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ON THE CHOW-FORMS OF ELLIPTIC NORMAL
CURVES OF DEGREE 4

By

Tatsuji TANAKA

Abstract. In this note, we shall aim, using explicit theta constants,
to describe the Chow-form of an elliptic normal curve of degree 4
embedded in P? by using theta functions, at any point of the upper
half plane. In this case, the embedded elliptic curve is a complete
intersection which is defined by two quadratic forms. In order to
calculate its Chow-form, we use the elimination theory. Our main
result is Th. 1’ (§2). In our case, Chow-forms are divisors of the
Grassmann variety of lines in P>, From the theorem, we see that the
Chow-forms of elliptic normal curves of degree 4 lie on a linear
subspace M (cf. 2.3) of dimension 23. §2 is the main part of this
note.

In §3, using the theory of elliptic modular forms of level 4, we
consider the geometric meaning of Th. 1’. Then our theorem shows
that the Chow point is given by modular forms of weight 2 (of
weight 1 in the traditional sense) and of level 4. The compactification
of the moduli space of level 4 is isomorphic to a plane conic. Thus,
we see that the Chow points of the projective elliptic normal curves
of degree 4 determined by the points of the upper half plane form a
rational curve of degree 4 in M which is essentially the image of the
2-uple embedding of the above plane conic (Th. 2, §3. cf. Comments
after the proof of Th. 2). Furthermore, we see that the corre-
spondence which assigns the Chow point to a point of the upper half
plane can be extended to the inequivalent cusps of the principal
congruence subgroup I'(4) of level 4 (Cor. 1, §3). Finally, we give a
remark about the structure of the corresponding component of the
Chow variety parametrizing 1-cycles of degree 4 in P* (Cor. 2, §3).
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§1. Situations

This § is the part of grounds on which this note is founded.

First, we prepare some notations. Z, ¢, R and C are as usual the ring of
rational integers, the field of rational numbers, field of real numbers and the field
of complex numbers, respectively.

H is the upper half plane of C, i.e., H = {t e C|Im(z) > 0}.

We put e(t) = exp(2nv/—1¢) in general. For k = (k; k,) with k; and k; € R,
we define a holomorphic function $(7|z) on H x C by

(t|z) = Ze[% (ky + ki +r)+ (ki +1r)(z+ k)| ((r,z) e H x C).
reZ
For any 7€ H, we denote by A, E; a lattice subgroup Z + Z1 of C, a
complex torus C/A,.
Let 7 be an arbitrary point of H. For simplicity, for i, j € Z, we put 3;(z|z) =
/2 j/2(z|z). When 7 is fixed, we denote by 9;(0) the theta constants 9;(z(0). If
(i, j) # (1,1), for any 7€ H, 9;(|0) # 0. Moreover, we have Jacobi’s identity

300(0)* = 901(0)* + 810(0)°*.
We define a holomorphic embedding ¢ : E; — P? by
Vze C;  ¢(z) = (00(7|22), 01(7|22), S10(7|22), 911 (7]22)).

Since {9;/4 o(t]z)|0 < i < 3} is linearly independent and determines the same
very ample line bundle as {9;(z|2z) |i,j = 0,1} (e.g. using (85) in [5], p. 50), the
embedding ¢ is the usual embedding of the torus E; ([6]) followed by a projective
transformation.

Let X, be the image curve ¢(E;) = P?, and let (xg,x1,X2,x3) be the homo-
geneous coordinates in P? corresponding to the above map.

The curve X, is non-singular of degree 4 and defined by

{ 900(0)ng = 901(0)2xf + 910(0)2x§
500(0)2x3 = 810(0)2xF — 01 (0)%x3

This is proved using the addition theorem of theta functions ([8].

§2. Chow-forms

In this section, by using the classical elimination theory, we compute the
Chow-form of the curve X, which is defined by (1). Since the Chow-form Py (U)
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of a projective variety X of dimension r and of degree m in a projective space P”"
can be expressed as a homogeneous polynomial of degree m in the determinants

Uiy -+ U
Urig v Uri,
with sequences of indeterminates U, = (Uy,...,Uwm) (0 <a <r) (2] or [4] or

[7]), we shall express the Chow-form of X, as a homogeneous polynomial in the
determinants as above of the indeterminates, whose coefficients are theta con-
stants.

