ON PERIODIC TAKAHASHI MANIFOLDS*

By
Michele Mulazzani

Abstract

In this paper we show that periodic Takahashi 3-manifolds are cyclic coverings of the connected sum of two lens spaces (possibly cyclic coverings of \boldsymbol{S}^{3}), branched over knots. When the base space is a 3 -sphere, we prove that the associated branching set is a two-bridge knot of genus one, and we determine its type. Moreover, a geometric cyclic presentation for the fundamental groups of these manifolds is obtained in several interesting cases, including the ones corresponding to the branched cyclic coverings of \boldsymbol{S}^{3}.

1. Introduction

Takahashi manifolds are closed orientable 3-manifolds introduced in [21] by Dehn surgery on \boldsymbol{S}^{3}, with rational coefficients, along the $2 n$-component link $\mathscr{L}_{2 n}$ depicted in Figure 1. These manifolds have been intensively studied in [11], [19], and [22]. In the latter two papers, a nice topological characterization of all Takahashi manifolds as two-fold coverings of \boldsymbol{S}^{3}, branched over the closure of certain rational 3 -string braids, is given.

A Takahashi manifold is called periodic when the surgery coefficients have the same cyclic symmetry of order n of the link $\mathscr{L}_{2 n}$, i.e. the coefficients are p / q and r / s alternately. Several important classes of 3-manifolds, such as (fractional) Fibonacci manifolds [7, 22] and Sieradsky manifolds [2, 20], represent notable examples of periodic Takahashi manifolds.

In this paper we show that each periodic Takahashi manifold is an n-fold cyclic covering of the connected sum of two lens spaces, branched over a knot.

[^0]

Figure 1: Surgery along $\mathscr{L}_{2 n}$ yielding $M_{n}(p / q, r / s)$.
This knot arises from a component of the Borromean rings, by performing a surgery with coefficients p / q and r / s along the other two components.

For particular values of the surgery coefficients (including the classes of manifolds cited above), the periodic Takahashi manifolds turn out to be n-fold cyclic coverings of \boldsymbol{S}^{3}, branched over two-bridge knots of genus one ${ }^{1}$, whose parameters are obtained using Kirby-Rolfsen calculus [18] (compare the analogous result of [11], obtained by a different approach). Observe that in [19] a characterization of all periodic Takahashi manifolds as n-fold cyclic coverings of \boldsymbol{S}^{3}, branched over the closure of certain rational 3 -string braids, is presented, but the result is incorrect, as we show in Remark 1.

For many interesting periodic Takahashi manifolds-including the ones corresponding to branched cyclic coverings of \boldsymbol{S}^{3}-a cyclic presentation for the fundamental group is provided and proved to be geometric, i.e. arising from a Heegaard diagram, or, equivalently, from a canonical spine ${ }^{2}$ [16].

2. Main results

We denote by $M\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n} ; r_{1} / s_{1}, \ldots, r_{n} / s_{n}\right)$ the Takahashi manifold obtained by Dehn surgery on S^{3} along the $2 n$-component link $\mathscr{L}_{2 n}$ of Figure 1 , with surgery coefficients $p_{1} / q_{1}, r_{1} / s_{1}, \ldots, p_{n} / q_{n}, r_{n} / s_{n} \in \tilde{\boldsymbol{Q}}=\boldsymbol{Q} \cup\{\infty\}$ respectively, cyclically associated to the components of $\mathscr{L}_{2 n}$.

A Takahashi manifold is periodic when $p_{i} / q_{i}=p / q$ and $r_{i} / s_{i}=r / s$, for every $i=1, \ldots, n$. Denote by $M_{n}(p / q, r / s)$ the periodic Takahashi manifold $M(p / q, \ldots, p / q ; r / s, \ldots, r / s)$. From now on, without loss of generality, we can always suppose that: $\operatorname{gcd}(p, q)=1, \operatorname{gcd}(r, s)=1$ and $p, r \geq 0$. Moreover, if $\alpha, \beta \in \boldsymbol{Z}$ with $\alpha \geq 0$ and $\operatorname{gcd}(\alpha, \beta)=1$, we shall denote by $L(\alpha, \beta)$ the lens space of type (α, β). As usual, $L(0,1)$ is homeomorphic to $\boldsymbol{S}^{1} \times \boldsymbol{S}^{2}$ and $L(1, \beta)$ is homeomorphic to \boldsymbol{S}^{3}, for all β (including $\beta=0$).

