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WAVELETS IN THE GENERALIZED TEMPERED
DISTRIBUTIONS

By

Byung Keun SoHN and Dae Hyeon PAHK

Abstract. We expand the generalized tempered distributions in
terms of wavelets of ordinary functions and show the convergence of
the wavelet expansions of the generalized tempered distributions.

1. Introduction

It is possible to extend the expansions in orthogonal wavelets from L?(R)
to a certain class of tempered distributions. G. G. Walter has presented a few
aspects of the relations between the wavelets and the tempered distributions of
polynomial growth. He has found the expansion of the tempered distributions of
polynomial growth in terms of regular orthogonal wavelets [6] and the con-
vergence of the wavelet expansions [7].

In the past, the tempered distributions of polynomial growth were extended
by various types of the generalized tempered distributions of exponential growth
and [5].

In this paper, we will present the expansions of the generalized tempered
distributions of exponential growth, that were introduced by G. Sampson and
Z. Zielezny [5], in terms of wavelets of ordinary functions, and we will study the
convergence of the wavelet expansions of the generalized tempered distributions
of exponential growth.

2. The Generalized Tempered Distributions Space ¢,/(R)
We denote by #,(R), p > 1, the space of all functions ¢ € C*(R) such that
Vk(¢) = SupxeR7a_<_k ek|X|p|Da¢(x)| < ©, k= 1’27 s (1)
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The topology in #,(R) is defined by the family of the semi-norms v;. Then
A»(R) becomes a Fréchet space and ¥ — X, — & — & are continuous; here &
denotes the spaces of all C*-functions, & the space of rapidly decreasing
functions and 2 the spaces of C*-functions with compact support. By .}{p'(R), we
mean the space of continuous linear functionals on #,(R). G. Sampson and Z.
Zielezny characterized the distributions in .}{fp’(R) by the growth at infinity [5]; a
distribution T € 2’ is in Ji”p’(R) if and only if there exist positive integers a, ko
and a bounded continuous function f(x) on R such that

T = D*[ebh £(x)). (2)
DEFINITION 1. We denote by X(R),p =1, the space of all functions
¢ € C'(R) such that
vi(¢) = sup M |D*(x)| < 00, k=1,2,3,...

xeR,a<r

The topology of #,(R) is defined by the family of semi-norm {v;},_; , . By
Ji”p"(R), we mean the space of continuous linear functionals on ) (R). Each
Se %’/(R) is characterized by

S = D[R £(x)],

where f(x) is a bounded continuous function on R and r,ky € N, by the same
method of the proof of (2) in [5, Theorem 2|. Similarly, we can define

F.(R) = {0(1) € C"(R); |60 (1) < Cu(1 + |t|) ?, pe N;k=0,1,...,r.}

and its dual &/(R). For further details, we refer to [5].

3. Multiresolution Analysis of L2(R) Associated with ¢ ¢ A, (R)

Let ¢ € ¢ (R). In order for it to qualify as a scaling function, there must be
associated with ¢ a multiresolution analysis of L2(R), i.e., a nested sequence of
closed subspaces {V,,},,.~ such that

(i) {#(t —n)} is an orthonormal basis of V)
i) ---cV,cVocVic - cL*R)

(i) feVne f(2:) € Vs

iv) N, Vm = {0},U,, Vm = L*(R).

Then ¢ has an expansion

p(1)=>_ V262t —n), {ci}el’, teR. (3)
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Once we have the scaling function ¢ € ,/(R), we can obtain mother wavelets
Y(¢) such that {y(t —n)} is an orthogonal basis of the space W), given by the
orthogonal complement of Vy in V). Also, ¥ has an expansion

W) =) V22t —n), {d} el (4)

for d, corresponding to ¢, in (3). We will adopt the construction of a mother
wavelets defined by d, = (—1)"¢—,. If such a Y¥(z) can be found, then ¥, (¢) =
2™/2ys(2"¢ — n) is an orthogonal basis of W,, which is the orthogonal complement

of Vm in Vm+1.

