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ON PERIODIC TAKAHASHI MANIFOLDS*

By

Michele MULAZZANI

Abstract. In this paper we show that periodic Takahashi 3-manifolds
are cyclic coverings of the connected sum of two lens spaces (possibly
cyclic coverings of $S^{3}$ ), branched over knots. When the base space is
a 3-sphere, we prove that the associated branching set is a two-bridge
knot of genus one, and we determine its type. Moreover, a geometric
cyclic presentation for the fundamental groups of these manifolds is
obtained in several interesting cases, including the ones correspond-
ing to the branched cyclic coverings of $S^{3}$ .

1. Inhoduction

Takahashi manifolds are closed orientable 3-manifolds introduced in [21]
by Dehn surgery on $S^{3}$ , with rational coefficients, along the $2n$-component link
$\mathscr{L}_{2n}$ depicted in Figure 1. These manifolds have been intensively studied in [11],
[19], and [22]. In the latter two papers, a nice topological characterization of all
Takahashi manifolds as two-fold coverings of $S^{3}$ , branched over the closure of
certain rational 3-string braids, is given.

A Takahashi manifold is called periodic when the surgery coefficients have
the same cyclic symmetry of order $n$ of the link $\mathscr{L}_{2n}$ , i.e. the coefficients are $p/q$

and $r/s$ altemately. Several important classes of 3-manifolds, such as (fractional)
Fibonacci manifolds $[7, 22]$ and Sieradsky manifolds $[2, 20]$ , represent notable
examples of periodic Takahashi manifolds.

In this paper we show that each periodic Takahashi manifold is an n-fold
cyclic covering of the connected sum of two lens spaces, branched over a knot.
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Figure 1: Surgery along $_{2n}$ yielding $M_{n}(p/q, r/s)$ .

This knot arises from a component of the Borromean rings, by performing a
surgery with coefficients $p/q$ and $r/s$ along the other two components.

For particular values of the surgery coefficients (including the classes of

manifolds cited above), the periodic Takahashi manifolds tum out to be n-fold
cyclic coverings of $S^{3}$ , branched over two-bridge knots of genus one1, whose pa-
rameters are obtained using Kirby-Rolfsen calculus [18] (compare the analogous

result of [11], obtained by a different approach). Observe that in [19] a charac-

terization of all periodic Takahashi manifolds as n-fold cyclic coverings of $S^{3}$ ,

branched over the closure of certain rational 3-string braids, is presented, but the

result is incorrect, as we show in Remark 1.
For many interesting periodic Takahashi manifolds–including the ones

corresponding to branched cyclic coverings of $S^{3}-a$ cyclic presentation for the
fundamental group is provided and proved to be geometric, i.e. arising from a
Heegaard diagram, or, equivalently, from a canonical spine2 [16].

2. Main results

We denote by $M(p_{1}/q1, \ldots, p_{n}/q_{n}; r_{1}/s_{1}, \ldots, r_{n}/s_{n})$ the Takahashi manifold
obtained by Dehn surgery on $S^{3}$ along the $2n$-component link $\mathscr{L}_{2n}$ of Figure 1,

with surgery coefficients $p_{1}/q1,$ $r_{1}/s_{1},$
$\ldots,$

$p_{n}/q_{n},$ $r_{n}/s_{n}\in\tilde{Q}=Q\cup\{\infty\}$ respectively,

cyclically associated to the components of $\mathscr{L}_{2n}$ .
A Takahashi manifold is periodic when $p_{j}/q_{j}=p/q$ and $r_{j}/s_{j}=r/s$ , for

every $i=1,$
$\ldots,$

$n$ . Denote by $M_{n}(p/q, r/s)$ the periodic Takahashi manifold
$M(p/q, \ldots, p/q;r/s, \ldots, r/s)$ . From now on, without loss of generality, we can
always suppose that: $gcd(p, q)=1,$ $gcd(r, s)=1$ and $p,$ $r\geq 0$ . Moreover, if $\alpha,\beta\in Z$

with $\alpha\geq 0$ and $gcd(\alpha,\beta)=1$ , we shall denote by $L(\alpha,\beta)$ the lens space of type
$(\alpha,\beta)$ . As usual, $L(O, 1)$ is homeomorphic to $S^{1}\times S^{2}$ and $L(1,\beta)$ is homeomor-
phic to $S^{3}$ , for all $\beta$ (including $\beta=0$).