[^1]Notice that $M_{n}(p / q,-p / q)$ is the Fractional Fibonacci manifold $M_{n}^{p / q}$ defined in [22] and, in particular, $M_{n}(1,-1)$ is the Fibonacci manifold M_{n} studied in [7]. Moreover, $M_{n}(1,1)$ is the Sieradsky manifold M_{n} introduced in [20] and studied in [2]. Because of the symmetries of $\mathscr{L}_{2 n}$, the homeomorphisms

$$
M_{n}(p / q, r / s) \cong M_{n}(-p / q,-r / s) \cong M_{n}(r / s, p / q) \cong M_{n}(-r / s,-p / q)
$$

can easily be obtained for all $n \geq 1$ and $p / q, r / s \in \tilde{\boldsymbol{Q}}$.
A balanced presentation of the fundamental group of every Takahashi manifold is given in [21], and in [19] it is shown that this presentation is geometric, i.e. it arises from a Heegaard diagram (or, equivalently, from a canonical spine). As a consequence, $\pi_{1}\left(M_{n}(p / q, r / s)\right)$ admits the following geometric presentation with $2 n$ generators and $2 n$ relators:

$$
\left\langle x_{1}, \ldots, x_{2 n} \mid x_{2 i-1}^{q} x_{2 i}^{-r} x_{2 i+1}^{-q}, x_{2 i}^{s} x_{2 i+1}^{p} x_{2 i+2}^{-s} ; i=1, \ldots, n\right\rangle,
$$

where the subscripts are $\bmod 2 n$.
When $r=1$, we can easily get a cyclic presentation [9] with n generators: ${ }^{3}$

$$
\begin{equation*}
\pi_{1}\left(M_{n}(p / q, 1 / s)\right)=\left\langle z_{1}, \ldots, z_{n} \mid z_{i}^{p}\left(z_{i}^{-q} z_{i+1}^{q}\right)^{s}\left(z_{i}^{-q} z_{i-1}^{q}\right)^{s} ; i=1, \ldots, n\right\rangle \tag{1}
\end{equation*}
$$

where the subscripts are $\bmod n$.
Proposition 1. For all $p / q \in \tilde{\boldsymbol{Q}}$ and $s \in \boldsymbol{Z}$, the cyclic presentation (1) of $\pi_{1}\left(M_{n}(p / q, 1 / s)\right)$ is geometric.

Proof. If $s=0$ then $M_{n}(p / q, 1 / s)$ is homeomorphic to the connected sum of n copies of $L(p / q)$, and therefore the statement is straightforward. If $s>0$, the presentation becomes

$$
\left\langle z_{1}, \ldots, z_{n} \mid z_{i}^{p-q}\left(z_{i+1}^{q} z_{i}^{-q}\right)^{s}\left(z_{i-1}^{q} z_{i}^{-q}\right)^{s-1} z_{i-1}^{q} ; i=1, \ldots, n\right\rangle .
$$

Figure 2 shows an RR-system which induces (1^{\prime}), and so, by [17], this presentation is geometric. If $s<0$, the presentation becomes

$$
\left\langle z_{1}, \ldots, z_{n} \mid z_{i}^{p+q}\left(z_{i+1}^{-q} z_{i}^{q}\right)^{-s}\left(z_{i-1}^{-q} z_{i}^{q}\right)^{-s-1} z_{i-1}^{-q} ; i=1, \ldots, n\right\rangle .
$$

Therefore, if we replace q with $-q$, Figure 2 also gives an RR-system inducing (1").

Since the link \mathscr{L}_{2} is a two-component trivial link, we immediately get the following results:

[^2]

Figure 2: An RR-system for the cyclic presentation (1').

Lemma 2. For all $p / q, r / s \in \tilde{\boldsymbol{Q}}$, the manifold $M_{1}(p / q, r / s)$ is homeomorphic to the connected sum of lens spaces $L(p, q) \sharp L(r, s)$. In particular, $M_{1}(p / q, 1 / s)$ is homeomorphic to the lens space $L(p, q)$ and $M_{1}(1 / q, 1 / s)$ is homeomorphic to S^{3}.

Proof. $M_{1}(p / q, r / s)$ is obtained by Dehn surgery on \boldsymbol{S}^{3}, with coefficients p / q and r / s, along the trivial link with two components \mathscr{L}_{2}.

