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WHEN IS AN ORDERED FIELD A METRIC SPACE?

Dedicated to the memory of my colleague, W. Harold “Harry” Row, Jr.

By

David E. DOBBS

Abstract. Let $(F, \leq)$ be an ordered field. With respect to the order
topology, $F$ is a Tychonoff uniform space. $F$ is metrizable if and only
if there is a countable set $\{b_{1}, \ldots, b_{n}, \ldots\}$ of positive elements of $F$

such that if $b$ is any positive element of $F$, there exists $n\geq 1$ such
that $0<b_{n}<b$ . If $F$ is denumerable or Archimedean, then this
metrizability condition is satisfied. For each uncountable cardinal
number $\aleph$ , there exist ordered fields, $F_{1}$ and $F_{2}$ , each of cardinality $\aleph$ ,

such that the order topology on $F_{1}$ (resp, $F_{2}$ ) is (resp., is not)
metrizable.

1. Introduction

Our starting point is the observation that the set $R$ of real numbers has many
compatible structures. For instance, $R$ is both an ordered field and a metric
space. Some other familiar ordered fields, such as the field $Q$ of rational numbers,
also have structures as metric spaces, and so it seems natural to ask if every
ordered field is a metric space. More precisely, one may ask, given an ordered
field $(F, \leq)$ , if the order topology on $F$ (in the sense of [7]) is metrizable, in which
case one would say that $F$ is metrizable. Despite the evidence afforded by $R$ and
$Q$ , the answer is in the negative, for Theorem 2.6 establishes that for each
uncountable cardinal number $\aleph$ , there exist ordered fields, $F_{1}$ and $F_{2}$ , each of
cardinality $\aleph$ , such that $F_{1}$ is metrizable and $F_{2}$ is not metrizable. This result is
best-possible, since Corollary 2.4 establishes that each countable ordered field is
metrizable. Moreover, as suggested by the examples of $R$ and $Q$ , Corollary 2.5
establishes that each Archimedean field is metrizable. (Background on the
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“Archimedean” concept will be recalled in Section 2. For the moment, we recall
that each ordered field $F$ has characteristic zero and, hence, contains an iso-
morphic copy of $Q$ . It is well known that $F$ is Archimedean if and only if $Q$ is
order-theoretically dense in $F.$ ) Despite the examples of $R$ and $Q$ , Remark 2.7 (a)
shows that the order topology of a metrizable ordered field need not be separable.
One may conclude, by comparing Corollary 2.5 and Remark 2.7 (a), that the
metrizability of the usual topology on $R$ is essentially due to the order-theoretic
density of $Q$ in $R$ , rather than the topological density of $Q$ in $R$ . In fact, Theorem
2.2 gives the following order-theoretic characterization of metrizable ordered
fields $(F, \leq)$ : there is a countable set $\{b_{1}, \ldots, b_{n}, \ldots\}$ of positive elements of $F$

such that if $b$ is any positive element of $F$, there exists $n\geq 1$ such that $0<b_{n}<b$ .
Theorem 2.6 and Remark 2.7 are essentially algebraic. In these results, one

constructs linear orders on monomials involving possibly infinitely many vari-
ables, and the ordered fields that result from these constructions are certain
function fields or fields of formal Laurent series. On the other hand, Theorem 2.2
results from an analysis of the order topology on any arbitrary ordered field.
Although this topology need not be metrizable, it does produce a Tychonoff
uniform space: see Lemma 2.1 (b) for a proof of uniformity that uses results on
topological groups and Remark 2.3 for the sketch of a proof that uses only
general topology.

For background on uniform spaces and other aspects of general topology, we
refer the reader to [7]. For the rudiments on ordered fields, see [1] and [3]. As for
notation, it will be convenient to let $|S|$ denote the cardinality of a set $S$; and if
$(F, \leq)$ is an ordered field, to let $F^{+}$ denote $\{a\in F|0<a\}$ , the set of positive
elements in $F$.

2. Results

Let $(F, \leq)$ be an ordered field. In particular, $(F, \leq)$ is a partially ordered (in
fact, linearly ordered) set, and so $\leq$ induces an order topology $\mathscr{T}=\mathscr{T}(F)$ on
(the set underlying) $F$. According to [7, Exercise I, page 57], a subbase for $\mathscr{T}$

consists of the sets $(-\infty, b)$ $:=\{c\in F|c<b\}$ and $(a, \infty)$ $:=\{c\in F|a<c\}$ , as $a$

and $b$ vary over the elements of $F$. It is then easy to see that a basis for $\mathscr{T}$

consists of all the sets having one of the forms $(a, b):=\{c\in F|a<c<b\}$ ,
$(-\infty, b)$ , and $(a, \infty)$ , as $a$ and $b$ vary over the elements of $F$. It will be con-
venient to define the (canonical) uniformity for $F$ to be $\mathscr{U}:=\mathscr{U}(F);=$

{ $U\subseteq F\times F|$ There exists $b\in F^{+}$ such that $\{(x,$ $y)\in F\times F$ : $|x-y|<b\}\subseteq U$}.
In Lemma 2.1 (b), we show that, in the terminology of [7], $\mathscr{U}$ is a uniformity and



When is an ordered field a metric space? 327

the topology of this uniformity coincides with the order topology $\mathscr{T}$. We assume
familiarity with this terminology, as well as the notion of a “base“ of a uni-
formity [7, page 177].

