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CONSTRUCTING APPROXIMATE INVERSE SYSTEMS OF
METRIC SPACES

By

M. G. CHARALAMBOUS

Abstract. We formulate a theorem which provides a sufficient
condition under which we can construct new approximate inverse
systems from old. The result is at the heart of many constructions
in the theory of approximate inverse systems and offers a unified
approach to several important results in Topology such as Brown’s
approximation theorem, McCord’s embedding theorem and results
on expansion of $\Pi$-like spaces into inverse limits of spaces from $\Pi$ .

1. Definitions and Background

The spaces considered in this paper, unless otherwise indicated, are metric
and the maps between them are uniformly continuous. The symbol $d$ as a rule
denotes a metric on the space indicated by the context. For functions $f,$ $g$ :
$X\rightarrow Y$ into a metric space, however, $d(f, g)$ denotes the supremum of the set
$\{d(f(x), g(x)):x\in X\}$ , which may take the value $\infty$ . Moreover, for a non-empty
subset $A$ of a metric space $X$ and a point $x$ of $X,$ $d(x, A)$ denotes the infimum of
the set $\{d(x, a):a\in A\}$ .

An approximate inverse system, usually abbreviated to $AIS$, of metric spaces
(and uniformly continuous maps) $(X_{\alpha}, p_{\alpha\beta}, A)$ consists of a directed set $A$ with
respect to a transitive and anti-reflexive relation $<,$ $a$ metric space $X_{\alpha}$ for each $\alpha$

in A and, for $\alpha<\beta$ in $A$ , a uniformly continuous map $p_{\alpha\beta}$ : $X_{\beta}\rightarrow X_{\alpha}$ satisfying
the following condition.

$(AIS)$ For each $\alpha$ in $A$ and each positive $\epsilon$ , there is $\alpha^{\prime}$ in $A$ such that $\alpha<\alpha$
‘

and, for $\alpha^{\prime}<\beta<\gamma,$ $ d(p_{\alpha\gamma}, p_{\alpha\beta}p_{\beta\gamma})<\epsilon$ .
The limit space $X$ of an $AIS(X_{\alpha}, p_{\alpha\beta}, A)$ of metric spaces is the subspace of

the product $\prod\{X_{\alpha} : \alpha\in A\}$ consisting of all points $(x_{\alpha})$ such that each $x_{\alpha}$ is the
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limit of the net $\{p_{\alpha\beta}(x_{\beta}):\alpha<\beta\}$ . Of course, if $A$ is uncountable, the limit space
$X$ may not be metrizable. The map $p_{\alpha}$ : $X\rightarrow X_{\alpha}$ that sends $(x_{\alpha})$ to $x_{\alpha}$ will be
referred to as the $\alpha^{th}$ canonical projection. It is important to bear in mind that
the uniform covers of $X$ are those that can be refined by one of the form $p_{\alpha}^{-1}(\mathscr{U}_{\alpha})$ ,
where $\mathscr{U}_{\alpha}$ is a uniform cover of $X_{\alpha}$ and $\alpha$ ranges over any given cofinal subset of
$A$ [ $3$ , proposition 4].

Approximate inverse systems of uniform spaces, satisfying the appropriate
modification of $(AIS)$ , were first considered in [3], following the introduction
of approximate inverse systems of compacta by Marde\v{s}i\v{c} and Rubin in [8].
Marde\v{s}i\v{c} and Watanabe generalised approximate systems to arbitrary topological
spaces [12]. The approximate systems studied in [8 and 12] were required to
satisfy, apart from an appropriate modification of $(AIS)$ , two extra conditions
stipulating the existence of normal coverings (meshes) with certain properties.
Such systems are now called gauged approximate systems and the term ap-
proximate inverse systems is used for systems satisfying only the appropriate
modification of $(AIS)$ [7]. The much simpler notion of approximate inverse
system is quite an adequate tool, however, in a variety of topological situations.
In fact, with each $AIS$ of topological spaces one can associate an induced gauged
$AIS$ consisting of the same spaces and maps and sharing the important properties
of the original $AIS[7,16]$ . In particular, the two systems have the same limit
space.