Now we prove the main result of the paper:

Theorem 3. For all $p / q, r / s \in \tilde{\boldsymbol{Q}}$ and $n>1$, the periodic Takahashi manifold $M_{n}(p / q, r / s)$ is the n-fold cyclic covering of the connected sum of lens spaces $L(p, q) \sharp L(r, s)$, branched over a knot K which does not depend on n. Moreover, K arises from a component of the Borromean rings, by performing a surgery with coefficients p / q and r / s along the other two components.

Figure 3: The branching set K (dashed line).

Proof. Both the link $\mathscr{L}_{2 n}$ and the surgery coefficients defining $M_{n}(p / q, r / s)$ are invariant with respect to the rotation ρ_{n} of S^{3}, which sends the i-th component of $\mathscr{L}_{2 n}$ onto the $(i+2)$-th component $(\bmod 2 n)$. Let \mathscr{G}_{n} be the cyclic group of order n generated by ρ_{n}. Observe that the fixed-point set of the action of \mathscr{G}_{n} on \boldsymbol{S}^{3} is a trivial knot disjoint from $\mathscr{L}_{2 n}$. Therefore, we have an action of \mathscr{G}_{n} on $M_{n}(p / q, r / s)$, with a knot K_{n} as fixed-point set. The quotient $M_{n}(p / q, r / s) / \mathscr{G}_{n}$ is precisely the manifold $M_{1}(p / q, r / s)$, which is homeomorphic to $L(p, q) \sharp L(r, s)$ by Lemma 2, and K_{n} / \mathscr{G}_{n} is obviously a knot $K \subset M_{1}(p / q, r / s)$, which only depends on p / q and r / s. Moreover, $K \cup \mathscr{L}_{2}$ is the Borromean rings, as showed in Figure 3. This proves the statement.

We can give another description of the branching set K, as the inverse image of a trivial knot in a certain two-fold branched covering.

Denote by $\mathscr{L}(p / q, r / s)$ the link depicted in Figure 4. It is composed by the closure of the rational 3 -string braid $\sigma_{1}^{p / q} \sigma_{2}^{r / s}$, which is the connected sum of the two-bridge knots or links $\boldsymbol{b}(p, q)$ and $\boldsymbol{b}(r, s)$, and by a trivial knot. Moreover, denote: (i) by $\mathcal{O}_{n}(p / q, r / s)=M_{n}(p / q, r / s) / \mathscr{G}_{n}$ the orbifold from the proof of Theorem 3, whose underlying space is $L(p, q) \sharp L(r, s)$ and whose singular set is the knot K, with index n; (ii) by $S^{3}\left(\mathscr{K}_{n}(p / q, r / s)\right)$ the orbifold whose underlying space is \boldsymbol{S}^{3} and whose singular set is the closure of the rational 3-string braid $\left(\sigma_{1}^{p / q} \sigma_{2}^{r / s}\right)^{n}$, with index 2 ; and (iii) by $\boldsymbol{S}^{3}(\mathscr{L}(p / q, r / s))$ the orbifold whose underlying space is \boldsymbol{S}^{3} and whose singular set is the link $\mathscr{L}(p / q, r / s)$, with index 2 and n as pointed out in Figure 4.

Figure 4: The link $\mathscr{L}(p / q, r / s)$.

Proposition 4. Assuming the previous notations, the following commutative diagram holds for each periodic Takahashi manifold.

Proof. The link $\mathscr{L}_{2 n}$ admits an invertible involution τ, whose axis intersects each component in two points (see the dashed line of Figure 1), and the rotation symmetry ρ_{n} of order n which was discussed in Theorem 3. These symmetries induce symmetries (also denoted by τ and ρ_{n}) on the periodic Takahashi manifold $M=M_{n}(p / q, r / s)$, such that $\left\langle\tau, \rho_{n}\right\rangle \cong\langle\tau\rangle \oplus \mathscr{G}_{n} \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{n}$. We have $M /\langle\tau\rangle=$ $\boldsymbol{S}^{3}\left(\mathscr{K}_{n}(p / q, r / s)\right)$ (see [19] and [22]) and $\boldsymbol{M} / \mathscr{G}_{n}=\mathcal{O}_{n}(p / q, r / s)$ (see Theorem 3). It
is immediate to see that ρ_{n} induces a symmetry (also denoted by ρ_{n}) on the orbifold $M /\langle\tau\rangle$, and $(M /\langle\tau\rangle) / \mathscr{G}_{n}$ is the orbifold $\boldsymbol{S}^{3}(\mathscr{L}(p / q, r / s))$. As we see from Figure 3, τ induces a strongly invertible involution (also denoted by τ) on the link \mathscr{L}_{2}. Using the Montesinos algorithm we see that $\left(M / \mathscr{G}_{n}\right) /\langle\tau\rangle=\boldsymbol{S}^{3}(\mathscr{L}(p / q, r / s))$. This concludes the proof.