2.1. In this item, forgetting (1), a little generally, we consider the Chow-form
corresponding to our case.

Let ap,a1,a; be non-zero elements of C* = C — {0}. We consider two
quadratic forms f;, f5:

2.2 2.2 2.2
J1 = ayxy — ajxy — ayx;3,

242 202 4 2.2
Sr = ajx; — ayxy + ayx;.

Let V(f,), V(f,) be the quadrics in P* defined by f; =0, f, = 0.
As to the irreducibility of an algebraic subset V(f;) NV (f,) in P3, we have

PROPOSITION.  Let X be the pencil of quadrics defined by V(f,) and V(f,). If

aj = a} + a3, (2)
then X is separable. Hence, the intersection V(f,) NV (f,) is an irreducible curve of
degree 4 in P3.

The first part is proved along the analogous way as [9], pp. 73~74, and
the irreducibility of the intersection V(f])N V(f,) is a direct conclusion of the
separability of X ([9]).

Therefore, in that case, the Chow-form of the curve V(f;)NV(f,) is irre-
ducible.

Now, assuming that ay,a; and a, satisfy (2), we compute the Chow-form of
the curve X = V(f))NV(f,).

Let

0) (0) (0) (0 n @ @1 (1
u<°>=(u6’,u§’,u£’,u§)), u(')=(“<())>u§)’“§)’“g))

be two sequences of independent variables.



112 Tatsuji TANAKA

We consider the following system of equations:

( e 422 2.2 2.2

2.2 2.2 2.2
f‘z = a0x3 "'ale +alx2 = 0

fizulxo+ - +ux3 =0

| o=+ +ul!

(3)

X3:0.

Then a G.C.D. of the resutant system # of the system of equations (3) is a
power of the Chow-form Py of X ([10]).

In our case, by A. Hurwitz ([3]), the resutant system Z consists of one
resultant which is a G.C.D. of Trigheitsformen of (3). But, as the following
procedure shows, if we use the Pliicker coordinates of the independent variables,
then we can perform the elimination using only Sylvester’s determinant without
A. Hurwitz’s theorem.

We put

0) (1 0) (1 ..
pijzul(.)uj(-)—uj(.)u,() 0<i<j<3) 4)
Pliicker’s relation 1is

Po3P12 = Po2P13 — Poi P23 (a)

Put s = x5, t = x3.
From f; = f, =0, we get

{ DPo1Xo = Sp12 + IP13
Po1X1 = —SPgy — IPo3

We eliminate xo,x; from fi, f5.
First we have

Pglfl = (a(z)sz - a%P(%z - ‘1:%_17(2)1)52 + 2(“31’121713 - a%PozPos)St + (agpﬁ - a%P§3)t2,
p§1f2 = (alngl - a%l’gz)sz - 2a§P02P03St + (agpgl - a%l’&)tz-
We define

F = (ag.l’lzz - 0121’52 - “%Pgl)sz + 2("3’P12P13 - ‘1121’021’03)5’ + (a§Pf3 - 012P§3)t2,

t
= cos2 + cyst+ cztz,
2.2 2.24\.2 2 2.2 2.214,2
F> = (ai pg; — a3 pg)s” — 2a5 poa Posst + (ay po; — a3 pg3 )t

p;td()s2 + dyst + d2t2,
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Le.,
(. _ 2.2 2.2 2.2
Co = dgPy1p — A1 Pop — 43Py
_ 2 2
= 2(“0P12P13 - a1P02P03)

_ 2.2 2.2
C2 = a4y P13 — a1 Po3

2.2 2.2 (b)
do = aipy; — a; Py,
dy = =243 po; Pos
| & = a5 pjy — a3 pgs
Now, we consider the system of equations:
Fi=cos* +cist+ct> =0
{ Fy=dos® +dist+do? =0 ®

Then we have the equivalence: (3) has a non-trivial solution < (5) has a non-
trivial solution.
Let R(F),F,) be the Sylvester’s determinant of (5), i.e.,

