AFFINE INNER AUTOMORPHISMS OF $S U(2)$

By
U-Hang Ki and Joon-Sik ParK ${ }^{1}$

Abstract

We show which inner automorphisms of $(S U(2), g)$ with an arbitrary left invariant metric g into itself are affine transformations, and obtain affine transformations of $(S U(2), g)$ which are not harmonic, and study geodesics of $(S U(2), g)$ with some conditions.

0. Introduction

It is interesting to show which diffeomorphisms between two Riemannian manifolds are affine transformations. In this paper, we treat the case $(S U(2), g)$ with a left invariant Riemannian metric g. It is well known that every inner automorphism of G a compact connected semisimple Lie group into itself is both affine and harmonic with respect to a bi-invariant Riemannian metric g_{0} on G. However, we here deal with an arbitrary left invariant metric g on $S U(2)$, and show which inner automorphisms of $S U(2)$ are affine transformations of $(S U(2), g)$ into itself.

On the other hand we study geodesics in $(S U(2), g)$. In case of naturally reductive homogeneous space, it is well known that geodesics are orbits of 1 parameter subgroups. R. Dohira (cf. [1]) studied geodesics in reductive homogeneous spaces satisfying certain conditions. Using Dohira's Theorem, we give a complete description of geodesics in $(S U(2), g)$ satisfying some conditions.

In §1, we obtain necessary and sufficient conditions for inner automorphisms $A_{x},(x \in S U(2))$, of $(S U(2), g)$, to be affine transformations (cf. Proposition 1.31.5). Moreover, in Theorem 1.7 and 1.8, we show that for any left invariant but not bi-invariant Riemannian metric g on $S U(2)$, there always exist on $(S U(2), g)$

[^0]both a non-affine inner automorphism, and a non-harmonic but affine inner automorphism.

In §2, using R. Dohira's Theorem we give a complete description of geodesics in $(S U(2), g)$ satisfying certain conditions (cf. Theorem 2.1). Finally we get necessary and sufficient conditions for arbitrary given geodesics in $(S U(2), g)$ with certain left invariant metric g to be closed (cf. Theorem 2.3).

§1. Affine Inner Automorphisms of $(S U(2), g)$

Let B be the Killing form of the Lie algebra $\mathfrak{s u}(2)$ of $S U(2)$. Then the Killing form satisfies

$$
\begin{equation*}
B(X, Y)=4 \operatorname{Trace}(X Y), \quad(X, Y \in \mathfrak{s u}(2)) \tag{1.1}
\end{equation*}
$$

We define an inner product \langle,\rangle_{0} on $\mathfrak{s u}(2)$ by

$$
\begin{equation*}
\langle,\rangle_{0}:=-B(X, Y), \quad(X, Y \in \mathfrak{s u}(2)) \tag{1.2}
\end{equation*}
$$

The following lemma is known (cf. [5, Lemma 1.1, p. 154]):

Lemma 1.1. Let g be a left invariant Riemannian metric. Let \langle,$\rangle be an inner$ product on $\mathfrak{s u}(2)$ defined by $\langle X, Y\rangle:=g_{e}\left(X_{e}, Y_{e}\right)$, where $X, Y \in \mathfrak{s u}(2)$ and e is the identity matrix of $S U(2)$. Then there exist an orthonormal basis $\left(X_{1}, X_{2}, X_{3}\right)$ of $\mathfrak{s u}(2)$ with respect to \langle,\rangle_{0} such that

$$
\begin{cases}{\left[X_{1}, X_{2}\right]=(1 / \sqrt{2}) X_{3},} & {\left[X_{2}, X_{3}\right]=(1 / \sqrt{2}) X_{1},} \tag{1.3}\\ {\left[X_{3}, X_{1}\right]=(1 / \sqrt{2}) X_{2},} & \left\langle X_{i}, X_{j}\right\rangle=\delta_{i j} a_{i}^{2},\end{cases}
$$

where $a_{i},(1 \leqq i \leqq 3)$, are positive real numbers determined by the given left invariant Riemmannian metric g of $S U(2)$.