As a consequence, the branching set K of Theorem 3 can be obtained as the inverse image of the trivial component of $\mathscr{L}(p / q, r / s)$ in the two-fold branched covering $\mathcal{O}_{n}(p / q, r / s) \rightarrow \boldsymbol{S}^{3}(\mathscr{L}(p / q, r / s))$.

From Theorem 3 we can get the following result, which has already been obtained in [11] by a different technique.

Proposition 5. For all $q, s \in \boldsymbol{Z}$ and $n>1$, the periodic Takahashi manifold $M_{n}(1 / q, 1 / s)$ is the n-fold cyclic covering of \boldsymbol{S}^{3}, branched over the two-bridge knot of genus one $\boldsymbol{b}(|4 s q-1|, 2 s) \cong \boldsymbol{b}(|4 s q-1|, 2 q)$.

Proof. From Theorem 3, $M_{n}(1 / q, 1 / s)$ is the n-fold cyclic covering of $L(1, q) \sharp L(1, s) \cong \boldsymbol{S}^{3}$, branched over a knot K which does not depend on n. By isotopy and Kirby-Rolfsen moves it is easy to obtain (see Figure 5) a diagram of K, which is a Conway's normal form of type $[-2 q, 2 s]$. This proves the statement.

Proposition 5 covers the results of [2], [7] and [22] concerning n-fold branched cyclic coverings of two-bridge knots. Moreover, for all $p, q \in \boldsymbol{Z}$, the periodic Takahashi manifold $M_{n}(1 / q, 1 / s)$ is homeomorphic to the Lins-Mandel manifold $S(n,|4 s q-1|, 2 s, 1)[13,15]$, the Minkus manifold $M_{n}(|4 s q-1|, 2 s)$ [14] and the Dunwoody manifold $M\left((|4 q-1|-1) / 2,0,1, s, n,-q_{\sigma}\right)[3,6]$.

Moreover, observe that all cyclic coverings of two-bridge knots of genus one are periodic Takahashi manifolds.

Remark 1. The results of Corollaries 8, 9 and 11 of [19], concerning periodic Takahashi manifolds as n-fold cyclic branched coverings of the closure of certain (rational) 3 -string braids, are incorrect. This is evident from the following counterexamples. If $p / q=3$ and $r / s=-3$ then the first homology group of the 3 -fold cyclic branched covering of the closure of the 3-string braid $\left(\sigma_{1}^{3} \sigma_{2}^{-3}\right)^{2}$ has order 256, but $\left|H_{1}\left(M_{3}(3,-3)\right)\right|=1296$. If $p / q=3 / 2$ and $r / s=1$ then the first homology group of the 4 -fold cyclic branched covering of the closure of the rational 3-string braid $\left(\sigma_{1}^{3 / 2} \sigma_{2}\right)^{2}$ has order 135, but $\left|H_{1}\left(M_{4}(3 / 2,1)\right)\right|=15$. Note that the corollaries are valid if $p=r=1$.

The following conjecture is naturally suggested by the previous results.

Figure 5:

Conjecture. Let $p / q, r / s \in \tilde{\boldsymbol{Q}}$ be fixed. Then, for all $n>1$, the periodic Takahashi manifolds $T_{n}=M_{n}(p / q, r / s)$ are n-fold cyclic coverings of \boldsymbol{S}^{3}, branched over a knot which does not depend on n, if and only if $p=1=r$.

Added in revision-The referee pointed out that it is possible to prove the conjecture for "almost all cases" by using the hyperbolic Dehn surgery theorem and the shortest geodesic arguments by Kojima [12].

Acknowledgement

The author wishes to thank the referee for his valuable suggestions to improve this paper and Massimo Ferri and Andrei Vesnin for the useful discussions on the topics.