R(F\,F,) = (cody — cza’o)2 + (cody — dpc1)(c2dy — drc1)
= c%do2 — c1c0dod) + cocza’l2 + c%dodz — 2¢cocrdodr — cocrdidy + cédzz. (c)
Now, using (b), we compute each term in the right side of (c).
cydy = ay pg Pgy — 24543 pg Py Py + @163 Py by — 20305 pgy Py Pis
+4agala; p, Py, Pos Pls — 2030103 Py, P Pis + a3l PGy i
— 2a3aia; pgy poy P + 43a3 P, PY- (c1)
ci1c2dody = —4aya3 pgy pi, iy + 4aia; pa, pos
+ 4agala; p Por P33 P12 P13 — 445a1a5 Doy Doy P12 P13
+ 4agaia; pg, Py Py Pis — 4430143 Py Pos P
— 4agaia; pl poaPos P12 Pz + 44445 Py Po3 P12 Pis- (c2)
cocad = 4aias pg po, pos + 4aias Py Py — 4a3a1a3 Py s P
— 4a3a3 P Py Py Pis — 44513 PGy P P

+ 4aya3 pg, Pg3 Pia Pis- (c3)
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2 A2 6.4 .2 2 2422 4 2
cidody = 4aga; pg, Py Poz — 4a5a; a3 Py P2 Pos

6.2.2 2 4 4 4 4 4 4 4 4
— 4aya; py Py Pos + 441 a3 Poy Pos — 8a5a) Po1 Po2Po3P12P13
4222 3 2. 4.2 2 3
+ 8ayai a; py Pyz Po3 P12P13 + 8a5aia; poy Po2 Po3 P12 P13

2243 3 6.2 4 2 2 622 2 2 2
— 8agaia; py, Py3 P12P13 + 4a0ai Py P12 P13 — 44095 Py P02 P12 P13

4222 2 .2 2 4 4.2 2 2 2
— 4ayaia; py Py P12 P13 + 44095 Py Po3 P12 Pis-

2426 .2 2 6.4 .2 2 2.2 4.4 .2 2
coc2dody = ayaya; poy Py3 + a5y Py P2 P — 40819, Po1 P2 Po3

2422 4 2 4 4.4 4 6,.2.2 2 4
— Ayaya; Po1 Po2Poz — 419 Po1Po3 — @192 Do1 Po2Po3

2.6.2 2 4 4 4 4 4 4 4.4 2 2
+ aja; py Py Po3 + @143 P2 Po3 — 3991 Po1 Po3Pi2

4222 .2 2 2 2422 4 2 2.2 4.2 4 2
+ ayaia; po Py Po3 P12 + 4g@14;3 Po1 Po3 P12 — 4419 P02 Po3 P12

4226 2 4.4 4 .2 2 4 4.4 2 2
— agaia; Po1 Pi3 — 4041 Po1 P02 P13 + @94y Po1 P02 P13

422 2 4 2 224 4 2 2 2422 2 2 2
+ agaia; po1 Po2 P13 + Apa19;3 Po1 Po3 P13 + 4193 Py1 Po2 Po3 P13

2.6.2 2 2 2 2.2 4.4 .2 2 6.2 4 2 2
— ayga; Po1 P2 Po3 P13 — Apa1 92 P02 Po3 P13 + 4941 Po1 P12 P13

622 .2 2 2 4222 2 2 2
— Qya; Po1 P02 P12P13 — Q9413 Pg1 Po3 P12 P13

442 2 2 2
+ aya; Py Po3 P12P13-

224 4 2 2 2422 4 2
cociddy = —4agaia; py Py Poz — 4444195 Py Po2 P

2.6.2 .2 .4 4 4 4 4 4222 2 2 2
+ daia, py Py Pos + 44145 Poy Pos + 4aqaias Py Pon Pos Piz