1For notation and properties about two-bridge knots and links we refer to [1]. For the characteri-
zation of two-bridge knots of genus one, see [5].
2A canonical spine is a 2-dimensional cell complex with a single vertex.
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Notice that $M_{n}(p/q, -p/q)$ is the Fractional Fibonacci manifold $M_{n}^{p/q}$ de-
fined in [22] and, in particular, $M_{n}(1, -1)$ is the Fibonacci manifold $M_{n}$ studied
in [7]. Moreover, $M_{n}(1,1)$ is the Sieradsky manifold $M_{n}$ introduced in [20] and
studied in [2]. Because of the symmetries of $\mathscr{L}_{2n}$ , the homeomorphisms

$M_{n}(p/q, r/s)\cong M_{n}(-p/q, -r/s)\cong M_{n}(r/s, p/q)\cong M_{n}(-r/s, -p/q)$

can easily be obtained for all $n\geq 1$ and $p/q,$ $r/s\in\tilde{Q}$ .
A balanced presentation of the fundamental group of every Takahashi mani-

fold is given in [21], and in [19] it is shown that this presentation is geometric, i.e.
it arises from a Heegaard diagram (or, equivalently, from a canonical spine). As
a consequence, $\pi_{1}(M_{n}(p/q, r/s))$ admits the following geometric presentation with
$2n$ generators and $2n$ relators:

$\langle x_{1}, \ldots, x_{2n}|x_{2i-1}^{q}x_{2i}^{-r}x_{2i+1}^{-q}, x_{2i}^{s}x_{2i+1}^{p}x_{2i+2}^{-s}; i=1, \ldots, n\rangle$ ,

where the subscripts are $mod 2n$ .
When $r=1$ , we can easily get a cyclic presentation [9] with $n$ generators:3

$\pi_{1}(M_{n}(p/q, 1/s))=\langle z_{1}, \ldots, z_{n}|z_{i}^{p}(z_{i}^{-q}z_{i+1}^{q})^{s}(z_{i}^{-q}z_{i-1}^{q})^{s};i=1, \ldots, n\rangle$ , (1)

where the subscripts are $mod n$ .

PROPOSITION 1. For all $p/q\in\tilde{Q}$ and $s\in Z$ , the cyclic presentation (1) of
$\pi_{1}(M_{n}(p/q, 1/s))$ is geometric.

PROOF. If $s=0$ then $M_{n}(p/q, 1/s)$ is homeomorphic to the connected sum
of $n$ copies of $L(p/q)$ , and therefore the statement is straightforward. If $s>0$ , the
presentation becomes

$\langle z_{1}, \ldots, z_{n}|z_{i}^{p-q}(z_{i+1}^{q}z_{i}^{-q})^{s}(z_{i-1}^{q}z_{i}^{-q})^{s-1}z_{i-1}^{q} ; i=1, \ldots, n\rangle$ . (1’)

Figure 2 shows an RR-system which induces (1 ‘), and so, by [17], this presen-
tation is geometric. If $s<0$ , the presentation becomes

$\langle z_{1}, \ldots, z_{n}|z_{i}^{p+q}(z_{i+1}^{-q}z_{i^{q}})^{-s}(z_{i-1}^{-q}z_{i^{q}})^{-s-1}z_{i-1}^{-q} ; i=1, \ldots, n\rangle$ . (1)

Therefore, if we replace $q$ with $-q$ , Figure 2 also gives an RR-system inducing
(1). $\blacksquare$

Since the link $\mathscr{L}_{2}$ is a two-component trivial link, we immediately get the
following results:

3Altematively, a similar cyclic presentation can be obtained when $p=1$ .
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Figure 2: An RR-system for the cyclic presentation (1’).
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LEMMA 2. For all $p/q,$ $r/s\in\tilde{Q}$ , the manifold $M_{1}(p/q, r/s)$ is homeomorphic
to the connected sum of lens spaces $L(p, q)\# L(r, s)$ . In particular, $M_{1}(p/q, 1/s)$ is
homeomorphic to the lens space $L(p, q)$ and $M_{1}(1/q, 1/s)$ is homeomorphic to $S^{3}$ .