LEMMA 2.1. Let $(F, \mathscr{T})$ be the topological space arising from an orderedfield
$F$ and its order topology $\mathscr{T}$ . Then:

(a) $(F, \mathscr{T})$ is a Hausdorff topological group (with respect to addition).
(b) $(F, F)$ is a uniform space with uniformity $\mathscr{U}$ .
(c) $(F, \mathscr{T})$ is a completely regular space.

PROOF. (a) If $a<b\in F$ , put $\delta:=(b-a)/2$ , and observe that $ a\in$

$(a-\delta, a+\delta),$ $b\in(b-\delta, b+\delta)$ , and $(a-\delta, a+\delta)\cap(b-\delta, b+\delta)=\emptyset$ . It follows
that $\mathscr{T}$ is a Hausdorff topology on $F$. We show next that, with this topology, $F$

(under addition) is a topological group.
Consider the additive inverse map –: $F\rightarrow F$ , given by $ a-\rangle$ $-a$ for all $a\in F$ .

Under this map, the inverse image of $(a, b)$ is $(-b, -a)$ , the inverse image of
$(-\infty, b)$ is $(-b, \infty)$ , and the inverse image of $(a, \infty)$ is $(-\infty, -a)$ . Thus, the
inverse image of each basic open set is open, and so –is a continuous function.
It remains to prove that the addition map $+:F\times F\rightarrow F,$ $(a, b)-\rangle$ $a+b$ , is also
continuous.

We shall show that $+is$ continuous at each $(\alpha,\beta)\in F\times F$ . Suppose that
$+(\alpha,\beta)\in(a, b)$ for some $a<b$ in $F$; that is, $a<\alpha+\beta<b$ . Put $\epsilon:=$

$\min(b-(\alpha+\beta), (\alpha+\beta)-a)$ . Now, if $\delta>0$ with $\alpha_{1},\beta_{1}\in F$ satisfying $|\alpha_{1}-\alpha|<\delta$

and $|\beta_{1}-\beta|<\delta$ , then we see, by the triangle inequality [3, (iv), page 8], that

$|+(\alpha_{1},\beta_{1})-+(\alpha,\beta)|=|(\alpha_{1}+\beta_{1})-(\alpha+\beta)|\leq|\alpha_{1}-\alpha|+|\beta_{1}-\beta|<\delta+\delta=2\delta$ .

Thus, if we take $\delta:=\epsilon/2$ , we find that $|+(\alpha_{1},\beta_{1})-+(\alpha,\beta)|<\epsilon$ , so that
$+(\alpha_{1},\beta_{1})\in(a, b)$ . The above argument applies formally as well if one supposes
that $either+(\alpha,\beta)\in(-\infty, b)or+(\alpha,\beta)\in(a, \infty)$ . In view of the above description
of a basis for $\mathscr{T}$ , this establishes that $+is$ continuous and completes the proof
that $F$ is a topological group.

(b) We claim that a fundamental basis of the $\mathscr{T}$-neighborhoods of $0$ in $F$ is
given by all the sets of the form $(-\delta,\delta)$ as $\delta$ varies over the elements of $F^{+}$ .
Indeed, if $0\in(a, b)$ , then $\delta$ $:=\min(-a, b)$ satisfies $0\in(-\delta,\delta)\subseteq(a, b)$ . Similarly,
given $0\in(a, \infty)$ , use $\delta$ $:=-a$ ; and given $0\in(-\infty, b)$ , use $\delta:=b$ . This proves the
claim.

Since (a) ensures that $(F, \mathscr{T})$ is a topological group, we see, by combining the
above claim with [5, Proposition 5, page 53], that $(F, \mathscr{T})$ is a uniform space
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and that a base for its uniformity $\gamma/$ is given by all the sets of the form
$L(\delta):=\{(x, y)\in F\times F|x-y\in(-\delta,\delta)\}$ as $\delta$ varies over the elements of $F^{+}$ .
According to [7, page 177, lines 21-23], this base determines $\gamma t^{r}$ entirely, namely,
$\mathscr{W}=$ { $U\subseteq F\times F|There$ exists $\delta\in F^{+}$ such that $L(\delta)\subseteq U$ }. In view of the
definitions of $L(\delta)$ and $\mathscr{U}(F)$ , it follows that $\gamma\ell^{\wedge}=\mathscr{U}(F)$ . In particular, $\mathscr{U}=\mathscr{U}(F)$

is a uniformity. Moreover, [5, Proposition 5, page 53] also establishes that the
topology of the uniformity $\mathscr{W}$ (that is, of $\mathscr{U}$ ), is the topology of the topological
group $(F, \mathscr{T})$ , namely, $\mathscr{T}$. This completes the proof of (b).

