
TSUKUBA J MATH.
Vol. 24 No. 1 (2000), 133-137

ON THE EXISTENCE OF SOLUTIONS OF
PRESCRIBING SCALAR CURVATURE PROBLEM

By

Li MA*

Abstract. We consider the scalar curvature problem with nonzero
Dirichlet boundary data and with prescribed scalar function changing
sign as a nonlinear eigenvalue problem. We use the super-sub solu-
tion method and our early result [MW] to obtain a solution of the
problem and give a lower bound on the eigenvalue.

1. Introduction

In the study of the prescribed scalar curvature problem, one may treat the
corresponding boundary problem. Such a problem were studied by H. Brezis and
L. Nirenberg, L. Caffarelli and J. Spruck (see [BN] and [CS]). We can extend
some of their results. Here we continue our early study [MW] into the prescribed
scalar curvature problem with non-zero Dirichlet data and the scalar curvature
function changing sign. There are relative a few results in this direction (see [Ni]).
This is because we can not use the standard variational method to study the
difficulty arising from the negative part of the scalar curvature. Hence we try to
understand this problem in other ways. A little thinking gives us the idea using
the implicit function theorem (see [BN] or [M2]), and we can get a general
existence theorem for general scalar curvature functions. However, one wants to
know more. The new point here is that we do get more by using our early result
(see [MW]), which will be stated as follows.

Let $\Omega$ be a bounded smooth domain in $R^{n}$ with $n\geq 3$ and recall the result
proved in [MW].
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PROPOSITION 1. Let $Q(x)$ be a bounded $d_{l}fferentiable$ function on $\Omega$ satisfying
the $fo$ llowing conditions:

$ 0\leq Q(x)\leq b<\infty$ , (1)

and there exist some point $ 0\in\Omega$ and $a$ integer $m>(n-2)/2$ such that

$Q(O)=b,$ $d^{(j)}Q(0)=0$ , for $j=1,$ $\ldots,m-1$ . (2)

Given a function $\phi\in H^{1/2}(\partial\Omega),$ $\phi\neq 0,$ $\phi(x)\geq 0$ on $\partial\Omega$ . Let $h$ be the harmonic
extension of $\phi$ and let $d$ be a constant such that $\int_{\Omega}Q|h|^{2n/(n-2)}<d^{2n/(n-2)}$ . Then
there is a minimizer to the minimization problem

Inf $\{\int_{\Omega}|du|^{2};u\in H^{1}(\Omega),$ $ u=\phi$ on $\partial\Omega,$ $\int_{\Omega}Q|u|^{2n/(n-2)}=d^{2n/(n-2)}\}$ .

Therefore there are a positive number $\lambda$ and a positive smooth function $u$ satisfying

$- Au=\lambda Q(x)u^{p}$ on $\Omega$ (3),

and

$ u=\phi$ on $\partial\Omega$ (4).

where $p+1=2n/(n-2)$ is the Sobolev exponent.

Based on this result we will study the scalar curvature problem with the
scalar curvature function changing sign. Our result in this paper is

THEOREM 1. Suppose $K\in C^{\infty}(\Omega)$ changes its sign in $\Omega$ . Assume the positive
part $K_{+}$ of $K$ satisfies (1) and (2) above. Then there is a positive constant $\lambda_{1}\geq$

$(2b^{2/p+1}/nS(p+1)^{2})(n/(n+2))^{(n+2)/n}(\int_{\Omega}K_{+}h^{p+1})^{-2/n}$ (see the precise formula (9)
in next section) such that for every $0\leq\lambda\leq\lambda_{1}$ there is at least one positive solution
to (3) and (4) with $Q$ replaced by $K$, where $S$ is the best Sobolev constant of $\Omega$ .

Recall that $K_{+}=\sup\{K, 0\}$ is the positive part and $K_{-}=K-K_{+}$ is the
negative part of $K$. We remark that this theorem gives a good explicit lower
bound estimate on $\lambda_{1}$ . This is the reason we use our Proposition 1.

To prove this theorem, we first recall the following well-known super-sub
solution method (see [Ni]).

PROPOSITION 2. Assume the function $f\in C^{3}(\Omega\times R)$ and we consider the
semilinear elliptic equation
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$\Delta u+f(x, u)=0$ . (5)

If there are two functions $u_{1},$ $v_{1}\in C^{\infty}(\Omega)$ satisfy

$\Delta u_{1}+f(x, u_{1})\geq 0$ ,

and
$\Delta v_{1}+f(x, v_{1})\leq 0$ ,

and $u_{1}\leq v_{1}$ , then there is a $C^{2}$ solution $u$ of (5) satisfying $u_{1}\leq u\leq v_{1}$ .

Now the idea to prove our Theorem 1 is to use Proposition 2. We use
Proposition 1 for $K_{+}$ to get a pair $(\lambda_{*}, v_{1})\in R+\times C^{\infty}(\Omega)$ . Then we use such a
pair as the super-solution.