PROOF. $M_{1}(p/q, r/s)$ is obtained by Dehn surgery on $S^{3}$ , with coefficients
$p/q$ and $r/s$ , along the trivial link with two components $\mathscr{L}_{2}$ . $\blacksquare$

Now we prove the main result of the paper:

THEOREM 3. For all $p/q,$ $r/s\in\tilde{Q}$ and $n>1$ , the periodic Takahashi mani-

fold $M_{n}(p/q, r/s)$ is the n-fold cyclic covering of the connected sum of lens spaces
$L(p, q)\# L(r, s)$ , branched over a knot $K$ which does not depend on $n$ . Moreover, $K$

arises from a component of the Borromean rings, by performing a surgery with co-
efficients $p/q$ and $r/s$ along the other two components.

Figure 3: The branching set $K$ (dashed line).

PROOF. Both the link $\mathscr{L}_{2n}$ and the surgery coefficients defining $M_{n}(p/q, r/s)$

are invariant with respect to the rotation $p_{n}$ of $S^{3}$ , which sends the i-th compo-
nent of $\mathscr{L}_{2n}$ onto the $(i+2)$ -th component $(mod 2n)$ . Let $\mathscr{G}_{n}$ be the cyclic group
of order $n$ generated by $p_{n}$ . Observe that the fixed-point set of the action of $\mathscr{G}_{n}$

on $S^{3}$ is a trivial knot disjoint from $\mathscr{L}_{2n}$ . Therefore, we have an action of $\mathscr{G}_{n}$ on
$M_{n}(p/q, r/s)$ , with a knot $K_{n}$ as fixed-point set. The quotient $M_{n}(p/q, r/s)/\mathscr{G}_{n}$ is
precisely the manifold $M_{1}(p/q, r/s)$ , which is homeomorphic to $L(p, q)\# L(r, s)$ by
Lemma 2, and $K_{n}/\mathscr{G}_{n}$ is obviously a knot $K\subset M_{1}(p/q, r/s)$ , which only depends
on $p/q$ and $r/s$ . Moreover, $K\cup \mathscr{L}_{2}$ is the Borromean rings, as showed in Figure 3.
This proves the statement. $\blacksquare$
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We can give another description of the branching set $K$, as the inverse image
of a trivial knot in a certain two-fold branched covering.

Denote by $\mathscr{L}(p/q, r/s)$ the link depicted in Figure 4. It is composed by
the closure of the rational 3-string braid $\sigma_{1}^{p/q}\sigma_{2}^{r/s}$ , which is the connected sum
of the two-bridge knots or links $b(p, q)$ and $b(r, s)$ , and by a trivial knot. More-
over, denote: (i) by $\mathcal{O}_{n}(p/q, r/s)=M_{n}(p/q, r/s)/\mathscr{G}_{n}$ the orbifold from the proof of
Theorem 3, whose underlying space is $L(p, q)\# L(r, s)$ and whose singular set is the
knot $K$, with index $n$ ; (ii) by $S^{3}(\mathscr{K}_{n}(p/q, r/s))$ the orbifold whose underlying space is
$S^{3}$ and whose singular set is the closure of the rational 3-string braid $(\sigma_{1}^{p/q}\sigma_{2}^{r/s})^{n}$ ,

with index 2; and (iii) by $S^{3}(\mathscr{L}(p/q, r/s))$ the orbifold whose underlying space is $S^{3}$

and whose singular set is the link $\mathscr{L}(p/q, r/s)$ , with index 2 and $n$ as pointed out in
Figure 4.

Figure 4: The link $(p/q, r/s)$ .

PROPOSITION 4. Assuming the previous notations, the following commutative
diagram holds for each periodic Takahashi manifold.

PROOF. The link $\mathscr{L}_{2n}$ admits an invertible involution $\tau$ , whose axis intersects
each component in two points (see the dashed line of Figure 1), and the rotation
symmetry $\rho_{n}$ of order $n$ which was discussed in Theorem 3. These symmetries in-
duce symmetries (also denoted by $\tau$ and $\rho_{n}$ ) on the periodic Takahashi manifold
$M=M_{n}(p/q, r/s)$ , such that $\langle\tau,p_{n}\rangle\cong\langle\tau\rangle\oplus \mathscr{G}_{n}\cong Z_{2}\oplus Z_{n}$ . We have $M/\langle\tau\rangle=$