Let $(X_{\alpha}, p_{\alpha\beta}, A),$ $(Y_{\alpha}, q_{\alpha\beta}, A)$ be approximate inverse systems of metric spaces
with limit spaces $X,$ $Y$ and canonical projections $p_{\alpha},$ $q_{\alpha}$ . In this paper, a map
$(h_{\alpha}):(X_{\alpha}, p_{\alpha\beta}, A)\rightarrow(Y_{\alpha}, q_{\alpha\beta}, A)$ will mean a collection of maps $h_{\alpha}$ : $X_{\alpha}\rightarrow Y_{\alpha}$ ,
$\alpha\in A$ , such that for each $\alpha$ in $A$ and each positive $\epsilon$ , there is $\alpha^{\prime}$ in $A$ such that
$\alpha<\alpha^{\prime}$ and, for $\alpha^{\prime}<\beta,$ $ d(h_{\alpha}p_{\alpha\beta}, q_{\alpha\beta}h_{\beta})<\epsilon$ . In such a case, there is an induced
map $h:X\rightarrow Y$ that sends $(x_{\alpha})$ to $(h_{\alpha}(x_{\alpha}))$ . That $(h_{\alpha}(x_{\alpha}))$ is a point of $Y$ follows
from the continuity of $h_{\alpha}$ and the inequality

$d(h_{\alpha}(x_{\alpha}), q_{\alpha\beta}h_{\beta}(x_{\beta}))\leq d(h_{\alpha}(x_{\alpha}), h_{\alpha}p_{\alpha\beta}(x_{\beta}))+d(h_{\alpha}p_{\alpha\beta}(x_{\beta}), q_{\alpha\beta}h_{\beta}((x_{\beta}))$ .

That $h$ is uniformly continuous follows from the equality $q_{\alpha}h=h_{\alpha}p_{\alpha}$ . Evidently,
if each $h_{\alpha}$ is the identity on $X_{\alpha}$ , then $h$ is the identity on $X$. Furthermore, if each
$h_{\alpha}$ is an embedding, then so is $h$ . For if $\mathscr{U}$ is a uniform cover of $X$, it is refined
by $p_{\alpha}^{-1}(\mathscr{U}_{\alpha})$ for some $\alpha$ in $A$ and some uniform cover $\mathscr{U}_{\alpha}$ of $X_{\alpha}$ . As $h_{\alpha}$ is an
embedding, $\mathscr{U}_{\alpha}$ is refined by $h_{\alpha}^{-1}(\mathscr{V}_{\alpha})$ for some uniform cover tif of $Y_{\alpha}$ . Hence $\mathscr{U}$

is refined by $h^{-1}(q_{\alpha}^{-1}(\mathscr{V}_{\alpha}))=p_{\alpha}^{-1}(h_{\alpha}^{-1}(\mathscr{V}_{\alpha}))$ , and $h$ is an embedding.
Recall that an $AIS(X_{\alpha}, p_{\alpha\beta}, A)$ is called cofinite if $|\alpha|$ , the number of

predecessors of $\alpha$ in $A$ , is finite for each element $\alpha$ of $A$ .
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2. A General Result

THEOREM 1. Let $(X_{\alpha}, p_{\alpha\beta}, A)$ be a cofinite $AIS$ of metric spaces and uniformly
continuous maps. Let $H_{\alpha},$ $\alpha\in A$ , be a non-emp $ty$ collection of maps with domain
$X_{\alpha}$ and $Q_{\alpha\beta},$ $\alpha<\beta$ , a collection of maps with the following property.

$(^{*})$ For a fixed $\beta$ in $A$ and $\epsilon>0$ , given for each $\alpha<\beta$ , a map $h_{\alpha}$ : $X_{\alpha}\rightarrow P_{\alpha}$ in
$H_{\alpha}$ , there exist a map $h_{\beta}$ : $X_{\beta}\rightarrow P_{\beta}$ in $H_{\beta}$ and, for each $\alpha<\beta$ , a map $q_{\alpha\beta}$ : $ P_{\beta}\rightarrow$

$P_{\alpha}$ in $Q_{\alpha\beta}$ such that $ d(q_{\alpha\beta}h_{\beta}, h_{\alpha}p_{\alpha\beta})<\epsilon$ .
Then there are, for each $\alpha$ in $A$ , a positive real number $\epsilon_{\alpha}$ and a map $h_{\alpha}$ : $ X_{\alpha}\rightarrow$

$P_{\alpha}$ in $H_{\alpha}$ and, for each $\beta>\alpha$ , a map $q_{\alpha\beta}$ : $P_{\beta}\rightarrow P_{\alpha}$ in $Q_{\alpha\beta}$ such that, if $Y_{\alpha}=$

$\{x\in P_{\alpha} : d(x, h_{\alpha}(X_{\alpha}))\leq\epsilon_{\alpha}\}$ , then $q_{\alpha\beta}$ maps $Y_{\beta}$ into $Y_{\alpha},$ $(Y_{\alpha}, q_{\alpha\beta}, A)$ is an $AIS$ and
$(h_{\alpha})$ is a map from $(X_{\alpha}, p_{\alpha\beta}, A)$ to $(Y_{\alpha}, q_{\alpha\beta}, A)$ . For $|\alpha|=0,$ $h_{\alpha}$ and $\epsilon_{\alpha}$ may be
chosen arbitrarily.