ExaMpLE. In [I], Corollary 5.5.3 states that it is impossible that y has
exponential decay and that {y € C*, with all derivative bounded, unless y = 0.
Hence there is no mother wavelet € ;. So we will restrict our attention to ..
Daubechies’ compactly supported wavelets are example of ,%fp' wavelets, but
Battle-Lemari¢’s wavelets (in the page 152 of [T] or Example 4 in [6]) are not %,
wavelets even if they have exponential decay in ordinary sense and have
smoothness. However, we did not succeed in constructing the %, wavelets which
are not Daubechies’ one.

The reproducing kernel of Vj is given by

g 1) =3 Fx—mp(t—n),

where ¢(x) is the scaling fuction. The series and its derivatives with respect to ¢ of
order < r converge uniformly on R because of the regularity of ¢ € .}{p’(R), ie.

l¢(rx)(x)| < Cake—kixll” «a=0,1,....r;, k=1,2,... (5)
We deduce the following properties [4, p33]:

(a) qlx+k,t+k) = q(x,¢) for all ke Z.
(b)
lgCx, )] < D 1¢(x = fl (e = )
< > et IR Il
= Zj Cl%+1e_|x‘jlpe_lt"ﬂpe_kz‘plx_”p
< che TR =12,

) [ qx,Ne*dt=x*0<oa<r.
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The reproducing kernel for V,, is given by
gm(x,t) =2Mq(2"x,2™1).

Similarly, we can define the reproducing kernel r,,(x,t) for W, by
rm(xa t) =2" Zn l//(2mx - n)l//(zmt - n))
where Y (¢) is the mother wavelet.
Now, we will extend the expansion in orthogonal wavelets from L2?(R) to
A, (R). Let ¢ e A, (R). By the orthogonality of ¢(x) and ¢(2x —n) and the
regularity (5) of ¢ e #(R),

leu| = H¢(x)¢(2x —nydx| < Cle ¥ k=12, ..

and

|¢(a) (2[ _ n)' < Cak”e_kn|2t—n|p

< Cyre 1= g —0.1,....r; kK'=1,2,...,

where we wused that |2¢]° = |2t —n+n|P <2P(|2t —n|? + |n|?). Since d, =
(=1)" 5, |da] = |(=1)" 5] = |c1-n| < C'e ¥''=7" Hence, if we take k' which
is sufficiently larger than k”,

D 1daV26® (2t —n)| < Y7 V2C Cypne™ N1 KW K

n

P L4 P
< E Clpne™ M’ =k I
n

" P
=Clh, e «=0,1,2,...,r; kK"=1,2,...

Hence by (4), ¥ € A/(R). Then expansion coefficients with respect to both
{¢(t —n)} and {Y(r—n)} are well defined. Indeed, since fe)fp’/(R) is also
characterized by

f=D{e" u}, kyeN,
for a bounded measure u on R, coefficients a, may be found which satisfy

an:(f’¢('_n))

= (D"(e*" ), 4(- — n))

_ JOO e"°|"p(—l)r¢(’)(t—n)d/1.

-0
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Hence

= 0. ©)

Similarly, b, = (f,¥(t —n)) satisfies the same kind of growth condition.
Then, since

Z,, |ang') (2 — n)| < Czn kilnl? g=27 (ki+1)]t=n|?
_2P|t_n‘P 2°) mp
< C/ekZItlp’

>, and(t — n) converges uniformly on bounded sets as do its first r derivatives. In
fact, we have shown that the limiting function and its r derivatives are continuous
functions of e**” growth. These results enable us to imitate the multiresolution
analysis of L?(R) in % (R).

DEFINITION 2. Let {a,} be a sequence of complex numbers with a, =
O ") for some ki eN; then To={f:f(t)=3,a.p(t —n)} and Uy =
{g:9(t) =>,ay(t —n)}. We denote by T,, and U, their corresponding dilation
spaces, ie., feTy< f(2"t) e T,y and ge Uy < g(2™t) € U,

Then, we may expect that a multiresolution analysis of %, "(R) exists,
namely,
-cT_m---cT_lcTochmc:Tmc---c,}ifp"(R) (7)
and
Un T =, (R),

where the closure is in the topology of J(p’/(R).