(c) According to [5, Theorem 5, page 49], any Hausdorff topological group is
completely regular. Apply (a). $\square $

Let $F$ be an ordered field. Then Lemma 2.1 (a), (c) ensure that $F$, in its order
topology $\mathscr{T}$ , is a completely regular $T_{1}$ -space; that is, a Tychonoff space, to use
terminology as introduced in [7, page 117]. In this regard, it is natural to consider
metrizability, for the celebrated metrization theorem of Urysohn [7, Theorem 16,
page 125] implies that any second-countable Tychonoff space is metrizable. We
shall say that $F$ is (pseudo-)metrizable in case $(F, \mathscr{T})$ is (pseudo-)metrizable in the
sense of [7, page 124]; that is, in case $F$ is induced by some (pseudo-)metric on $F$.
Metrizability results for uniform spaces are classical (cf. the Alexandroff-Urysohn
metrization theorem [7, page 186]), as are metrizability results for topological
groups (cf. [6]). While much of Lemma 2.1 works for any Abelian topological
group, we next use the field structure of the ordered field $F$ (specifically, that
$0<1/2<1)$ to characterize when $F$ is (pseudo-)metrizable.

THEOREM 2.2. Let $F$ be an ordered field, with canonical uniformity $\mathscr{U}$ . Then
the following conditions are equivalent:

(1) $F$ is metrizable;
(2) $\mathscr{U}$ has a countable base;
(3) There exists a countable set $\{b_{1}, b_{2}, \ldots\}\subseteq F^{+}$ such that for each $b\in F^{+}$ ,

there exists $n\geq 1$ so that $0<b_{n}<b$ .

PROOF. By Lemma 2.1 (b), $F$ (with its order topology) is a uniform space.
Hence, by [7, Metrization Theorem 13, page 186], (2) holds if and only if $F$ is
pseudo-metrizable. Since Lemma 2.1 (a) ensures that $F$ is Hausdorff, it then
follows that (2) $\Leftrightarrow(1)$ . (See the comments in [7, page 186] conceming the
metrization theorem of Alexandroff-Urysohn.) It remains to show that (2) $\Leftrightarrow(3)$ .

For each $b\in F^{+}$ , let $U_{b}:=\{(x, y)\in F\times F:|x-y|<b\}$ . Thus, the above
definition of the uniformity $\mathscr{U}$ may be rewritten as $\mathscr{U}=\{U\subseteq F\times F|There$ exists
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$b\in F^{+}$ such that $U_{b}\subseteq U$ }. In particular, $U_{b}\in \mathscr{U}$ for each $b\in F^{+}$ . Moreover,
if $0<b_{n}<b$ in $F$, then $U_{b_{n}}\subseteq U_{b}$ . Thus, if $\{b_{1}, b_{2}, \ldots\}$ is as in (3), then
$\{U_{b_{1}}, U_{b_{2}}, \ldots\}$ forms a (countable) base for $\mathscr{U}$ . Therefore, (3) $\Rightarrow(2)$ .

Finally, we show that (2) $\Rightarrow(3)$ . Suppose that $\mathscr{B}=\{B_{1}, B_{2}, \ldots\}$ is a
countable base for the uniformity $\mathscr{U}$ . Let $b\in F^{+}$ . Since $U_{b}\in \mathscr{U}$ , it follows from
the definition of “base” that $B_{n}\subseteq U_{b}$ for some $n$ . However, by the definition of
$\mathscr{U}$ , there exists $c_{n}\in F^{+}$ such that $U_{c_{n}}\subseteq B_{n}$ . (Note that $c_{n}$ depends on $n$ but not on
$b.)$ Hence, $|x-y|<c_{n}\Rightarrow(x, y)\in U_{c_{n}}\Rightarrow(x, y)\in B_{n}\Rightarrow(x, y)\in U_{b}\Rightarrow|x-y|<b$

in $F$. Taking $y:=0$ , we conclude that $|x|<c_{n}\Rightarrow|x|<b$ in $F$. If $b<c_{n}$ , then
$x:=(b+c_{n})/2$ satisfies $|x|=x<c_{n}$ and $|x|>b$ , a contradiction. (We have just
used that $1/2>0$ , which is, of course, valid in any ordered field. Two sentences
hence, we shall use the fact that $1/2<1.$ ) Therefore, $c_{n}\leq b$ . Hence, $b_{n}$ $:=c_{n}/2$

satisfies $0<b_{n}<c_{n}\leq b$ . It follows that the set $\{b_{1}, b_{2}, \ldots\}$ is as in (3). $\square $

Although it was convenient to use material conceming topological groups
from [5] in proving Lemma 2.1, we pause next to sketch how a direct proof of
Lemma 2.1 (b) may be accomplished by using only background on uniform
spaces from [7]. Of course, a purely topological approach (as in the proof of
Theorem 2.2) has natural overlaps with an approach that invokes results on
topological groups. For instance, the reader will have noticed that for $b\in F^{+}$ , the
set $U_{b}$ in the proof of Theorem 2.2 is the same as the set $L(b)$ in the proof of
Lemma 2.1. We used the notation $L(b)$ because this corresponds to the notation
of Husain [5, page 52] that supports the results invoked from [5]: his $L(U)$ is just
our $L(b)$ in case $U=(-b, b)$ .