Let ∇ be the Riemannian connection on $(S U(2), g)$. Here g is an arbitrary given left invariant Riemannian metric in $S U(2)$. Let (X_{1}, X_{2}, X_{3}) be left invariant vector fields related to B and g which appear in Lemma 1.1.

An inner automorphism $A_{x}:(S U(2), g) \rightarrow(S U(2), g), \quad(x \in S U(2))$, is an affine transformation if and only if

$$
\begin{equation*}
A d(x) \nabla_{X_{i}} X_{j}=\nabla_{A d(x) X_{i}} \operatorname{Ad}(x) X_{j}, \quad(i, j=1,2,3) \tag{1.4}
\end{equation*}
$$

With respect to the Riemannian connection, we have

$$
\begin{align*}
2 \cdot g\left(\nabla_{X} Y, Z\right)= & X \cdot g(Y, Z)+Y \cdot g(X, Z)-Z \cdot g(X, Y) \tag{1.5}\\
& +g([X, Y], Z)+g([Z, X], Y)+g(X,[Z, Y])
\end{align*}
$$

for all vector fields X, Y, Z. In this section, for simplicity we put

$$
\left\{\begin{array}{l}
F_{1}:=(2 \sqrt{2})^{-1}\left(a_{1}^{2}-a_{2}^{2}\right) a_{3}^{-2}, \quad F_{2}:=(2 \sqrt{2})^{-1}\left(a_{2}^{2}-a_{3}^{2}\right) a_{1}^{-2}, \tag{1.6}\\
F_{3}:=(2 \sqrt{2})^{-1}\left(a_{3}^{2}-a_{1}^{2}\right) a_{2}^{-2},
\end{array}\right.
$$

From (1.3) and (1.5), we get

$$
\left\{\begin{array}{l}
\nabla_{X_{i}} X_{i}=0 \quad(i=1,2,3), \quad \nabla_{X_{1}} X_{2}=\left\{(2 \sqrt{2})^{-1}-F_{1}\right\} X_{3}, \tag{1.7}\\
\nabla_{X_{1}} X_{3}=-\left\{(2 \sqrt{2})^{-1}+F_{3}\right\} X_{2}, \quad \nabla_{X_{2}} X_{3}=\left\{(2 \sqrt{2})^{-1}-F_{2}\right\} X_{1} .
\end{array}\right.
$$

We put

$$
\begin{equation*}
Y_{i}:=2 \sqrt{2} X_{i}, \quad(i=1,2,3) \tag{1.8}
\end{equation*}
$$

Then, from (1.3) and (1.8) we have

$$
\begin{equation*}
\left[Y_{1}, Y_{2}\right]=2 Y_{3}, \quad\left[Y_{2}, Y_{3}\right]=2 Y_{1}, \quad\left[Y_{3}, Y_{1}\right]=2 Y_{1} \tag{1.9}
\end{equation*}
$$

In order to prove the following Propositions, we get:

Lemma 1.2. For an inner automorphism $A_{x},(x \in S U(2))$,

$$
\nabla_{A d(x) X_{i}} A d(x) X_{j}=A d(x)\left(\nabla_{X_{i}} X_{j}\right)
$$

if and only if

$$
\nabla_{A d(x) X_{j}} \operatorname{Ad}(x) X_{i}=\operatorname{Ad}(x)\left(\nabla_{X_{j}} X_{i}\right), \quad(i, j=1,2,3) .
$$

Proposition 1.3. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{1}\right), r \in \boldsymbol{R}\right)$, of $(S U(2), g)$ is an affine transformation if and only if $a_{2}=a_{3}$ or $\sin (2 r)=0$, that is,

$$
\begin{equation*}
a_{2}=a_{3} \quad \text { or } \quad r \in\{(n \pi) / 2 \mid n \text { is an integer }\} . \tag{1.10}
\end{equation*}
$$

Proof. Using (1.3), (1.8) and (1.9), we have

$$
\left\{\begin{array}{l}
A d(x) X_{1}=X_{1} \tag{1.11}\\
A d(x) X_{2}=\cos (2 r) X_{2}+\sin (2 r) X_{3} \\
A d(x) X_{3}=\cos (2 r) X_{3}-\sin (2 r) X_{2}
\end{array}\right.
$$