$S^{3}(ff_{n}(p/q, r/s))$ (see [19] and [22]) and $M/\mathscr{G}_{n}=\mathcal{O}_{n}(p/q, r/s)$ (see Theorem 3). It
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is immediate to see that $\rho_{n}$ induces a symmetry (also denoted by $\rho_{n}$ ) on the orbi-
fold $ M/\langle\tau\rangle$ , and $(M/\langle\tau\rangle)/\mathscr{G}_{n}$ is the orbifold $S^{3}(\mathscr{L}(p/q, r/s))$ . As we see from
Figure 3, $\tau$ induces a strongly invertible involution (also denoted by $\tau$) on the link
$\mathscr{L}_{2}$ . Using the Montesinos algorithm we see that $(M/\mathscr{G}_{n})/\langle\tau\rangle=S^{3}(\mathscr{L}(p/q, r/s))$ .
This concludes the proof. $\blacksquare$

As a consequence, the branching set $K$ of Theorem 3 can be obtained as the
inverse image of the trivial component of $\mathscr{L}(p/q, r/s)$ in the two-fold branched
covering $\mathcal{O}_{n}(p/q, r/s)\rightarrow S^{3}(\mathscr{L}(p/q, r/s))$ .

From Theorem 3 we can get the following result, which has already been
obtained in [11] by a different technique.

PROPOSITION 5. For all $q,$ $s\in Z$ and $n>1$ , the periodic Takahashi manifold
$M_{n}(1/q, 1/s)$ is the n-fold cyclic covering of $S^{3}$ , branched over the two-bridge knot

of genus one $b(|4sq-1|, 2s)\cong b(|4sq-1|, 2q)$ .

PROOF. From Theorem 3, $M_{n}(1/q, 1/s)$ is the n-fold cyclic covering of
$L(1, q)\# L(1, s)\cong S^{3}$ , branched over a knot $K$ which does not depend on $n$ . By
isotopy and Kirby-Rolfsen moves it is easy to obtain (see Figure 5) a diagram
of $K$, which is a Conway’s normal form of type $[-2q, 2s]$ . This proves the
statement. $\blacksquare$

Proposition 5 covers the results of [2], [7] and [22] conceming n-fold
branched cyclic coverings of two-bridge knots. Moreover, for all $p,$ $q\in Z$ , the
periodic Takahashi manifold $M_{n}(1/q, 1/s)$ is homeomorphic to the Lins-Mandel
manifold $S(n, |4sq-1|, 2s, 1)[13,15]$ , the Minkus manifold $M_{n}(|4sq-1|, 2s)[14]$

and the Dunwoody manifold $M((|4q-1|-1)/2,0,1, s, n, -q_{\sigma})[3,6]$ .
Moreover, observe that all cyclic coverings of two-bridge knots of genus one

are periodic Takahashi manifolds.

REMARK 1. The results of Corollaries 8, 9 and 11 of [19], conceming pe-
riodic Takahashi manifolds as n-fold cyclic branched coverings of the closure of
certain (rational) 3-string braids, are incorrect. This is evident from the following
counterexamples. If $p/q=3$ and $r/s=-3$ then the first homology group of the
3-fold cyclic branched covering of the closure of the 3-string braid $(\sigma_{1}^{3}\sigma_{2}^{-3})^{2}$ has
order 256, but $|H_{1}(M_{3}(3, -3))|=1296$ . If $p/q=3/2$ and $r/s=1$ then the first
homology group of the 4-fold cyclic branched covering of the closure of the ra-
tional 3-string braid $(\sigma_{1}^{3/2}\sigma_{2})^{2}$ has order 135, but $|H_{1}(M_{4}(3/2,1))|=15$ . Note that
the corollaries are valid if $p=r=1$ .

The following conjecture is naturally suggested by the previous results.
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Figure 5:

CONJECTURE. Let $p/q,$ $r/s\in\tilde{Q}$ be fixed. Then, for all $n>1$ , the periodic
Takahashi manifolds $T_{n}=M_{n}(p/q, r/s)$ are n-fold cyclic coverings of $S^{3}$ , branched
over a knot which does not depend on $n$ , if and only if $p=1=r$ .

Added in revision–The referee pointed out that it is possible to prove the
conjecture for “almost all cases” by using the hyperbolic Dehn surgery theorem
and the shortest geodesic arguments by Kojima [12].
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