REMARK 2.3. A proof of Lemma 2.1 (b) that avoids citing results on to-
pological groups can proceed as follows. First, one shows directly that $\mathscr{U}=\mathscr{U}(F)$

is a uniformity. To do so, one must verify conditions $(a)-(e)$ in the definition of
“uniformity” in [7, page 176]. Condition (a) follows because $0<b$ for all $b\in F^{+};$

(b) follows because $|x-y|=|y-x|$ for all $x,$ $y\in F;(c)$ follows essentially by
the triangle inequality, because $U_{b}\subseteq U\subseteq F\times F$ and $c:=b/2$ imply that
$U_{c}\circ U_{c}\subseteq U;(d)$ follows because $U_{b}\subseteq U\subseteq F\times F$ and $U_{c}\subseteq V\subseteq F\times F$ imply
that $U_{\min(b,c)}\subseteq U\cap V$ ; and (e) follows immediately from the definition of $\mathscr{U}$ .

Since $\mathscr{U}$ is a uniformity, it induces a topology $s^{\sim}$ on $F$. According to [7, page
178], this topology is given by $s\leftarrow=\{T\subseteq F|$ for all $z\in T$ , there exists $U\in \mathscr{U}$ such
that $\{y\in F|(z, y)\in U\}\subseteq T\}$ . We proceed to show that $s\leftarrow=\mathscr{T}$ .

First, we show that each $\mathscr{T}$-subbasic open set is open in $ s\leftarrow$ . We give the proof
for sets of the form $(-\infty, b)$ , leaving the similar proof for the sets $(a, \infty)$ to the
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reader. Fix $b\in F$ . It is enough to show that if $z<b$ in $F$, then there exists $d\in F^{+}$

such that if $y\in F$ and $|z-y|<d$ , then $y<b$ . Observe that $d:=b-z$ works, for
$-d<z-y<d$ and $y<z+d=b$ .

Next, we prove that each $s^{\sim}$-open set $T$ is open in $^{\Gamma}$ . Fix $z\in T$ . It suffices to
find a $\mathscr{T}$-basic open set $V$ such that $z\in V\subseteq T$ . Now, because $T\in s^{\sim}$ , we can
choose $U\in \mathscr{U}$ such that $\{y\in F|(z, y)\in U\}\subseteq T$ . Then, by the definition of $\mathscr{U}$ ,

there exists $b\in F^{+}$ such that $\{(u, v)\in F\times F:|u-v|<b\}\subseteq U$ . Evidently, $V:=$

$(z-b, z+b)$ is a $\mathscr{T}$-basic open set such that $z\in V$ . Moreover, $V\subseteq T$ . In fact,
$V\subseteq\{y\in F|(z, y)\in U\}$ . Indeed, if $ y\in\nabla$ , then $(z, y)\in U$ because $|z-y|<b$ .
This completes the proof that $s\leftarrow=\mathscr{T}$ .

Since $\Gamma=s^{\sim}$ is the topology of the uniformity $\mathscr{U}$ , we can conclude that
$(F, \mathscr{T})$ is a uniform space with uniformity $\mathscr{U}$ . In other words, we have completed
the altemate proof of Lemma 2.1 (b).

The next two corollaries show that many familiar ordered fields are
metrizable.

COROLLARY 2.4. Each countable ordered field is metrizable.

PROOF. Let $F$ be a countable ordered field. Then $F$ is metrizable by Theorem
2.3, since $\{b_{1}, b_{2}, \ldots\}:=F^{+}$ satisfies condition (3) in Theorem 2.3. $\square $

Recall that an ordered field $F$ is said to be Archimedean if for each $a\in F^{+}$ ,

there exists a positive integer $n$ such that $na>1$ . It is known that if $F$ is an
ordered field, then: $F$ is $Archimedean\Leftrightarrow F$ is order-isomorphic to a subfield of the
field $R$ of all real $numbers\Leftrightarrow Q$ is dense in $F$ (in the sense that, whenever $a<b$ in
$F$, there exists $c\in Q\subseteq F$ such that $a<c<b$). Accessible references are available
for what we need of the forgoing, as follows. See [1, Theorem 2, page 92] for a
proof that $R$ is Archimedean; and adapt the proof of [1, Theorem 3, page 93] to
see that $Q$ is dense in any Archimedean field.

COROLLARY 2.5. Each Archimedean field is metrizable.

PROOF. Let $F$ be an Archimedean field. As noted in the Introduction, we
may view $Q$ as a subfield of $F$ and, as such, $Q$ is dense in $F$, by the above
remarks. It follows that $F$ is metrizable by Theorem 2.3, since $\{b_{1}, b_{2}, \ldots\}$ $:=Q^{+}$

satisfies condition (3) in Theorem 2.3. $\square $

It should be noted that neither Corollary 2.4 nor Corollary 2.5 includes the
other. For instance, $R$ is an Archimedean field which is not countable. On the
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other hand, by changing the field of coefficients from $R$ to $Q$ in the argument
supporting [3, (4), pages 15-16], we see that the (countable) field $Q(X)$ of rational
functions in one variable over $Q$ can be given the structure of an ordered field
which is not Archimedean. Some of the orders introduced in Theorem 2.6 will
extend this construction to arbitrarily many variables.