PROOF. By induction on $|\beta|$ , we choose, for each $\beta$ in $A$ , a positive real
number $\epsilon_{\beta}$ and maps $h_{\beta}$ : $X_{\beta}\rightarrow P_{\beta}$ in $H_{\beta}$ and $q_{\alpha\beta}$ : $P_{\beta}\rightarrow P_{\alpha}$ in $Q_{\alpha\beta}$ for each $\alpha<\beta$

such that

(1) $d(q_{\alpha\beta}h_{\beta}, h_{\alpha}p_{\alpha\beta})<\min\{2^{-|\beta|}, \epsilon_{\alpha}/2\}$ and

(2) $d(x, y)<2\epsilon_{\beta}$ in $P_{\beta}$ $\Rightarrow$ $d(q_{\alpha\beta}(x), q_{\alpha\beta}(y))<\min\{2^{-|\beta|}, \epsilon_{\alpha}/2\}$ in $P_{\alpha}$ .

If $|\beta|=0$ , we choose $h_{\beta}$ and $\epsilon_{\beta}$ arbitrarily. Assuming we have chosen $\epsilon_{\delta},$

$h_{\delta}$ and
$q_{\gamma\delta}$ with the above properties, where $\alpha$ and $\beta$ have been replaced by $\gamma$ and $\delta$ ,
respectively, for $|\gamma|$ and $|\delta|<|\beta|$ , using $(^{*})$ with $\epsilon=\min\{2^{-|\beta|}, \epsilon_{\alpha}/2 : \alpha<\beta\}$ , we
first choose maps $h_{\beta}$ : $X_{\beta}\rightarrow P_{\beta}$ in $H_{\beta}$ and $q_{\alpha\beta}$ : $P_{\beta}\rightarrow P_{\alpha}$ in $Q_{\alpha\beta}$ for each $\alpha<\beta$

that satisfy (1). Then, by the uniform continuity of $q_{\alpha\beta}$ , we can choose $\epsilon_{\beta}>0$

such that (2) is satisfied. This completes the construction of $\epsilon_{\alpha},$

$h_{\alpha}$ and $q_{\alpha\beta}$ .
Let $y$ be a point of $Y_{\beta}$ . Then $d(y, h_{\beta}(x))<2\epsilon_{\beta}$ for some point $x$ of $X_{\beta}$ . By (2)

and (1), respectively, we have

(3) $d(q_{\alpha\beta}(y), q_{\alpha\beta}h_{\beta}(x))<\epsilon_{\alpha}/2$ and

(4) $d(q_{\alpha\beta}h_{\beta}(x), h_{\alpha}p_{\alpha\beta}(x))<\epsilon_{\alpha}/2$ .

Hence $d(q_{\alpha\beta}(y), h_{\alpha}p_{\alpha\beta}(x))<\epsilon_{\alpha}$ , and $d(q_{\alpha\beta}(y), h_{\alpha}(X_{\alpha}))\leq\epsilon_{\alpha}$ . This assures that $q_{\alpha\beta}$

maps $Y_{\beta}$ into $Y_{\alpha}$ , as required.
We next verify $(AIS)$ for the system $(Y_{\alpha}, q_{\alpha\beta}, A)$ . Given $\alpha$ in $A$ and $\epsilon>0$ ,

because $(X_{\alpha}, p_{\alpha\beta}, A)$ is an $AIS$ and $h_{\alpha}$ is uniformly continuous, there is $\alpha^{\prime}$ in
$A$ such that $\alpha<\alpha^{\prime},$ $2^{-|\alpha^{\prime}|}<\epsilon/5$ and for $\alpha‘<\beta<\gamma$ ,
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(5) $d(h_{u}p_{\alpha\gamma}, h_{\alpha}p_{\alpha\beta}p_{\beta\gamma})<\epsilon/2$ .

For $y$ in $Y_{\gamma},$ $x$ in $X_{\gamma}$ and $\alpha^{\prime}<\beta<\gamma$ , we have by the triangle inequality,

(6) $d(q_{\alpha\gamma}(y), q_{\alpha\beta}q\beta\gamma(y))$

$\leq d(q_{\alpha\gamma}(y), q_{\alpha\gamma}h_{\gamma}(x))+d(q_{\alpha\gamma}h_{\gamma}(x), h_{\alpha}p_{\alpha\gamma}(x))$

$+d(h_{\alpha}p_{\alpha\gamma}(x), h_{\alpha}p_{\alpha\beta}p_{\beta\gamma}(x))+d(h_{\alpha}p_{\alpha\beta}p_{\beta\gamma}(x), q_{\alpha\beta}h_{\beta}p_{\beta\gamma}(x))$