22 4.2 4 2 4 4 4
— 4ayaia; py, Po3 Pz + 44045 Po1 Po2Po3 P12 P13

422 2 3 2 6.2 3

+ dagaia; py; Poa Po3 Pr2P13 — 4a5a;3 Doy Po2 Po3 P12 P13
2243 3 6.2, 2 3

— dagaia, pyr Py3P12P13 — 44ga; Py PoaPo3 P12 P13

4 4 3 3
+ 4aga; por Po3 P12 P13-

212 _ 4.4 8 422 6 2 4 4.4 4 26,6 .2
cody = aya, py; + 2agaia; pey Poy + 4p4) Po1 Po> — 2aya; py, Pos

2.2 4.4 .2 2 2.4.2.2 4 2 8 4 4
— dagaia; py P Pos — 2a5a\a;3 Py Por Pos + @3 Poyr Pos

6.2 6

2 6.2 2 4 4 4 4 4 2 6.2.4 .2 2
+ 2aia; py) Py Pos + 4193 PoaPos — 280@3 Poy Piz — 24047 Po1 Poa Pz

4 4.4 2 2 4222 2 2 2 2.6.2 4 2
+ daya; py Po3 Piz + 4a0a145 Py Poa Pos P12 — 28505 Py Pos Pi2

(c4)
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— 2ajaia3 pg, Py pis + a5 Po1 Py — 24045 P P P
+aya pys Pty (c7)
By substituting (cl),...,(c7) into the right side of (c), we have
R(F\,F) = c%do2 — c1cadody + cocza'l2 + clzdodz — 2cocrdody — coc1dvdy + cédz2
= {a} 3y p3s — 24703 piy Py s + 13 PG P03 — 254} Py P P

+4a3ala; pg, P3Py Py — 2630103 P Pos i + a3l Py pis

— 2a3aa3 pgy p6, Pt + a3 PP}

— {—4aid] pg, pi, s + 4aias pgy pos

— 4adatal pj, Poa Py P13 P23 + 4450145 Por Poa P63 P13 P2
+ 8a3ata; gy PG, P63 PYs — 8451 a3 Poy D3P

— 4agaia; pg, oy (Por P13 — Po1P23) P13 + 44343 Py (PoaP1s — PorPs) Pis}
+ {4aias p, P52 pos + 4a1a3 P Do

— 4agatas pgy pgs(—2Po1 PoaP13P2s + P61 P33)

— 4aga; piy Py Pos Pls — 8a5aia; Py Py Pis
+ 4a3a3 pgy (PGP — 2Po1 PoaP13P2s + P61 P33) Pis}
+ {4aja} pgy phy Pty — 4agalas pgy PPy

— 4aia; pg, Phy Pos + 441 a3 pgy by — 8a3ai Pgy Po2 (PoaP1s — PotPa3)Pi3
+ 8ayaia; pg por (Por P13 — PorP23) P13
+ 8a3aid; gy Por P63 (Poa P13 — Po1Pa3) Pr3

— 8adata3 pgy pgs(PoaP13 — Poi P23) P13 + 4agai gy PPt
— 4a§a3 p, po, P PYy — 4ayaial py (Poy Py — 2P0t Poa P13 P2+ Py P33) Pl
+ 4a3a3 Py (P P13 — 2Po1 PoaP13P2s + P P33) Pis}
~ 2{agata; pfy pi; + a3ai po1 P PG — 933143 PG, P Pos

2422 4 2 4 4 4 4 6.2.2 2 4
— Qya1ay Po1 P2 Po3 — 4192 Po1 Po3 — 4192 Po1Po2Po3
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+ aja3 pg; poPos + a1a3 Py Pos

— ada; pyy (P& pls — 2Po1 PoaP13P2s + Py P33)

+ agalal pl poy (P Py — 2Po1 PorP13P2s + P§IP)
+ aga}a3 ply p3s(Pa Py — 2Po1 P02 P13 P2y + Py P33)

— a3aia3 pg pos (P P13 — 2Po1 PoaP13Pas + P61P%3)

— agaial p§ pls — agal oy Py Py + A3a;3 Py Py P

+ ajatal p§ po Pty + agaias gy Py Py + a3a1a3 PG P PP

— ada$ pd Py Py Pls — A3a1a3 Py Py DTy + 041 Po\ oD

— aga; py\ Py PPy — ayaia; ph (P32P1s — 2P0t PoaP13 P23 + PP P
+ agas py (P& Ty — 2P01 Po2P13Pas + Py P3) Pl