Putting $\phi:=\operatorname{Ad}(x)$, from (1.6), (1.7) and (1.11) we get

$$
\left\{\begin{align*}
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{1}\right)= & 0, \phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{2}\right)=-\phi^{-1}\left(\nabla_{\phi X_{3}} \phi X_{3}\right)=-F_{2} \sin (4 r) X_{1} \tag{1.12}\\
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{2}\right)= & -2^{-1}\left(F_{1}+F_{2}\right) \sin (4 r) X_{2} \\
& +\left\{(2 \sqrt{2})^{-1}+F_{3} \sin ^{2}(2 r)-F_{1} \cos ^{2}(2 r)\right\} X_{3} \\
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{3}\right)= & \left\{F_{1} \sin ^{2}(2 r)-F_{3} \cos ^{2}(2 r)-(2 \sqrt{2})^{-1}\right\} X_{2} \\
& +2^{-1}\left(F_{1}+F_{3}\right) \sin (4 r) X_{3} \\
\phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{3}\right)= & \left\{(2 \sqrt{2})^{-1}-F_{2} \cos (4 r)\right\} X_{1}
\end{align*}\right.
$$

Hence, we find from (1.6), (1.7), (1.12) and Lemma 1.2 that A_{x} is an affine transformation if and only if

$$
\begin{equation*}
a_{2}=a_{3} \quad \text { or } \quad \sin (2 r)=0 \tag{1.13}
\end{equation*}
$$

Proposition 1.4. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{2}\right), r \in \boldsymbol{R}\right)$, of $(S U(2), g)$ is an affine transformation if and only if

$$
\begin{equation*}
a_{3}=a_{1} \quad \text { or } \quad r \in\{(n \pi) / 2 \mid n \text { is an integer }\} . \tag{1.14}
\end{equation*}
$$

Proof. Using (1.3), (1.8) and (1.9), we have

$$
\left\{\begin{array}{l}
A d(x) X_{1}=\cos (2 r) X_{1}-\sin (2 r) X_{3} \tag{1.15}\\
A d(x) X_{2}=X_{2}, \quad \operatorname{Ad}(x) X_{3}=\sin (2 r) X_{1}+\cos (2 r) X_{3} .
\end{array}\right.
$$

From (1.6), (1.7) and (1.15), we have

$$
\left\{\begin{align*}
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{1}\right)= & -\phi^{-1}\left(\nabla_{\phi X_{3}} \phi X_{3}\right)=F_{3} \sin (4 r) X_{2}, \phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{2}\right)=0 \tag{1.16}\\
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{2}\right)= & 2^{-1}\left(F_{1}+F_{2}\right) \sin (4 r) X_{1} \\
& +\left\{(2 \sqrt{2})^{-1}+F_{2} \sin ^{2}(2 r)-F_{1} \cos ^{2}(2 r)\right\} X_{3} \\
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{3}\right)= & -\left\{(2 \sqrt{2})^{-1}+F_{3} \cos (4 r)\right\} X_{2} \\
\phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{3}\right)= & \left\{(2 \sqrt{2})^{-1}+F_{1} \sin ^{2}(2 r)-F_{2} \cos ^{2}(2 r)\right\} X_{1} \\
& -2^{-1}\left(F_{1}+F_{2}\right) \sin (4 r) X_{3}
\end{align*}\right.
$$

where $\phi:=A d(x)$. We know from (1.6), (1.7), (1.16) and Lemma 1.2 that A_{x} is an affine transformation if and only if

$$
\begin{equation*}
a_{1}=a_{3} \quad \text { or } \quad \sin (2 r)=0 \tag{1.17}
\end{equation*}
$$

q.e.d.