$+d(q_{\alpha\beta}h_{\beta}p_{\beta\gamma}(x),$ $ q_{\alpha\beta q\beta\gamma^{h_{\gamma}(x))}}+d(q_{\alpha\beta q\beta q_{\alpha\beta}q\beta\gamma}\gamma^{h_{\gamma}(x),(y))}\cdot$

Let us examine the terms of the right hand side of (6). By (5), the third term
is less than $\epsilon/2$ . By (1), the second and fourth terms are smaller than $ 2^{-|\beta|}\leq$

$2^{-|\alpha^{\prime}|-1}<\epsilon/10$ . By (1), we also have that $d(h_{\beta}p_{\beta\gamma}(X),$ $q\beta\gamma^{h_{\gamma}(x))}<\epsilon_{\beta}$ and hence, by
(2), the fifth term is less than $\epsilon/10$ . Choosing $x$ so that $d(y, h_{\gamma}(x))<2\epsilon_{\gamma}$ , we have,
by (2), that the first term is also smaller than $\epsilon/10$ . Also, applying (2) twice, we
have $d(q\beta\gamma^{h_{\gamma}(x),q\beta\gamma(y))}<2\epsilon_{\beta}$ , and hence the sixth term is also less than $\epsilon/10$ .
Thus, $ d(q_{\alpha\gamma}(y), q_{\alpha\beta}q\beta\gamma(y))<\epsilon$ for all $\alpha^{\prime}<\beta<\gamma$ and all $y$ in $Y_{\gamma}$ , and hence
$(Y_{\alpha}, q_{\alpha\beta}, A)$ is an $AIS$.

Finally, given $\alpha$ in $A$ and $\epsilon>0$ , choose $\alpha^{\prime}$ in $A$ such that $\alpha<\alpha^{\prime}$ and $2^{-|\alpha^{\prime}|}<$

$\epsilon$ . Then, by (1), for $\alpha^{\prime}<\beta,$ $ d(q_{\alpha\beta}h_{\beta}, h_{\alpha}p_{\alpha\beta})<2^{-|\beta|}<\epsilon$ . Hence $(h_{\alpha})$ is a map from
$(X_{\alpha}, p_{\alpha\beta}, A)$ to $(Y_{\alpha}, q_{\alpha\beta}, A)$ , and this concludes the proof of the theorem.

3. Brown’s Theorem for Approximate Systems of Complete Mehic Spaces

We next note a generalisation to countable approximate systems of [3,
proposition 8], which is repeatedly appealed to in the sequel.

PROPOSITION 1. Let $(X_{i}, p_{ij}, A)$ be a countable $AIS$ of complete metric spaces
with limit space X Then there is a uniform isomorphism $\pi$ : $X\rightarrow Y$ onto the limit
space of an inverse system $(X_{i}, \pi_{ij}, M)$ , where $M$ is a cofinal sequence of $A$ and
$\pi_{ij}=p_{ij}$ whenever $j$ is an immediate successor of $l$ in M. Given $m$ in $A$ and $\epsilon>0$ ,
$M$ can be chosen so that $m$ is its first element and $ d(p_{m}, q\pi)<\epsilon$ , where $p_{m}$ :
$X\rightarrow X_{m}$ and $q:Y\rightarrow X_{m}$ are the canonical projections.

PROOF. When $A=N$ , the set of positive integers, the result is [3, proposition
8]. In the general case, consider a cofinal sequence $B$ of $A$ containing $m$ . As each
$X_{j}$ is complete, by [3, proposition 7], the map that sends the point $(x_{i})_{i\in A}$ of the
limit space of $(X_{j}, p_{ij}, A)$ to the point $(x_{i})_{i\in B}$ of the limit space of the approximate
inverse sequence $(X_{j}, p_{ij}, B)$ is an isomorphism. It suffices therefore to apply [3,
proposition 8] to $(X_{i}, p_{ij}, B)$ .
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Let $f$ : $X\rightarrow Y$ be a function between metric spaces and $\mathscr{H}$ a collection of
functions whose domain and range contain $X$ and $Y$, respectively. We say that
$f$ can be approximated by elements of $\mathscr{H}$ if for each positive $\epsilon$ there is some
member $h$ in $\mathscr{H}$ such that $ d(f(x), h(x))<\epsilon$ for each $x$ in $X$. We say that $f$ is
a near isomorphism if it can be approximated by uniform isomorphisms from
$X$ to $Y$. As continuous functions on compact spaces are uniformly continuous,
the notion of near isomorphism generalizes to metric spaces the term near
homeomorphism of compact metric spaces. The composite of near isomorphisms is
again a near isomorphism.

The following theorem generalizes to countable approximate inverse limits of
complete metric spaces the result known as Brown’s approximation theorem [2,
theorem 4]. Several proofs exist in the literature for the case of inverse sequences
of compact metric spaces [1, 11, 14].