By Corollary 2.4, all countable ordered fields are metrizable; and by Cor-
ollary 2.5, at least some uncountable ordered fields are metrizable. (Recall that
the Introduction raised the question of generalizing the fact that the most familiar
uncountable field, $R$ , is metrizable. Corollary 2.5 recovers this fact.) On the other
hand, the next result shows, in particular, that some uncountable ordered fields
are not metrizable. We explicitly assume the Axiom of Choice, in order to be able
to use the standard facts about the arithmetic of infinite cardinal numbers (cf. [4,
pages 96-98]).

THEOREM 2.6. For each uncountable cardinal number $\aleph$ , there exist ordered
fields, $F_{1}$ and $F_{2}$ , each of cardinality $\aleph$ , such that $F_{1}$ is metrizable and $F_{2}$ is not
metrizable.

PROOF. We begin with some general observations that will be used
repeatedly. Let $(K, \leq)$ be an ordered field and choose a set $I$ of cardinality $\aleph$ .
Well-order $I$; by abus de langage, let $\leq$ denote a well-ordering of $I$. Let $\{Y_{i}|i\in I\}$

denote a set of algebraically independent indeterminates indexed by $I$. Let
$R:=K[\{Y_{i}|i\in I\}]$ , the ring of polynomials in the variables $Y_{i}$ with coefficients in
$K$; and let $L:=K(\{Y_{i}|i\in I\})$ , the field of rational functions over $K$ in the
variables $Y_{i}$ . Since $L$ is the quotient field of $R$ , every structure of $R$ as an ordered
(integral) domain can be uniquely extended to give $L$ the structure of an ordered
field [1, Theorem 12, page 49]. Before creating some ordered structures for $R$ and
$L$ , we discuss (lexicographic and reverse lexicographic) orders on monomials. As
terminology in this area varies in the literature and our set $I$ is typically infinite,
we shall do this in some detail.

We shall say that a monomial $Y_{i_{1}}^{m_{1}}\cdots Y_{i_{n}}^{m_{n}}$ in $R$ is in canonical form if
$i_{1}<\cdots<i_{n}$ in the well-ordering $\leq$ on $I$ and $m_{1},$

$\ldots,$
$m_{n}$ are positive integers.

Suppose that $u=Y_{i_{1}}^{m_{1}}\cdots Y_{i_{n}}^{m_{n}}$ and $v=Y_{j_{1}}^{p1}\cdots Y_{j_{k}}^{pk}$ are distinct monomials in
canonical form. We say that $u\prec v$ if one of the following sets of conditions holds:
$i_{1}<j_{1}$ (in $I$ ) $;l_{1}=j_{1},$ $m_{1}<p\iota;i_{1}=j_{1},$ $m_{1}=pl,$ $i_{2}<j_{2};i_{1}=j_{1},$ $m_{1}=p\iota,$ $i_{2}=j_{2}$ ,

$m_{2}<p2$ ; etc. Notice that each nonzero polynomial $w\in R$ can be written uniquely
as $w=\alpha_{1}w_{1}+\cdots+\alpha_{d}w_{d}$ , where $\alpha_{1},$

$\ldots,$
$\alpha_{d}\in K\backslash \{0\}$ and the $w_{i}$ are monomials (in

canonical form) satisfying $w_{1}\prec\cdots\prec w_{d}$ . (By convention, we take $1\in K$ to be the
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“empty monomial” and $1\prec w$ for every other monomial }$\iota’.$ ) In stating the “key
fact” below, it will be convenient to call $\alpha_{1}w_{1}$ the miminal term of $w$ and $\alpha_{d}w_{d}$ the
maximal term of $w$ .

The key fact is that if $w_{1}$ and $w_{2}$ are nonzero polynomials in $R$ , then the
minimal (resp., maximal) term of $w_{1}w_{2}$ is the product of the minimal (resp.,
maximal) term of $w_{1}$ and the minimal (resp., maximal) term of $w_{2}$ . This is easily
seen by applying the following observation to the descriptions of $w_{1}$ and $w_{2}$ as
sums of scalar multiples of monomials in ascending $\prec$ -order. If $u,$ $v$ , and $w$ are
monomials such that $u\prec v$ , then $uw\prec vw$ . We next proceed to define two useful
ordered domain structures on $R$ .