Proposition 1.5. An inner automorphism $A_{x},\left(x=\exp \left(r Y_{3}\right), r \in \boldsymbol{R}\right)$, is an affine transformation if and only if

$$
\begin{equation*}
a_{1}=a_{2} \quad \text { or } \quad r \in\{(n \pi) / 2 \mid n \text { is an integer }\} . \tag{1.18}
\end{equation*}
$$

Proof. We get from (1.3), (1.8) and (1.9)

$$
\left\{\begin{array}{l}
\operatorname{Ad}(x)\left(X_{1}\right)=\cos (2 r) X_{1}+\sin (2 r) X_{2} \tag{1.19}\\
\operatorname{Ad}(x)\left(X_{2}\right)=\cos (2 r) X_{2}-\sin (2 r) X_{1}, \quad \operatorname{Ad}(x)\left(X_{3}\right)=X_{3}
\end{array}\right.
$$

From (1.6), (1.7) and (1.19), we obtain

$$
\left\{\begin{align*}
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{1}\right)= & -\phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{2}\right)=-F_{1} \sin (4 r) X_{3}, \tag{1.20}\\
\phi^{-1}\left(\nabla_{\phi X_{3}} \phi X_{3}\right)= & 0, \phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{2}\right)=\left\{(2 \sqrt{2})^{-1}-F_{1} \cos (4 r)\right\} X_{3} \\
\phi^{-1}\left(\nabla_{\phi X_{1}} \phi X_{3}\right)= & -2^{-1}\left(F_{2}+F_{3}\right) \sin (4 r) X_{1} \\
& +\left\{F_{2} \sin ^{2}(2 r)-F_{3} \cos ^{2}(2 r)-(2 \sqrt{2})^{-1}\right\} X_{2} \\
\phi^{-1}\left(\nabla_{\phi X_{2}} \phi X_{3}\right)= & \left\{(2 \sqrt{2})^{-1}+F_{3} \sin ^{2}(2 r)-F_{2} \cos ^{2}(2 r)\right\} X_{1} \\
& +2^{-1}\left(F_{2}+F_{3}\right) \sin (4 r) X_{2}
\end{align*}\right.
$$

where $\phi:=A d(x)$. Using (1.6), (1.7) and Lemma 1.2, we obtain this proposition. q.e.d.

Since the metric g of $(S U(2), g)$ is bi-invariant iff $a_{1}=a_{2}=a_{3}$, we obtain from Proposition 1.3, 1.4 and 1.5:

Theorem 1.6. An inner automorphism A_{x} of $(S U(2), g)$ for any $x \in S U(2)$ is an affine transformation if and only if the metric g of $(S U(2), g)$ is bi-invariant.

Harmonic maps of a compact Riemannian manifold into another Riemannian manifold are the extrema (cf. [2, 6]). In the case of $(S U(2), g)$, the following Lemma (cf. [4]) is known:

Lemma 1.7. A necessary and sufficient condition for an inner automorphism A_{x} of $(S U(2), g)$ to be harmonic is

$$
\begin{cases}a_{2}=a_{3} \text { or } \sin (4 r)=0, & \text { in case of } x=\exp \left(r Y_{1}\right) \text { and } r \in \boldsymbol{R}, \\ a_{1}=a_{3} \text { or } \sin (4 r)=0, & \text { in case of } x=\exp \left(r Y_{2}\right) \text { and } r \in \boldsymbol{R}, \\ a_{1}=a_{2} \text { or } \sin (4 r)=0, & \text { in case of } x=\exp \left(r Y_{3}\right) \text { and } r \in \boldsymbol{R} .\end{cases}
$$

From Propositions 1.3-1.5 and Lemma 1.7, we get:
Theorem 1.8. Assume that a left invariant metric g of $(S U(2), g)$ is not biinvariant. Then, there always exists harmonic inner automorphisms A_{x} of $(S U(2), g)$ which are not affine transformations.

Remark. An affine transformation between two Riemannian manifolds is harmonic.

Moreover, from (1.11), (1.15), (1.19) and Propositions 1.3-1.5, we have

Corollary 1.9. If an inner automorphism A_{x} for $x \in S U(2)$ such that

$$
\begin{cases}\exp \left(r Y_{1}\right) & \text { if } a_{2} \neq a_{3} \\ \exp \left(r Y_{2}\right) & \text { if } a_{3} \neq a_{1} \\ \exp \left(r Y_{3}\right) & \text { if } \\ a_{1} \neq a_{2}\end{cases}
$$

is an affine transformation, then A_{x} is an isometry.