THEOREM 2. Let $(X_{i}, f_{ij}, A)$ be a countable $AIS$ of complete metric spaces and
near isomorphisms with limit space X Then $X$ is isomorphic to each X. In fact,
each canonical projection $p_{i}$ : $X\rightarrow X_{i}$ is $a$ near isomorphism.

PROOF. Let $B$ be a cofinal sequence of $A,$ $Z$ the limit space of $(X_{i},f_{ij}, B)$ and
$g_{i}$ : $Z\rightarrow X_{i}$ the canonical projection. As seen in the proof of proposition 1, we
have an isomorphism $\sigma:X\rightarrow Z$ such that $p_{i}=g_{l}\sigma,$ $i\in B$ . As the first element
of $B$ can be chosen arbitrarily, it can be seen that it suffices to prove the result
when $A=N$ . Then, in an obvious manner, theorem 1 supplies an $AIS(X_{i}, p_{ij}, N)$

of complete metric spaces and isomorphisms and a map $(h_{i})$ from $(X_{i}, f_{ij}, N)$ to
$(X_{i}, p_{ij}, N)$ , where $h_{i}$ is the identity on $X_{i}$ for each $i$ in $N$. This special nature of
$(h_{i})$ assures that the limit space of $(X_{i},p_{ij}, N)$ is $X$. Given $m$ in $A$ and $\epsilon>0$ , by
proposition 1, there is a subsequence $M=\{m, m_{2}, m_{3}, \ldots\}$ of $N$, an inverse
system $(X_{i}, \pi_{ij}, M)$ with limit space $Y$ and a uniform isomorphism $\pi$ : $X\rightarrow Y$ ,
such that $\pi_{ij}=p_{ij}$ whenever $j$ is an immediate successor of $i$ in $M$ and
$ d(p_{m}, q\pi)<\epsilon$ , where $q:Y\rightarrow X_{m}$ is the canonical projection. Evidently, being the
composite of isomorphisms, each $\pi_{ij}$ is an isomorphism. Hence each projection
$Y\rightarrow X_{m_{j}}$ is an isomorphism. Therefore $X$ is isomorphic to $X_{m}$ and, in fact, $p_{m}$ :
$X\rightarrow X_{m}$ is a near isomorphism.

The following example shows that in theorem 2 the assumption of com-
pleteness is not redundant. It also shows that, in sharp contrast to what happens
with inverse sequences, an approximate inverse sequence of infinite metric spaces
and isomorphisms may have empty limit.
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EXAMPLE 1. Let $Q=\{q\mathfrak{l}, q2, \ldots\}$ be the set of all rationals in the interior
$(0,1)$ of the unit interval $I=[0,1]$ . Recall that if $A,$ $B$ are countable dense subsets
of nontrivial open intervals $I_{1},$ $I_{2}$ , respectively, then there is a strictly increasing
$f:I_{1}\rightarrow I_{2}$ that takes $A$ onto $B$ . Thus, given $q$ in $Q$ , there is an isomorphism
$f$ : $I\rightarrow I$ that takes $Q$ onto $Q-\{q\}$ . Then, given $\epsilon>0$ , by considering an open
interval $J$ around $q$ of length $\epsilon$ , we can construct an isomorphism $g:I\rightarrow I$ such
that $g$ takes $Q-\{q\}$ onto $Q,$ $J$ onto $J$ and leaves every point outside $J$ fixed.
Clearly, $ d(f, gf)<\epsilon$ and the restriction $f|Q:Q\rightarrow Q$ is a near isomorphism.

We can, therefore, construct by induction injective near isomorphisms $f_{i}$ : $Q$

$\rightarrow Q,$ $i\in N$ , such that $f_{1}(Q)=Q-\{q_{1}\}$ and $f_{i}(Q)=f_{1i}^{-1}(Q-\{q_{j}\})$ for $i>1$ ,

where, for $n<m,$ $f_{nm}$ denotes the composite of $f_{n},f_{n+1},$ $\ldots,f_{m-1}$ . Consider now
the inverse sequence $(X_{i},f_{ij}, N)$ , where $X_{i}=Q$ . Its limit is readily seen to be
empty. As each $f_{ij}$ is a near isomorphism, by theorem 1, there is an approximate
inverse sequence $(X_{j}, q_{ij}, N)$ such that each $q_{ij}$ is an isomorphism $Q\rightarrow Q$ and yet
its limit space is empty.