- {—40501203P31 szpgs - 4‘1(%“‘1‘“%P31P32P§3

+ 4ata$ pj, PG ps; + 4ata3 P, Py

+4ajalal pl oy (P pls — 2P01 PeaP13P2s + PoyP3)

— 4adalas pl pos (P& Pls — 2PorPozP13P2s + P P33)

+ 4aga; pg) Por (P02 P13 — Po1P23) P13

+ 4agatas pg, poy(Por P13 — Po1P23) P13

— 4agas py, P02P63(Po2P13 — PotP23) P13

- 4“3“%“;1’321’33(17021?13 — Po1P23)P13

- 4“3“%P§1P02(P02P13 — Po1P23)PiaP13

+ 4a3a3 por (P3, P33 — 3Po1 PaaPisP2s + 3P PoaP13Pys — Po1P33) P13}
+ {aga3 p§ + 2a0aia3 p, pg; + aoai Py Py, — 24303 P51 Pl

— 4ajalal p, poPo; — 2034145 Py PoaPos + 93 Poy Pos
+2a}a$ pb Py + 413 PPy — 24563 PG Py — 20341 PGy PP

+ 4aya; poy (Péa Pt — 2P01 Poz P13 P23 + Pé1P33)
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+4agaia; pgy Poy(PGapts — 2P01 PoaP13P2s + P61 P33)

— 24345 pg, P (Poa Py — 2P0t PoaP13 P23 + Po1P33)

- 2“3“%“3%21’33 (szl’%a — 2po1Po2P13P23 + P§1P§3) + aépa‘lpi‘z
— 2a8a3 pg, (P Py — 2P0 Po2P13P2s + Poy P3) Pia

+aga3 (P, Py — 4P P PisPa + 6P Ph P Py

— 4p3, P P13P3s + P61 DY)} (d)
If we use (2) and (a), the right side of (d) is simplified, and we get
R(F1, Fy) = aj py,lag pgs — 2a3a3 ps pis + ai pls + 24543 pgy pis
— 4a{ p§, pls + 4a} poi Poy P13 P23 + 2a3ai piypis — 2a7d; p3y pis
— 2a}a3 pg, ps + 24} p3, p3s — 24545 Py P3; + 2145 gy pis
4 2
— 243 pgy Py — 2a3a3 pgyp3s + a3 pyy + 2413 pgy Poy + a1 po,
- 2“3“%P§1P122 - 2“5“121’3210122 - 4“31’011’021’131’23 + 4“31’31P§3
+agpt, — 2a5a; piy 3y + @5 p3s)-
This is a resultant of (5). The Chow-form Py appears in R(Fi,F;) as a
divisor and it is an irreducible homogeneous polynomial of degree 4 in the
Pliicker coordinates. Now, we take a set of indeterminates U @ and denote by

capitals P; the express1ons which result if in the Pliicker coordmates py the u; ®
are replaced by U . Thus we get

THEOREM 1. Let Px(U) be the Chow-form of the curve X. Then Px(U) is
given by

Px(U) = ayP§; — 2aai P33 P2, + ai PY; + 2alai P§, Pg; — 4al P§, P,
+ 4a} Py Py P13 Pys + 2a2a? P2, P, — 2a%a? P3, P?; — 2alas P, P,
+ 2a} P3 P3; — 2a}a3 Py P3; + 2aia3 P, Py — 2a3 P, P,
— 2a}aiP§, Py + a3 Py, + 2aia3 PG PG, + ai Py, — 2a§a3 P Pt
— 2a2a? P2, P2, — 44’ Py Py P13 P23 + 4ai P} P2 sPl,
ayai L1y — 4a P01 P02 l1323 + 44, £ £33 + 4y

2 2p2
— 2a}a3 P},P3; + a3 Pys.
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2.2. We go back to the situations as in §1. We fix an arbitrary point 7 of H,
and so we write simply X instead of X;.
In the equations (1) in §1, we put

ap = 900(0), a1 =90(0), az=91p(0).
Then
X=V(H)NV(f)

under the notations in 2.1. Moreover, Jacobi’s identity is
ag = a; +a;.