THEOREM 3.  Let the scaling function ¢ € A (R) satisfy a dilation equation (3)
with cx = O(e”"™") for all 1€ N, and let ¢ have an associated multiresolution
analysis in L*(R); let € A, (R) be the mother wavelet given in (4). Then there
exists a multiresolution analysis (7) of closed dilation subspaces {T,,} whose union
is dense in A, '(R); the closed subspaces U,, of Definition 2 are complementary
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subspaces of T,, in T, and
Tn=UdU @ - @ Un® T,

where @ denotes the nonorthogonal direct sum.

Proor. We will only prove that Tj is closed in the sense of pr’,(R) and
U, Tm = A, "(R). The other statements are the same as in the case of #/(R) [6].
It is clear that f,, — 0 in .){,,"(R) is equivalent to

£, = D'[e"y,] r ko € N; Jd‘vml — 0,

where {v,} is a sequence of bounded measures on R. If f,, € Tj, then we have
that a, = (f,,,8(- —n)) -0 as m — oo and |au| < ce¥"’ by (6). Hence if
fn— f in Jifp’l(R), the coefficient of f,a,, is of O(e¥"") and hence its series
Y opand(t —n) = f € Ty. Thus Ty is closed in the sense of J{p"(R). Now by the
facts that &/(R) is dense in %;’(R), L*=1|), Vm is dense in &/(R) and
Up Vi = U,y Ty U,, T is dense in o (R).

REMARK. As in the case of %/(R) [6], the property (1) V= {0} of the
usual multiresolution analysis is lacking. By the moment property of the
reproducing kernel ¢,,(x,t), any polynomial of degree < r belongs to ﬂme.

4. Convergence of the Expansions of ¢ "(R)

A quasi-positive delta sequence is a sequence {,,(-, y)} of functions in L!(R)
with parameter y € R which satisfies the following:
(a) there is a C > 0 such that

| Batrsiax<c yermen:
—oc
(b) there is a ¢ > 0 such that
y+ec
J Om(x,y)dx — 1
y-c
uniformly on compact subsets of R, as m — o0;

(c) for each y > 0,

Sup|X—}’\S)’I5m(x? y)l — 0 as m — oo.
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Then since 4, (R) = ,(R), we have following important two Lemmas as in

L7k

LEMMA 4. Let {6,n(x, y)} be a quasi-positive delta sequence and let f € L'(R)
be continuous on (a,b); then

0

S (¥) :J Om(x, ) f(x)dx — f(y) as m — o

— 0

uniformly on compact subsets of (a,b).

LemMMmA 5. If qu(x,y) is the reproducing kernel of V,, g€ A, (R), then
gm(x,y) and K,(x,t) = ((x — t)/a))(0%/0t*)qm(x,t) for ae N,0<a<r, are
quasi-positive delta sequences on R.

By the remark in section 3, the pure wavelet series of f €A, "(R), D onm
by, (t) does not necessarily converge to f. However, the mixed expansion

f= Zn and( —n) + Zz;o Z:O:—oo bt

converges to f in the sense of .)(p"(R). This global convergence of the expansion
of A, '(R) is important for theoretical purposes. For computational purposes, we
will study some sort of local convergence in the sense of S. Lojasiewicz [3].