4. McCord’s Embedding Theorem for Approximate Systems

THEOREM 3. Let $(X_{i}, p_{ij}, A)$ be a countable $AIS$ of metric spaces with limit
space X For each $i$ in $A$ , let $E_{i}$ be a metric space $con$taining $X_{i}$ and ni the
collection of all complete neighbourhoods of $X_{i}$ in $E_{j}$ . Suppose that each $p_{ij}$ can be
approximated by elements of $Q_{ij}$ , the family of all uniform embeddings of members

of $nj$ into members of $n’$ . Then, for each $i$ in $A$ , the canonical projection
$p_{i}$ : $X\rightarrow X_{i}$ can be approximated by embeddings of $X$ into elements of $ n\iota$ .

PROOF. By [3, proposition 7], for any cofinal subset $B$ of $A$ , the map that
sends the point $(x_{j})_{i\in A}$ of $X$ to the point $(x_{j})_{i\in B}$ of the limit space of the
approximate inverse sequence $(X_{i}, p_{ij}, B)$ is an embedding. As $A$ is countable, it
contains a cofinal sequence $B$ . Thus, we see that we may assume that $A=N$ .

Then, in theorem 1, letting $H_{i}$ consist of all restrictions of the inclusion $h_{j}$ :
$X_{i}\rightarrow E_{i}$ to members of $nj$ , we see that $(^{*})$ is satisfied. Thus, we obtain an $AIS$

$(Y_{i}, q_{ij}, N)$ , where $Y_{i}$ is a member of $ni$ and $q_{ij}$ belongs to $Q_{ij}$ , and a map
$(h_{i}):(X_{i}, p_{ij}, N)\rightarrow(Y_{i}, q_{ij}, N)$ . Consequently, $X$ is a subspace of the limit $Y$ of
$(Y_{j}, q_{ij}, N)$ and each canonical projection $q_{j}$ : $Y\rightarrow Y_{i}$ extends the canonical
projection $p_{j}$ : $X\rightarrow X_{i}$ . Because each $Y_{i}$ is complete, given $m$ in $A$ and $\epsilon>0$ , by
proposition 1, there is a subsequence $M=\{m, m_{2}, m_{3}, \ldots\}$ of $N$, an inverse
system $(Y_{j}, \pi_{ij}, M)$ with limit space $Z$ and a uniform isomorphism $\pi$ : $Y\rightarrow Z$ ,

such that $\pi_{ij}=q_{ij}$ whenever $j$ is an immediate successor of $i$ in $M$ and $d(q_{m}, q\pi)<$
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$\epsilon$ , where $q:Z\rightarrow Y_{m}$ is the canonical projection. Evidently, being the composite
of embeddings, each $\pi_{ij}$ is an embedding. Hence $q$ is an embedding and $p_{m}$ :
$X\rightarrow X_{m}$ can be approximated by embeddings of $X$ into $Y_{m}$ .

COROLLARY 1. Let $(X_{i}, p_{ij}, A)$ be a countable $AIS$ with limit space $X$.
Suppose that each $X_{i}$ is a subspace of a metric space $F_{i}$ and each $p_{ij}$ can be
approximated by injective continuous functions from compact neighbourhoods of $X_{j}$

into compact neighbourhoods of $X_{i}$ . Then $X$ is embeddable in each $F_{i}$ .

PROOF. Apply theorem 3, letting $E_{j}$ be a compact neighbourhood of $X_{i}$ in $F_{i}$

and noting that a compact space is complete and an injective continuous function
on a compact space is a uniform embedding.

COROLLARY 2. Let $(X_{i}, p_{ij}, A)$ be a countable $AIS$ of compact subspaces of
a locally compact metric space $E$ with limit space X. Suppose that each $p_{ij}$ can
be approximated by injective continuous functions from neighbourhoods of $X_{j}$ into
E. Then $X$ is embeddable in $E$.

PROOF. Because $E$ is locally compact and $X_{i}$ is compact, each neigh-
bourhood of $X_{i}$ contains both a compact neighbourhood of $X_{i}$ as well as an
$\epsilon$-neighbourhood of $X_{i}$ for some positive $\epsilon$ . This readily implies that each $p_{ij}$ can
be approximated by injective continuous functions from compact neighbourhoods
of $X_{j}$ into compact neighbourhoods of $X_{i}$ . The result, therefore, follows from
corollary 1.

The special case of corollary 2 for inverse sequences is the important theorem
of McCord [13, theorem 2].