Therefore, from Th. 1, we get

THEOREM 1’. Let Px(U) be the Chow-form of the projective elliptic normal
curve X = §(E;). Then Px(U) is given by

Px(U) = 300(0)*Pd; — 2900(0)*901(0)* PG, P + 901 (0)* P
+2900(0)% 901 (0)2 P2, P2, — 4861 (0)* P, PZ, + 491 (0)* Poy Poo P13 P3
+2800(0)% 901 (0)* P}, PF; — 2901(0)910(0)* P33 P
— 2900(0)2810(0)* P2, P2, + 2801 (0)4P§1P223
— 2900(0)2810(0)2 P2, P2, + 2801 (0)2810(0)> P2, P, — 2810(0)* P2, P2,
— 2801(0)%910(0)* P2, P%, + 810(0)* P§; + 2801(0)>310(0) P}, P,
+ 801 (0)*Pg, — 2900(0)%910(0)* P§, PT, — 2800(0)* 901 (0)* P}, P},
— 48910(0)* Poy Pz P13 P23 + 4310(0)* P2, P2, + 900(0)* P},
— 2800(0)*%10(0)2 P2, P2, + 910(0)* PS;.

Let G be the Grassmann variety of lines in P>. By Iy, we mean the ho-
mogeneous part of degree 4 of the homogeneous coordinate ring I' of G. The
vector space I'y has a base consisting of the standard monomials of degree 4, and
it is of dimension 105 (2], p. 387).

The above expression of Pyx(U) is unique, in the sense that the monomials
appearing in the expression are standard.

2.3. We denote by ¢(X) the Chow point of X (= ¢(E;)). By the beginning of
this §, ¢(X) is a point of the projective space P(I's). Let M be the linear subspace
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of P(I'y) spanned by the monomials appearing in the expression of Py(U),
ie.,
- {{P03,P§3P13,P;‘3,P02P03,P02P13,P01P02P13P23,P12P13,P23P13,P31P§3,
P01P23,P03P23,P01P13,P02P13,P02P23,P01,POlPOZ,P02,P01Pf2,P02P12,
Pot P P13 P3, PGy P33, Py, PPy, Py}
Then the theorem shows that:

(1) M contains not only c¢(X), but also c¢(¢(E;)) for Vz e H,

(2) identifying M with P?*, a system of homogeneous coordinates of ¢(X) is
given by

c(X) = (%00(0)*, —2800(0)> 901 (0)2, 301 (0)*, 2800(0) 291 (0) %, —491 (0)*, 4301 (0)*,
2800(0)%801(0), —2%1(0)*810(0)*, —2800(0)>810(0)%, 2801 (0)*,
—2800(0)2310(0)2, 2861 (0)2910(0)%, =2310(0)*, —2801(0)*310(0),

910(0)*, 2901 (0)2916(0)2, 901 (0)*, —2800(0)2910(0)2, —2960(0) 01 (0)?,
—4810(0)*,4916(0)*, 900(0)*, —2960(0)%910(0)2, 910(0)*). (6)

In the following, we fix the identification M = P?.

§3. Application to the Moduli Theory

In this section where the author owes to [8] to a great extent, we consider the
totality of the Chow point ¢(¢(E;)) (r € H).

3.1. We start with recalling some facts from the theory of elliptic modular
functions.

The homogeneous modular group SL(2,Z) acts on H by
a b T +5b
c d) ct+d’

For any positive integer N, the principal congruence subgroup I'(N) of level
N of SL(2,Z) is, by definition

mod N

I'(N) = Ker(SL(2, Z) 2% SL(2, Z/N Z)).

By a modular form of weight & (k a positive integer) and level N, we mean a
holomorphic function f(z) on H such that
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o= (2 0)erm fim = (@

and that f(r) is bounded at QU {0} (for further details, [8].
We are concerned with I'(4).
The inequivalent cusps of I'(4) are 0,0,1/2,1,2 and 3.
We denote the extended upper half plane by H, ie.,

H:=HUQU{x}.