§ 2. Geodesics in $(S U(2), g)$

We retain the notations as in $\S 1$. R. Dohira's Theorem and Corollary which appear in [1] can be stated in our case $(S U(2), g)$ as follows:

Theorem 2.1. Assume $a_{2}=a_{3}$. Let $\sigma(t)$ be a geodesic in $(S U(2), g)$ such that

$$
\sigma(0)=e, \quad \dot{\sigma}(0)=\sum_{i=1}^{3} k_{i} Y_{i} \quad\left(\text { each } k_{i} \in \boldsymbol{R}\right) .
$$

Then

$$
\begin{equation*}
\sigma(t)=\exp \left(t\left(k_{2} Y_{2}+k_{3} Y_{3}+a_{1}^{2} a_{2}^{-2} k_{1} Y_{1}\right)\right) \exp \left(t\left(1-a_{1}^{2} a_{2}^{-2}\right) k_{1} Y_{1}\right) \tag{2.1}
\end{equation*}
$$

Proof. We put $\left\{Y_{2}, Y_{3}\right\}_{R}=: \mathfrak{m}_{1}$ and $\left\{Y_{1}\right\}_{R}=: \mathfrak{m}_{2}$. Then

$$
\begin{gather*}
{\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{m}_{2}, \quad\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{1},} \tag{2.2}\\
g([X, Y], Z)+a_{1}^{2} a_{2}^{-1} g(X,[Z, Y])=0 \tag{2.3}
\end{gather*}
$$

for each $X, Y \in \mathfrak{m}_{1}, Z \in \mathfrak{m}_{2}$. In view of Dohira's Theorem (cf. [1]), we can get this Theorem.

Corollary 2.2. Assume $a_{2}=a_{3}$. A geodesic in $(S U(2), g)$ which intersects itself is a closed geodesic.

Using Theorem 2. 1 and Corollary 2.2, we obtain

Theorem 2.3. Let $r \in \boldsymbol{R} \backslash\{(n \pi) / 2 \mid n$ is an integer $\}$ and $x=\exp \left(r Y_{1}\right)$. Assume A_{x} is an affine transformation. Then, a geodesic $\sigma(t)$ in $(S U(2), g)$ with condition $\sigma(0)=e$ and $\dot{\sigma}(0)=\sum_{i=1}^{3} k_{i} Y_{i}$ is closed if and only if there exist a real number $L(\in \boldsymbol{R} \backslash\{0\})$ satisfying

$$
\left\{\begin{array}{l}
\cos (E L)=\cos \left(\left(a_{1}^{2} a_{2}^{-2}-1\right) k_{1} L\right) \tag{2.4}\\
a_{1}^{2} a_{2}^{-2} k_{1} \sin (E L)=E \sin \left(\left(a_{1}^{2} a_{2}^{-2}-1\right) k_{1} L\right) \\
k_{2} \sin (E L)=0, \text { and } k_{3} \sin (E L)=0
\end{array}\right.
$$

where $E:=\sqrt{\left(k_{2}^{2}+k_{3}^{2}+a_{2}^{-4} k_{1}^{2}\right)}$.
Proof. In this proof, we put $c:=a_{1}^{2} a_{2}^{-2}$. Then, from Proposition 1.3 and Theorem 2.1 we have

$$
\begin{equation*}
\sigma(t)=\exp \left(t\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)\right) \exp \left((1-c) k_{1} t Y_{1}\right) \tag{2.5}
\end{equation*}
$$

And then, if $\sigma(t)$ is closed, by Corollary 2.2 we know that there exist real numbers $L(\in \boldsymbol{R} \backslash\{0\})$ satisfying

$$
\begin{equation*}
\exp \left(L\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)\right)=\exp \left((c-1) k_{1} L Y_{1}\right) \tag{2.6}
\end{equation*}
$$