5. $\Pi$-Like Spaces

In the sequel, $\Pi$ denotes a class of metric spaces. We call a uniform space $X$

$\Pi$-like if every uniform cover of $X$ can be refined by one of the form $f^{-1}(\mathscr{U})$ ,

where $\mathscr{U}$ is a uniform cover of an element $P$ of $\Pi$ and $f$ : $X\rightarrow P$ is a dense map,
i.e., $f(X)$ is dense in $P$ . In the most interesting case when $X$ is compact, this
definition agrees with the original definition of $\Pi$-like in [9], which requires that
the map $f$ be onto. If the map $f$ in the above definition is not necessarily dense,
we call $X$ weakly $\Pi$-like. We will call a space $X$ weakly $\Pi$-approximable if it
satisfies the following condition.
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$(^{**})$ There is a family $\mathscr{F}$ consisting of dense maps from $X$ into members of $\Pi$

such that
(i) every uniform cover of $X$ can be refined by one of the form $g^{-1}(\mathscr{U})$ , where

$g:X\rightarrow P$ is a member of $\mathscr{F}$ and $\mathscr{U}$ is a uniform cover of $P$ , and
(ii) given $\epsilon>0$ and a finite number of maps $f_{i}$ : $X\rightarrow P_{j}$ in $\mathscr{F}$ , there exist a

map $f$ : $X\rightarrow P$ in $\mathscr{F}$ and maps $p_{i}$ : $P\rightarrow P_{i}$ such that $ d(f_{i}, p_{j}f)<\epsilon$ .

The term $\Pi$-approximable space will mean a space $X$ that satisfies the version
of $(^{**})$ where the maps $p_{i}$ are surjective.

If $X$ is the limit space of an $AIS(X_{\alpha}, p_{\alpha\beta}, A)$ and $\mathscr{F}$ consists of the canonical
projections $p_{\alpha}$ : $X\rightarrow X_{\alpha}$ , then $\mathscr{F}$ satisfies $(^{**})$ except that its elements may not be
dense [3, propositions 2 and 4]. The following result may be seen as a partial
converse.

THEOREM 4. A Hausdorff weakly $\Pi$-approximable space $X$ is embeddable as
a dense subspace in the limit of a cofinite $AIS(Y_{\alpha}, q_{\alpha\beta}, A)$ consisting of members
of $\Pi$ , where the cardinality of A may be taken to be equal to the uniform weight

of X If $X$ is complete, the embedding is an isomorphism. If $X$ is $\Pi$-approximable,
the bonding maps may be taken to be surjective.

PROOF. Let A denote the set of finite subsets of a base $B$ of uniform covers
of $X$, and identify a singleton in $A$ with the corresponding member of $B$ . In $A$ ,
write $\alpha\leq\beta$ iff $\alpha$ is a subset of $\beta$ . Then $(X_{\alpha}, p_{\alpha\beta}, A)$ , where each $X_{\alpha}$ is $X$ and each
$p_{\alpha\beta}$ is the identity on $X$, is a cofinite $AIS$ . In theorem 1, for $\alpha$ in $B$ , we let $H_{\alpha}$

consist of a single member $h_{\alpha}$ : $X\rightarrow P$ of $\mathscr{F}$ into a member $P$ of $\Pi$ that contains
a uniform cover $\mathscr{U}$ such that $h_{\alpha}^{-1}(\mathscr{U})$ refines $\alpha$ . 0therwise, we let $H_{\alpha}=\mathscr{F}$ . Finally,
we let $Q_{\alpha\beta}$ consist of all maps with domain and range members of $\Pi$ . Condition
(”) assures that condition $(^{*})$ is satisfied, and theorem 1 produces an $AIS$

$(Y_{\alpha}, q_{\alpha\beta}, A)$ consisting of spaces from $\Pi$ and maps from $Q_{\alpha\beta}$ , and a map $(h_{\alpha})$

from $(X_{\alpha}, p_{\alpha\beta}, A)$ to $(Y_{\alpha}, q_{\alpha\beta}, A)$ , where each $h_{\alpha}$ is dense. We therefore have a
map $h:X\rightarrow Y$ such that $q_{\alpha}h=h_{\alpha}$ , where $Y$ is the limit of $(Y_{\alpha}, q_{\alpha\beta}, A)$ and $q_{\alpha}$

denotes the canonical projection from $Y$ onto $Y_{\alpha}$ . Now the uniform covers of $Y$

of the form $\mathcal{T}_{\alpha^{- 1}}(\mathscr{U})$ , where $\mathscr{U}$ is a uniform cover of $Y_{\alpha}$ and $\alpha$ ranges over any
cofinal subset of $A$ , constitute a base for the uniform covers of $Y[3$ , proposition
4]. Hence the choice of $h_{\alpha}$ for $\alpha$ in $B$ guarantees that $h$ is an embedding, and,
because each $h_{\alpha}$ is dense, so is $h$ . Hence, if $X$ is complete, then $h$ is an iso-
morphism. Of course, $B$ may be taken to be of minimal cardinality as a uniform
base of $X$, in which case the cardinality of $A$ equals the uniform weight of $X$. If
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$X$ is $\Pi$-approximable, $Q_{\alpha\beta}$ may be taken to consist of all surjective maps with
domain and range members of $\Pi$ , in which case all bonding maps $q_{\alpha\beta}$ will be
surjective.