~——

The compactification H/T'(4) of H/T'(4) is set-theoretically
H/T(4) = H/T'(4) = H/T(4)U {00,0,%, 1,2,3}.

The followings are known ([8]):
(i). !9,']'(7."0)2 are modular forms on the upper half plane H of weight 1 of

level 4,
(ii). The map 6’ : H — P? defined by

7 0'(7) = (900(2]0)?, 901 (z]0)%, $10(z]0)?)

induces a holomorphic embedding 8 : H/I'(4) — P2,
Let (v, ¥;, y>) be the homogeneous coordinates in P? corresponding to the
above map, and let Cp be a plane conic defined by

ys—yi—y;=0.
We define an open set C; of Cy by
Cy := Co — {(1,0, £1), (1, £1,0),(0, 1, +i)}.

Then, Im(6) = C;,. o
(iii). The holomorphic map 6 is extended to the compactification H /T(4) so
that the following diagram is commutative:

H7F(/4) — G
U uU.
H/T(4) — C

We also denote by 6 the extended holomorphic map.
Let p be any one of the inequivalent cusps c0,0,1/2,1,2 and 3. Then 6(p) is
given by the following table:
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p 00 0 1/2 1 2 3
O(p) | (1,1,0) | (1,0,1) | (1,-1,0) | (0,1,4) | (1,0,—1) | (O,1,—i)

3.1.1. For every 7€ H, we denote by c(r) the Chow-point c¢(¢(E;)) of the
projective elliptic normal curve ¢(E;). By 2.3, ¢(t) € M = P? and c(z) is obtained
from replacing 4;(0) by §;(z]|0) in (6). Therefore, a system of homogeneous
coordinates of ¢(tr) is given by modular forms of weight 2 and of level 4.

We are interested in the subset {c(7)|r € H} of M. Let C be the closure of the
set {c(7)|r € H} in the Zariski topology.

We define a holomorphic map c¢: H — C by 7 c(7).

THEOREM 2. C is a non-singular rational curve of degree 4 in M having the
following properties:

(1) {c(r)|te H} = C is a Zariski open subset.

(2) 3 an isomorphism: Cy — C such that the diagram:

c

H ——s C

L
H/T@4) —2 ¢
is commutative.
PrROOF. Let Cj be the plane conic defined in (ii) of 3.1. By C’, we mean the
image of the 2-uple embedding, which is denoted by p, of Cy. C’ is a non-singular

rational curve of degree 4 in P° (which lies on a hyperplane of P°).
Then, V7 e H,

p(0'(1)) = (S00(z]0)*, 900(7]0) > %01 (z]0)?, S00(7]0)*%10(7]0)?, S01(7]0)*,
301(7]0)810(2]0)?, %10(7]0)*).

While, by (6),
In’ : M — P* a composition of a linear projection and a (trivial) projective
transformation such that Vr e H;

7' (c(1)) = (S00(z]0)?, J00(7]0) 2901 (2]0), Y00 (7]0) > $10(7]0) 2, 801 (z]0)?,
901(z]0)*910(z]0)?, 10(z]0) )
= p(0'(7)).

n’ is not unique, and so we fix such an =’
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Conversely, p(6'(t)) determines c(7). Hence, n’ induces a bijection
{c(z)|[re H} — {p(0'(r)) |t € H} = p(Cy).

Since p(Cj) is a Zariski open set of C’, C becomes an algebraic curve which
is isomorphic to Cj, using the bijection. Q.E.D.

This theorem shows that for any te H, the Chow point c(7) of the
projective elliptic normal curve @¢(E;) is essentially given by the image of the 2-
uple embedding of the point (9g0(z]|0)2, 301 (z]0)?, $10(z]0)?).

In our case, the appearance of the 2-uple embedding is primarily based on
the fact that elliptic normal curves of degree 4 in P> are complete intersections by
quadratic forms.