Given distinct polynomials $u$ and $v$ in $R$ , write $w:=v-u$ as above; namely,
$w=\alpha_{1}w_{1}+\cdots+\alpha_{d}w_{d}$ , where $\alpha_{1},$

$\ldots,$
$\alpha_{d}\in K\backslash \{0\}$ and the $w_{j}$ are monomials

satisfying $w_{1}\prec\cdots\prec\dagger v_{d}$ . We say that $u<1v\Leftrightarrow\alpha_{d}>0$ in the given order on $K$;

and that $u<2v\Leftrightarrow\alpha_{1}>0$ in the given order on $K$. Of course, one then obtains
binary relations $\leq 1$ and $\leq 2$ on $R$ by interpreting $\leq_{j}$ as $<j$ or $=$ . We claim
that $\leq 1$ and $\leq 2$ each give $R$ the structure of an ordered domain. Indeed, the
above “key fact” shows that the product of $\leq_{l}$ -positive elements is $\leq_{f}$-positive;
and by an easy case analysis, we can check directly that the sum of $\leq$ ;-positive
elements is also $\leq_{j}$ -positive. Passing to the quotient field by [1, Theorem 12, page
49], we then extend these orders to obtain the ordered field structures $(L, \leq 1)$ and
$(L, \leq 2)$ . It will be convenient to refer to $\leq 1$ as the maximal order on $L$ and to
$\leq 2$ as the minimal order on $L$ . With these preliminaries in hand, we can now
proceed to constmct the required ordered fields $F_{1}$ and $F_{2}$ .

The field $F_{1}$ will take the form $Q(\{Y_{i}|i\in I\})(X)$ and it will be constmcted by
using both types of orders, $\leq 1$ and $\leq 2$ , that were introduced above. To begin
the construction, take $I$ to be a set of cardinality $\aleph$ . With $K:=Q$ in the above,
we obtain the $\leq 2$ -ordered field structure on the field $K_{1}=Q(\{Y_{i}|l\in I\})$ . (New

notation is needed for the following reason. Although $K_{1}$ has, to this point,
played the role of $L$ , it is about to play the role of $K$ as we continue to apply the
above preliminaries.) Observe that $|K_{1}|=\max(|Q|, |I|)=\max(\aleph_{0}, \aleph)=\aleph$ . Next,

choose $X$ to be an indeterminate over $K_{1}$ . Then, with $K_{1}$ playing the role of $K$

and {X} playing the role of $\{Y_{i}|i\in I\}$ , we obtain the $\leq 1$ -ordered field structure
on the field $F_{1}$ $:=K_{1}(X)=Q(\{Y_{i}|i\in I\})(X)$ . (The previous considerations apply,
as the construction of the field does not require the assumption that the set of
variables has a specific cardinality.) Observe that $|F_{1}|=\max(|K_{1}|, \aleph_{0})=\aleph$ . It
remains to show that $F_{1}$ is metrizable. We shall do so by verifying condition (3)

in Theorem 2.2.
Consider a nonzero element $f\in F_{1}$ . Write $f=g/h$ , where $g$ and $h$ are
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nonzero elements in $K_{1}[X]$ , the ring of polynomials in the variable $X$ with
coefficients in $K_{1}$ . By the definition of $\leq 1,$ $f\in F_{\mathfrak{l}}^{+}$ if and only if the terms of
maximal degree in $g$ and $h$ have coefficients (in $K_{1}$ ) with the same sign (without
loss of generality, both positive). Now, suppose that $f\in F_{1}^{+}$ (with $g$ and $h$ each
having a positive leading coefficient). Put $n:=\max(\deg(g), \deg(h))$ . By the above
comments, $1/X^{n+1}\in F_{1^{+}}$ . Moreover, by the definition of $\leq 1$ we have that
$h<1gX^{n+1}$ , since the leading coefficient of $gX^{n+1}-h$ is the leading coefficient of
$g$ , which is positive in $K_{1}$ . It follows that $0<1/X^{n+1}<1gh^{-1}=f$ . Therefore,
$\{b_{1}, b_{2}, \ldots\}:=\{1/X, 1/X^{2},1/X^{3}, \ldots\}$ satisfies condition (3) in Theorem 2.2, and
so $F_{1}$ is metrizable, as asserted.

We pause to give a different construction of a satisfactory $F_{1}$ . Unlike the
above two-step construction, we now simply consider the field $F^{*}=K((X))$ of
formal Laurent series in an analytic indeterminate $X$ with coefficients in an
ordered field $K$, where $K$ is assumed to have cardinality $\aleph$ . (For example, $K$ could
be the above field $K_{1}.$ ) Observe that the ring $S:=K[[X]]$ of formal power series
over $K$ has cardinality equal to $|K|^{\aleph_{0}}=\aleph^{\aleph_{0}}$ . Since $\aleph>\aleph_{0}$ , it follows from the
$GCH$ (Generalized Continuum Hypothesis) [4, page 102] that $|S|=\aleph$ . (We
assume the $GCH$ here in order to proceed with the altemate construction of $F_{1}.$ )
It follows that $F^{*}$ , which is the quotient field of $S$, also has cardinality $\aleph$ .