We may assume (cf. [5, Proof of Lemma 1.1, p. 154]) that (Y_{1}, Y_{2}, Y_{3}), which appears in (1.8), satisfies

$$
\begin{equation*}
Y_{i}^{4 n}=e, \quad Y_{i}^{4 n+1}=Y_{i}, \quad Y_{i}^{4 n+2}=-e, \quad Y_{i}^{4 n+3}=-Y_{i}, \quad(i=1,2,3) \tag{2.7}
\end{equation*}
$$

for every non-negative integer n, and

$$
\begin{equation*}
Y_{1} Y_{2}=-Y_{2} Y_{1}=Y_{3}, \quad Y_{2} Y_{3}=-Y_{3} Y_{2}=Y_{1}, \quad Y_{3} Y_{1}=-Y_{1} Y_{3}=Y_{2} \tag{2.8}
\end{equation*}
$$

Using (2.7) and (2.8), we get

$$
\left\{\begin{align*}
\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)^{4 n} & =\left(k_{2}^{2}+k_{3}^{2}+c^{2} k_{1}^{2}\right)^{2 n} e \tag{2.9}\\
\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)^{4 n+1} & =\left(k_{2}^{2}+k_{3}^{2}+c^{2} k_{1}^{2}\right)^{2 n}\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right) \\
\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)^{4 n+2} & =-\left(k_{2}^{2}+k_{3}^{2}+c^{2} k_{1}^{2}\right)^{2 n+1} e \\
\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)^{4 n+3} & =-\left(k_{2}^{2}+k_{3}^{2}+c^{2} k_{1}^{2}\right)^{2 n+1}\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)
\end{align*}\right.
$$

for every non-zero integer n. From (2.7), we have

$$
\begin{equation*}
\exp \left((c-1) k_{1} L Y_{1}\right)=\cos \left((c-1) k_{1} L\right) I_{2}+\sin \left((c-1) k_{1} L\right) Y_{1} \tag{2.10}
\end{equation*}
$$

By the help of (2.9), we obtain

$$
\begin{align*}
\exp (L & \left.\left(k_{2} Y_{2}+k_{3} Y_{3}+c k_{1} Y_{1}\right)\right) \tag{2.11}\\
= & \cos (E L) I_{2}+c k_{1} E^{-1} \sin (E L) Y_{1}+k_{2} E^{-1} \sin (E L) Y_{2} \\
& +k_{3} E^{-1} \sin (E L) Y_{3}
\end{align*}
$$

Comparing (2.10) with (2.11), we can get this Theorem.

From this Theorem, we obtain the following:

Corollary 2.4. Assume that $k_{1} k_{2} k_{3} \neq 0$ and the metric g in $(S U(2), g)$ with $a_{2}=a_{3}$ is not bi-invariant. Then, if $k_{1}^{-1}\left(a_{1}^{2} a_{2}^{-2}-1\right) \sqrt{\left(k_{2}^{2}+k_{3}^{2}+a_{1}^{4} a_{2}^{-4} k_{1}^{2}\right)}$ is not a rational number, the geodesic $\sigma(t)$ with $\sigma(0)=e$ and $\dot{\sigma}(0)=\sum_{i=1}^{3} k_{i} Y_{i}$ is not closed.

References

[1] R. Dohira, Geodesics in reductive homogeneous spaces, Tsukuba J. Math., 19 (1995), 233-243.
[2] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conf., 1981.
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Prees, New York, 1978.
[4] Joon-Sik Park, Harmonic inner automorphisms of compact connected semisimple Lie groups, Tohoku Math. J., 42 (1990), 83-91.
[5] K. Sugahara, The sectional curvature and the diameter estimate for the left invariant metrics on $S U(2, C)$ and $S O(3, R)$, Math. Japonica, 26 (1981), 153-159.
[6] H. Urakawa, Stability of harmonic maps and eigenvalues of Laplacian, Trans. Amer. Math. Soc., 301 (1987), 557-589.

Topology and Geometry Research Center Kyungpook National University Taegu 702-701, Korea
Department of Mathematics
Pusan University of Foreign Studies
55-1, Uam Dong Nam-Gu, Pusan, 608-738, Korea

[^0]: Keywords: affine transformations, harmonic maps, left invariant metrics on Lie groups. MS classification: 58E20, 53C42, 58G25.
 ${ }^{1}$ The second author wishes to acknowledge the financial support of the Korean Research Foundation made in the program year of 1997
 Received June 30, 1998