References

[1] Burde, G., Zieschang, H.: Knots. de Gruyter Studies in Mathematics, 5, Berlin-New York, 1985.
[2] Cavicchioli, A., Hegenbarth F., Kim, A. C.: A geometric study of Sieradsky groups. Algebra Colloq. 5 (1998), 203-217.
[3] Dunwoody, M. J.: Cyclic presentations and 3-manifolds. In: Proc. Inter. Conf., Groups-Korea '94, Walter de Gruyter, Berlin-New York (1995), 47-55.
[4] Fox, R. H.: A quick trip through knot theory, Topology of 3-manifolds and associated topics (ed. M. K. Fort, jr.) (1962), 120-167.
[5] Funcke, K.: Geschlecht von Knoten mit zwei Brücken und die Faserbarkeit ihrer Aussenräume. Math. Z. 159 (1978), 3-24.
[6] Grasselli, L., Mulazzani, M.: Genus one 1-bridge knots and Dunwoody manifolds. To appear on Forum Math. (2000).
[7] Helling, H., Kim, A. C., Mennicke, J. L.: A geometric study of Fibonacci groups. J. Lie Theory 8 (1998), 1-23.
[8] Hodgson, C., Weeks, J.: Symmetries, isometries, and length spectra of closed hyperbolic threemanifolds. Exp. Math. 3 (1994), 261-274.
[9] Johnson, D. L.: Topics in the theory of group presentations. London Math. Soc. Lect. Note Ser., vol. 42, Cambridge Univ. Press, Cambridge, U.K., 1980.
[10] Kirby, R. C., Scharlemann, M. G.: Eight faces of the Poincare homology 3-sphere. Geometric topology, Proc. Conf., Athens/Ga. (1979), 113-146.
[11] Kim, A. C., Kim, Y., Vesnin, A.: On a class of cyclically presented groups. In: Proc. Inter. Conf., Groups-Korea '98, Walter de Gruyter, Berlin-New York (2000), 211-220.
[12] Kojima, S.: Determining knots by branched coverings. London Math. Soc. Lect. Note Series, 112 (1986), 193-207.
[13] Lins, S., Mandel, A.: Graph-encoded 3-manifolds. Discrete Math. 57 (1985), 261-284.
[14] Minkus, J.: The branched cyclic coverings of 2 bridge knots and links. Mem. Am. Math. Soc. 35 Nr. 255 (1982), 1-68.
[15] Mulazzani, M.: All Lins-Mandel spaces are branched cyclic coverings of \boldsymbol{S}^{3}. J. Knot Theory Ramifications 5 (1996), 239-263.
[16] Neuwirth, L.: An algorithm for the construction of 3-manifolds from 2-complexes. Proc. Camb. Philos. Soc. 64 (1968), 603-613.
[17] Osborne, R. P., Stevens, R. S.: Group presentations corresponding to spines of 3-manifolds II. Trans. Amer. Math. Soc. 234 (1977), 213-243.
[18] Rolfsen, D.: Knots and Links. Publish or Perish Inc., Berkeley Ca., 1976.
[19] Ruini, B., Spaggiari, F.: On the structure of Takahashi manifolds. Tsukuba J. Math. 22 (1998), 723-739.
[20] Sieradski, A. J.: Combinatorial squashings, 3-manifolds, and the third homology of groups. Invent. Math. 84 (1986), 121-139.
[21] Takahashi, M.: On the presentations of the fundamental groups of 3-manifolds. Tsukuba J. Math. 13 (1989), 175-189.
[22] Vesnin, A., Kim, A. C.: The fractional Fibonacci groups and manifolds. Sib. Math. J. 39 (1998), 655-664.
[23] Zimmermann, B.: On the Hantzsche-Wendt manifold. Monatsh. Math. 110 (1990), 321-327.

Michele Mulazzani
Department of Mathematics
University of Bologna, I-40126 Bologna
Italy, and C.I.R.A.M., Bologna, Italy
E-mail: mulazza@dm.unibo.it

[^0]: *Work performed under the auspices of G.N.S.A.G.A. of C.N.R. of Italy and supported by the University of Bologna, funds for selected research topics.
 Mathematics Subject Classification 2000: Primary 57M12, 57R65; Secondary 20F05, 57M05, 57M25. Keywords: Takahashi manifolds, branched cyclic coverings, cyclically presented groups, geometric presentations of groups, Dehn surgery.
 Received February 28, 2000.
 Revised February 6, 2001.

[^1]: ${ }^{1}$ For notation and properties about two-bridge knots and links we refer to [1]. For the characterization of two-bridge knots of genus one, see [5].
 ${ }^{2} \mathrm{~A}$ canonical spine is a 2-dimensional cell complex with a single vertex.

[^2]: ${ }^{3}$ Alternatively, a similar cyclic presentation can be obtained when $p=1$.