Next, we define a binary relation on $S$ . If $u$ and $v$ are distinct elements of $S$,

there exists a nonnegative integer $n$ and elements $a_{0},$ $a_{1},$ $a_{2},$
$\ldots\in K$ such that

$a_{0}\neq 0$ and $v-u=X^{n}(a_{0}+a_{1}X+a_{2}X^{2}+\cdots)$ . We say that $u<v$ in $S$ if and
only if $a_{0}>0$ in $K$. It is easy to verify that $S$ acquires the structure of an ordered
domain in this way. We extend this in the only possible way to an ordered field
structure on $F^{*}$ . It follows that when a nonzero element $w\in F^{*}$ is expressed
(uniquely) as $w=X^{n}(a_{0}+a_{1}X+a_{2}X^{2}+\cdots)$ , for some integer $n$ and elements
$a_{i}\in K$ with $a_{0}\neq 0$ , then: $w>0$ in $F^{*}\Leftrightarrow a_{0}>0$ in $K$. Therefore, if
$w=X^{n}(a_{0}+a_{1}X+a_{2}X^{2}+\cdots)>0$ , we have that $0<X^{n+1}<w$ in $F^{*}$ , since
$w-X^{n+1}=X^{n}(a_{0}+(a_{1}-1)X+a_{2}X^{2}+\cdots)>0$ in $F^{*}$ . Hence, $\{b_{1}, b_{2}, \ldots\}:=$

$\{X^{n}\in F^{*}|n\in Z\}$ satisfies condition (3) in Theorem 2.2. Therefore, $F^{*}$ is met-
rizable, thus completing the proof that $F^{*}$ has all the asserted properties of $F_{1}$ .

We tum now to the more delicate task of constructing a satisfactory $F_{2}$ . This
field will take the form $F_{2}$ $:=K(\{Y_{i}|i\in I\})$ discussed in the preliminaries, and it
will be constructed by using the maximal order, $\leq l$ . For the specifics, we take $K$

to be any ordered field of cardinality $\aleph$ , and we take $I$ to be the set of all
countable ordinal numbers. We pause to explain that $I$ is well-ordered under the
usual order relation on ordinal numbers. To see this, it is helpful to view $I$ as
$\Omega^{\prime}\backslash \{\Omega\}$ , where $\Omega$ denotes the first uncountable ordinal number and $\Omega^{\prime}$ denotes
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the set of all ordinal numbers that are less than or equal to $\Omega$ . Since $\Omega^{\prime}$ is known
to be well-ordered [7, Summary 22 $(a)$ ] and its maximal element is $\Omega$ , one easily
concludes that $\Omega^{\prime}\backslash \{\Omega\}$ is also well-ordered. Next, we show that $(F_{2}, \leq l)$ is not
metrizable, by proving that if $\{b_{1}, b_{2}, \ldots\}$ is any countable subset of $F_{2}^{+}$ , then
$\{b_{1}, b_{2}, \ldots\}$ does not satisfy condition (3) in Theorem 2.2.

For each $n$ , fix a description of $b_{n}$ as a ratio of polynomials in variables
drawn from $\{Y_{i}|i\in I\}$ and with coefficients in $K$. Let $J$ be the subset of $I$

consisting of all the indexes $i$ such that $Y_{i}$ appears (with nonzero coefficient) in
either a numerator or a denominator of at least one of the $b_{n}$ . Since $\Omega^{\prime}$ is well-
ordered, it follows from [7, Theorem 9, page 14] that $J$ has a supremum, say $j$, in
$\Omega^{\prime}$ . Since $J$ is countable and $\Omega\not\in J$ , a fundamental result (and the main reason we
termed this construction “delicate” above) [7, Theorem 23, page 30] ensures that
$ j\neq\Omega$ ; that is, $j\in I$ . Put $k:=j+1\in I$ . It follows from properties of the ordinal
numbers that $\lambda<k$ for each $\lambda\in J$ .

Consider $g:=Y_{k}\in F_{2}$ , and let $f:=g^{-1}$ . By the definition of the maximal
order, $g>0$ in $F_{2}$ ; hence, $f>0$ in $F_{2}$ . Now, let $N$ and $D$ be the numerator and
denominator, respectively, of some $b_{n}$ . Since $b_{n}\in F_{2}^{+}$ , the definition of $\leq 1$ allows
us to suppose, without loss of generality, that both $N$ and $D$ have maximal terms
with positive coefficients. The next observation fundamentally uses the con-
struction of the maximal order, the above conclusion conceming $k$ , and the “key
fact” in the preliminaries. Observe that $D<1Y_{k}=g$ and $1<1Y_{k}N=gN$ ,
whence $f=g^{-1}<\mathfrak{l}N$ . Therefore $0<1(1/Y_{k}^{2})=(f/g)<l(N/D)=b_{n}$ . As $k$

does not depend on $n$ , it follows that $\{b_{1}, b_{2}, \ldots\}$ does not satisfy condition (3) in
Theorem 2.2. Therefore, by Theorem 2.2, $(F_{2}, \leq l)$ is not metrizable.