One the other hand, one can use the direct method (see [A] or our paper
[M1]) to get a positive solution $u_{1}$ of (3) and (4) for the negative part $K_{-}$ (note
$K=K_{+}+K_{-})$ and any $0\leq\lambda\leq\lambda_{*}$ . We use this $u_{1}$ as a sub-solution.

Before closing this introduction we pose a problem of studying a similar
problem on a compact riemmannian manifold with boundary.

2. The Proof of the Result

We use the notation in the Introduction. Using Proposition 1 to the positive
part $K+we$ get the pair $(v_{1}, \lambda_{*})$ . By the maximum principle (see 3.71 in [A]) we
see that $v_{1}>h$ on $\Omega$ . Now, because we have, for every $0\leq\lambda\leq\lambda_{*}$ and for every
$ x\in\Omega$ ,

$-Av_{1}(x)=\lambda_{*}K_{+}(x)v_{1}(x)^{(n+2)/(n-2)}\geq\lambda K(x)v_{1}(x)^{(n+2)/(n-2)}$ ,

$v_{1}$ is a super-solution of (3) with this $\lambda$ .
One the other hand, we define, for the negative part $K$-and every $\lambda>0$ , the

functional

$I_{\lambda}(u)=\int_{\Omega}|\nabla u|^{2}-\frac{\lambda}{p+1}K_{-}|u|^{p+1}$

on the set

$M$ $:=$ { $u\in H^{1}(\Omega),$ $ u=\phi$ on $\partial\Omega$ }.

It is easy to know that $I_{\lambda}$ is a convex functional on M. By using the direct method
(see [A] or [M1]) we find a positive smooth function $u_{\lambda}$ satisfying (3) and (4) for $\lambda$ .
By the maximum principle [A] again we find that $u_{\lambda}<h$ on $\Omega$ . It is easy to see
that $u_{\lambda}$ is a sub-solution of (3) with $0\leq\lambda\leq\lambda_{*}$ .



136 Li MA

Now for every $0\leq\lambda\leq\lambda_{*}$ , we can use $v_{1}$ as super-solution and $u_{\lambda}$ as sub-
solution as in Proposition 2 to get a positive smooth solution $u$ of (3) and (4).

Define $\lambda_{1}$ be the maximum number $\lambda$ such that there is a positive smooth
solution to (3) and (4) for $\lambda$ . Then $\lambda_{1}\geq\lambda_{*}$ .

In the following, we estimate $\lambda$ $:=\lambda_{*}$ . For short we write $v=v_{1}$ . Multiplying
(3) by $v-h$ and integrating by part on $\Omega$ we obtain

$\int(|\nabla v|^{2}-\nabla v\nabla h)=\lambda\int K_{+}(v-h)v^{p}=\lambda(d^{p+1}-\int K_{+}hv^{p})$

$\leq\lambda(d^{p+1}-\int K_{+}h^{p+1})$ . (6)

Here we used the fact $h<v$ . Because $h$ is a harmonic function, we have

$\int\nabla v\nabla h=\int|\nabla h|^{2}$

and

$\int(|\nabla v|^{2}-\nabla v\nabla h)=\int|\nabla(v-h)|^{2}$ .

Using the Sobolev inequality, we get

$\int|\nabla(v-h)|^{2}\geq S(\int(v-h)^{p+1})^{2/p+1}$

$\geq\frac{S}{b^{2/p+1}}(\int K_{+}(v-h)^{p+1})^{2/p+1}$ , (7)

where $S$ is the best Sobolev constant of $\Omega$ . Using the mean value theorem, we get

$v^{p+1}-h^{p+1}\leq(p+1)v^{p}(v-h)$

and

$\int K_{+}(v^{p+1}-h^{p+1})\leq(p+1)\int K_{+}v^{p}(v-h)$

$\leq(p+1)(\int K_{+}v^{p+1})^{p/p+1}(\int K_{+}(v-h)^{p+1})^{1/p+1}$

$=(p+1)d^{p}(\int K_{+}(v-h)^{p+1})^{1/p+1}$ (8)
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Combining (6) and (7) with (8), we have

$(d^{p+1}-\int K_{+}h^{p+1})^{2}\leq(p+1)^{2}d^{2p}(S/b^{2/p+1})\lambda(d^{p+1}-\int K_{+}h^{p+1})$ .

Hence

$\lambda\geq\frac{b^{2/p+1}}{S(p+1)^{2}}(\frac{d^{p+1}-\int K_{+}h^{p+1}}{d^{2p}})$ . (9)

Choose $d$ such that $d^{p+1}=2p/(p+1)\int_{\Omega}K_{+}h^{p+1}$ and we get the formula wanted
in our Theorem 1.
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