It seems to the author that: when we consider elliptic normal curves of degree
r > 4 embedded in P"~! by using theta functions, the level of the corresponding
principal congruence subgroup will be biggeer than 4. Therefore if r is sufficiently
large, the genus of the corresponding curve C is bigger than 0. Moreover the
genus of C will be bigger as long as r is larger.

3.1.2. Next we consider the compactification of H/T'(4).

By the abuse of notations, we denote by p the isomorphism Cy — C in the
Th. 2.

When p is any one of the inequivalent cusps, let X, be the specialization of
the projective curve X, (t € H) over the specialization p of 7. The equations for
X, are given by the following table ([8], p. 57):

» © 0 1/2 1 2 3
. p=xt | xg=x3 | xg=—x | x5 =—ix | x§=—x] | x5 = ix3
equations =2 x2=x2| x2=x2 | x2=—ix2 | x2 = —x2 | x2 = ix?

Thus, for any p, X, is a l-cycle of degree 4, consisting of 4 lines.

Since Chow-forms are compatible with specializations, the six Chow-forms
Px., Px,, Px,,, Px,, Px, and Py, are obtained by specializations.

Let c¢(p) be the Chow-point ¢(X,) of the cycle X,. Then, (c(p),0(p)) is a
specialization of (c(t),6(z)). Therefore c(p) lies on the curve C.

Let I'(4)(p) be the orbit of p under I'(4). Then

QU (w0} = T()(e) UT)0) UT () (3) UTA(D UT@ @ UTAE)
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Now, we define a map

c:H—-C

_fer), ifreH
) = {c(p), if © e T(4)(p)’

We note that for any p’ € I'(4)(p), the limiting cycle X,/ of X;, as v — p’, is
uniquely determined and then X, = X,,.
Summarizing we have

COROLLARY 1. The diagram:
H
H/T(#) —— G
is commutative.

Now, we recall the topology on H. A fundamental system of neighbourhoods
B(x) of x (xe H) is defined by

the usual one, if xeH
B(x) = the set of all {p, the interior of a circle in
" | H tangent to the real axis at p}, if o#xx=p¢H"

the set of all {oo,7|7e H,Im(7) > ¢} (¢>0), if x=o0

The topological space H/T'(4) = H/T'(4) is defined to be the quotient space
of H. Hence, ¢ becomes a continuous map.

3.2. Finally, we consider the Chow variety € of the 1-cycles of degree 4 in
P3. % is an algebraic set in the 104-dimensional projective space P(T4). Let X
be the component of ¥ whose general point corresponds to an irreducible curve
which is a complete intersections of two quadrics. £ is of dimension 16 ([1]).

2 is stable under the canonical action of PGL(4).

PrOOF. Let ceX be any point and let X be the 1-cycle of degree 4 in P>
corresponding to c.
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If X is an irreducible curve, then Vy e PGL(4), X7 is also irreducible.

Hence, ¢’ = c(X?) e Z.

Next, we assume that X is not irreducible. Then there is an irreducible curve
Xo s.t. co=c(Xp) €X and that ¢ is a specialization of ¢.

Then ¢? is also a specialization of ¢{.

Since ¢} € X, we have ¢’ e X. Q.E.D.

As to the structure of X, we have the following:

COROLLARY 2. Let C be the rational curve as in Th. 2. Then there is a
natural dominating morphism:

SL(4,C) x C — X

induced by the canonical action.

PrOOF. By Th. 2, C(cM) lies on Z. Let ¢:SL(4,C) xZ — X be the
canonical action.

Let f :SL(4,C) x C — X be the morphism induced by a, (y,¢) — c’.

Let p: Co — C be the isomorphism.

Cj = Co — {6 cusps} is the open set of Cop. p(Cp) is an open set of C.

We denote by f’ the restriction of f to SL(4,C) x p(Cy).

Now, for any 7 € H, the projective curve X; = #(E;) is a non-singular curve
embedded by a complete linear system of degree 4. Hence X; is Chow-stable (Th.
4.15 in [7]). In other words, the orbit of the Chow point c¢(X;) by SL(4,C) is
closed and the stabilizer is finite.

. dimImf’ = dimSL(4, C) + dim p(Cy) = 16 = dim Z.
Hence, f dominates X. Q.E.D.
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