}i+\Delta^{-2}$ , we can see that, in view of $\log(T/(2\pi n))\geq$

$T^{-1/3}$ for $1\leq n\leq\alpha T/(2\pi)$ , the integral terms from the second sum are very
small. From this, Corollary follows. Or, taking $\theta$ small, if we choose $\alpha=1/2$ in
(1.1), we have that, uniformly in $\Delta$ with $T^{\epsilon}\leq\Delta\leq T^{1/3},$ $|\zeta(1/2+iT)|^{2}$ is surpassed
by an exponential sum

(6.3) $\sqrt{2\pi}\Delta\sum_{2T/\pi+1\leq n\leq 9T/(4\pi)}\frac{(-1)^{n}d(n)}{\sqrt{n}(1/4-T/(2\pi n))^{1/4}}\cos(f_{C}(T, n))$

$\times\exp$ ( $-(\Delta$ arcosh $\sqrt{\pi n/(2T)}$) ) $+O(\Delta T^{\epsilon})$ .

From this, Corollary also follows by choosing $\Delta=T^{1/3}$ . This is obtained by
using, combined with (6.1) and (6.2), for $|t|\leq\Delta L^{2}$ ,

(6.4) $(1/4-(T+t)/(2\pi n))^{-1/4}=(1/4-T/(2\pi n))^{-1/4}+O(n^{1/4}(n-2T/\pi)^{-5/4}|t|)$

and

(6.5) $f_{C}(T+t, n)=f_{C}(T, n)+2$ arcosh $( \sqrt{\pi n/(2T)})t-\sqrt{n}(2T\sqrt{n-2T/\pi})^{-1}t^{2}$

$+O(\sqrt{n}(n-2T/\pi)^{-3/2}|t|^{3}T^{-1})$ .

The argument to obtain exponential sums of the type (6.3) is closely related
to the averaged form with Gaussian weight; if we denote

$I(T, \Delta)=(\Delta\sqrt{\pi})^{-1}\int_{-\infty}^{\infty}|\zeta(\frac{1}{2}+i(T+\iota))|^{2}\exp(-(t/\Delta)^{2})dt$ ,

we are led to the expression, from Theorem,

(6.6) $I(T, \Delta)=\frac{2^{3/4}\pi^{1/4}}{T^{1/4}}\sum_{n=2T/\pi+1}^{\infty}\frac{(-1)^{n}d(n)}{(n-2T/\pi)^{1/4}}\cos(f_{C}(T, n))\exp(-\frac{\pi n-2T}{2T}\Delta^{2})$

$+O(T^{\epsilon})$
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for $\Delta$ with $T^{1/7}\leq\Delta\leq T^{1/3}$ . This should also be compared with the expression
with the Atkinson function $f(T, n)$ in the form given by Motohashi ([7, (1.18)]);
namely, one has

(6.7) $I(T, \Delta)=\frac{2^{3/4}\pi^{1/4}}{T^{1/4}}\sum_{n=1}^{\infty}\frac{(-1)^{n}d(n)}{n^{1/4}}\cos(f(T, n))\exp(-\frac{\pi n}{2T}\Delta^{2})+O(L)$

for $\Delta$ with $T^{1/4}<\Delta<TL^{-1}$ . For a range of $\Delta$ with $T^{1/7}\leq\Delta\leq T^{1/2}$ , this follows
from Jutila’s formula (1.3).

REMARK. Among various expressions obtainable by applying the Voronoi
formula to the sum (2.1), the formulas (1.3) and (1.1) seem to be the only two
formulas that bear the exponential sum of the type (6.3) or (6.7) which bring the
bounds $\zeta(1/2+iT)<<T^{1/6+\epsilon}$ . To an intimate relationship between these two
explicit formulas and other formulas with the function $f_{C}(T, n)$ , we hope to
retum elsewhere.
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