DEFINITION 6. Let f € J{p’(R). f is said to have a value y of order o at xy if
there exists a continuous function F(x) of exponential growth of e*X’ for some
ko € N such that D*F = f in some neighborhood of xy and

I i ) R )
TR (x—x0)*  al’

THEOREM 7. Let f € Jifp’l(R) and have a value y of order a <r at x = xy.
Then the function f,, given by f,(x) = (f(-),qm(x,")) satisfies

Sn(x0) =y as m — o

ProoF. Although each f e %, (R) is a derivative of order f<r of a
continuous function G of exponential growth, we may obtain that G = F and
o = B, where F is in the definition 6. In fact, if we take G(x) = (x — xo)*™*F (x)
when > « and G(x) = (x — xo)* ?F(x) when o > B, then lim,_,,, F(x)/(x — x0)*
= limyx, G(x)/(x — x0)? and lim,_, F(x)/(x — x0)® = limy_x, G(x)/(x — x0)%,
respectively. We may assume o > .
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Using integration by parts, for some 4 > 0,

00

fuX) =1 (=1)%00qm(x, y)F(y)dy

J—-00

(O

F(y)o!

(x_y)ot o
-—.9 =d
y—x

J o CZ! qu(x’ y)(

Now, we claim that

First,

© ey, F(y)
Jx+A Téqu(x, y)mdy

=2 D g - n)k(Z)¢(_—_2’”x— )

©  ¢®(y—n) wk 2™ F(y/2™)a!
< By R,

2m(x+A) al

If we denote by I the last integral above, then

oo mao m
I = J ¢(a)(y_n)(y_n)(a—k)g_F'L2a)d
2m(x+A) (y - 2mx)
00
S Ca’je_jly—nlp |y — nl(a_k) . ekoly/zmlpdy
J2m(x+A)
r OO
< C, je—j|y~nl”’y _ nl(a—k)eZ”koly—ni”e2"kolnl”dy
Joamxyay
P OO
< C, je—jly—nl"eca,kIy—nl”6,2"ko|y—n|"+2”koInl"eZIyI"AZIyI"dy
Jamxray
<C, je(:zpko+2< PO n? o(—j+ea k+2Pko+207 )27 (x+-4) —n) | JOO e—2|y]"dy
’ 2m(x+A)

=C/ .e(2”ko+2(”+1))|"|pe(—j+cz.k+2”ko+2(’+”)|2'"(X+A)—”|P
a,j ’

for j > cyx + 2Pko + 2(PF1),
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Hence
© (x=yp)" F(y)o!
L 0%gm(x, y) ———5d
JX+A ol yq (‘x y) (y_x)ot y
;,171/ ek3|n|P

- 2om Zn ell2mx—n|" pl'12m(x+A4)~n|"’
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(8)

for 1 =1,2,3,... and sufficiently large /’. In the inequality 277|a + b|? — |b|? <
|a|?, substitute a by a — b, we have —|a — b|” < |b|” — 277|a|”. Let us estimate the
exponent of the term of the summation in (8). Assume that / — /' > 0. Then we

have
ksn|? —112"x —n|? = I'|2"A4 +2"x — n|?

< ks|n|? — (1 = I")[2"x — n|P — 27P1'|2" 4"

< (ks — 27P(1 = I)|nf” + (I = I')27x|P — 27PI'[2m A|P.

Take / satisfying k3 —27P(l —1') = —1. Then [/ — I’ = 2P(k; + 1), whose right-
hand side is a constant. Take /' such that 27P/'|4|? > 2P(k; + 1)|x|”. Then the

right-hand side of (8) is estimated by

< Cyp e @AV 2ot DI § gl
n

= C! | e~ @TIAP =20 o+ D)2
a? k)

The same method for the estimation of | [*_*| induces

JOO JX—A
x+A —o0

—(D—r]! P_»Hp Py mp
n < €Yy e @M= 2 DI )2

Hence

Thus we can express f,, as

Iul) = | Knlx, 9Fa(, ) -+ 0(1),

— o0

where K, (x,y) = ((x — y)*/a!)(0*/8y)gm(x, y) and F4(x, y) is continuous for all
y except for y = x + 4 and has a compact support. Hence F,4 is bounded. Since
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K,.(x,y) is a quasi-positive delta sequence by Lemma J, [.emma 4 implies that

fin(x0) = F4q(x0,X%) =7y as m — 0.
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