It remains only to show that $|F_{2}|=\aleph$ . According to the approach in
[7, Theorem 119, page 269], the ordinal number $\Omega$ is the set of all ordinal
numbers that are less than $\Omega$ ; that is, $\Omega=I$ . Therefore, $|I|=|\Omega|=\aleph_{1}$ . As
$\aleph>\aleph_{0}$ , we have that $\aleph\geq\aleph_{1}$ . Hence, $|F_{2}|=\max(|K|, |I|)=\max(\aleph, \aleph_{1})=\aleph$ . $\square $

REMARK 2.7. (a) It is interesting that even if an ordered field is metrizable,
the underlying topological space need not be separable. Indeed, a standard
metrization theorem [7, Theorem 17, page 125] ensures that any separable metric
space has cardinality at most $|[0,1]^{\omega}|=c^{N_{0}}=2^{N_{0}}=c$ . Thus, if one takes $I$ in
Theorem 2.6 to be such that $|I|\geq 2^{c}$ , then the order $\leq l$ produces a metrizable
ordered field structure on $Q(\{Y_{i}|i\in I\})(X)$ whose canonical topology is not
separable.

(b) If one takes $I=K=R$ in the constmction of $F_{2}$ in Theorem 2.6, the
result is an ordered field structure on $F_{2}=R(\{Y_{i}|i\in R\})$ which is not metrizable.
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In that case, $|F_{2}|=c=|R|$ , and so a bijection $F_{2}\rightarrow R$ can be used to transfer the
stmcture from $F_{2}$ to the set underlying $R$ . In this way, the set underlying $R$ can
be given the structure of an ordered field which is not metrizable. However, the
algebraic part of this structure is definitely not the usual field structure on $R$ . The
point is that there is only one way to endow the usual field stmcture on $R$ with
the structure of an ordered field, namely, $a<b$ in $R$ if and only if there exists
$d\in R\backslash \{0\}$ such that $b-a=d^{2}$ (cf. [1, Exercise 9, page 100]); and this structure is
the most familiar metrizable structure in mathematics.

The reader will have noticed that both the maximal order $\leq 1$ and the
minimal order $\leq 2$ produce ordered field structures that are not Archimedean.
Thus, with $\aleph$ $:=c$ , if one takes $F$ to be either of the fields constructed in Theorem
2.6 to have the properties asserted of $F_{1}$ , then $F$ is a metrizable field of cardinality
$c$ which is not Archimedean. As in the preceding paragraph, we can use a
bijection $F\rightarrow R$ to transfer the structure from $F$ to the set underlying $R$ . In this
way, the set underlying $R$ can be given the structure of a metrizable ordered field
which is not Archimedean. This new structure is not algebraically isomorphic to
the usual field structure on $R$ , because we have seen that the latter admits only
one order, namely, the familiar Archimedean one.

As the minimal order $\leq 2$ saw limited use in Theorem 2.6, we pause to note
how it can be used to give an example of the type noted in the preceding
paragraph, namely, a metrizable non-Archimedean structure on a field of car-
dinality $c$ . Let us begin with the base field $R$ and form the function field
$L:=R(Y)$ , equipped with the minimal order, $\leq 2$ . By the above comments, we
need only verify that $L$ is metrizable. For this, it suffices to show that the set
$\{b_{1}, b_{2}, \ldots\}$ $:=$ {$f/g\in L|f\in Q^{+}X^{n}$ for some $n\geq 0,$ $g\in Q^{+}$ } satisfies condition
(3) in Theorem 2.2. Indeed, by the definition of the minimal order, any positive
element in $L$ has a numerator $N$ and a denominator $D$ whose terms of lowest
degree have positive coefficients. We seek $f,$ $g$ as above so that $f/g<2(N/D)$ . It
suffices to arrange that $f<2N$ and $D<2g$ . The former is achieved since $Q$ is
order-theoretically dense in $R$ ; the latter is arranged by taking $g$ to be a a rational
number which exceeds the coefficient of the term of $D$ of least degree.

(c) Let $(Y, \leq)$ be a partially ordered set. As in [8, page 821], a $T_{0}$ -topology
$\mathscr{T}$ on $Y$ is said to be order-compatible (with $\leq$ ) if, for all $yl$ and $y2$ in
$Y:y1\leq y2\Leftrightarrow y2\in\overline{\{y_{1}\}}$ (where $\overline{S}$ denotes the closure in $\mathscr{T}$ of a set $S\subseteq Y$). Any
partially ordered set admits an order-compatible topology. However, if $(F, \leq)$ is
an ordered field, then the order topology on $F$ is not order-compatible (with $\leq$ ).
Indeed, since Lemma 2.1 (a) ensures that the order topology on $F$ is $T_{1}$ , we have
that $\overline{\{y\}}=\{y\}$ for each $y\in Y$ , although $y<y+1$ . Nevertheless, there is more
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than one $T_{0}$ -topology on $F$ which is order-compatible with $\leq$ . To see this, since
$\leq$ is a linear order, we may apply the criterion in [2, Corollary 2.7], noting that
no element in $F$ has an “immediate successor” in F. (In detail, if $a\in F$ , then
$a<1+|a|$ ; and if $a<d$ in $F$, then $a<(a+d)/2<d.)$
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