THEOREM 5. Let $\Pi$ consist of complete metric spaces. Then a complete,
weakly $\Pi$-approximable metric space $X$ is the limit of an inverse sequence con-
sisting of members of $\Pi$ . If $X$ is $\Pi$-approximable, the bonding maps may be taken
to be surjective.

PROOF. By theorem 4, $X$ is the limit of a countable $AIS(X_{i}, p_{ij}, A)$ con-
sisting of members of $\Pi$ . By proposition 1, $X$ is the limit space of an inverse
sequence $(X_{i}, \pi_{ij}, M)$ , where $M$ is a cofinal subset of $A$ and $\pi_{ij}=p_{ij}$ whenever $j$

is an immediate successor of $i$ in $M$. If $X$ is $\Pi$-approximable, by theorem 4,
the bonding maps $p_{ij}$ may be taken to be surjective. Then, the bonding maps $\pi_{ij}$

of the sequence, being composites of surjective maps, are surjective.

REMARK 1. If $\Pi$ is the class of all compact polyhedra of dimension $\leq n$ ,
then any compact Hausdorff space $X$ with $\dim X\leq n$ is $\Pi$-approximable [6,
lemma 2; 8, 9, example 2]. In this case, theorem 5 yields a version of Freu-
denthal’s original result that a compact metric space $X$ with $\dim X\leq n$ can be
expanded into an inverse sequence of members of $\Pi$ with surjective bonding maps
[5]. Also, Theorem 4 shows that a compact Hausdorff space $X$ with $\dim X\leq n$

can be expanded into an $AIS$ consisting of members of $\Pi$ and surjective bonding
maps [8, theorem 5].

If $\Pi$ is a class of compact polyhedra with no isolated points, every compact
Hausdorff $\Pi$-like space is $\Pi$-approximable [10, lemma 2], and theorem 4 shows
that every compact Hausdorff $\Pi$-like space can be expanded into an $AIS$

consisting of members of $\Pi$ and surjective bonding maps [10, theorem 3].
Theorem 5 provides an expansion theorem for compact metric $\Pi$-like spaces into
inverse sequences of members of $\Pi$ and surjective bonding maps.

Propositions 11, 12 and corollaries 4, 5 of [3] constitute applications of
theorems 4, 5 to topologically complete spaces. Note the minor corrections of
these results made in [4].

For any class $\Pi$ of compact polyhedra, any $\Pi$-like continuum is $\Pi-$

approximable [9, lemma 4], and theorem 5 yields theorem 1 of [9] that a $\Pi$-like
continuum can be expanded into an inverse sequence of members of $\Pi$ with
surjective bonding maps. There is an analogous expansion into an inverse se-
quence result due to Pasynkov [15, proposition 2] if $\Pi$ is a weakly hereditary class
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of compact polyhedra. This means that for each $P$ in $\Pi$ and each $\epsilon>0$ , there is a
triangulation $K$ of $P$ of mesh $\leq\epsilon$ such that any subpolyhedron of $P$ with respect
to $K$ belongs to $\Pi$ . Pasynkov’s theorem is also a consequence of theorem 5, as
can be seen from the following result.

PROPOSITION 2. For each weakly hereditary class of compact polyhedra $\Pi$,
every weakly $\Pi$-like space $X$ is $\Pi$-approximable.

For the proof, we require some preliminaries. Let a polyhedron $P$ be the
realization of some finite simplicial complex $K$. Let $a$ be $a$ point of $P$ . Then the
projection $p_{a}$ : $P-\{a\}\rightarrow P$ is defined as follows: on a simplex $s$ of $K,$ $p_{a}$ is
the identity when $a\not\in s$ and, when $a\in s,$ $p_{a}$ is the projection from a into the boun-
dary of $s$ . Evidently, $p_{a}$ is continuous and, in fact, uniformly continuous on the
complement of any neighbourhood of $a$ . For continuous functions $f_{1},f_{2}$ : $X\rightarrow P$ ,
write $f_{1}\leq f_{2}$ if $f_{1}(x)$ is contained in the carrier of $f_{2}(x)$ for each $x$ in $X$.
Evidently, $\leq$ is transitive.

LEMMA 1. Let $f:X\rightarrow P$ be a continuous (resp. uniformly continuous)

function into the realization $P$ of some finite simplicial complex K. Then there
is a continuous (resp. uniformly continuous) $g:X\rightarrow Q$ onto a subpolyhedron $Q$ of
$P$ with respect to $K$ such that $g\leq f$ and every continuous (resp. uniformly
continuous) $h:X\rightarrow Q$ with $h\leq g$ is surjective (resp. dense).

$PR\infty F$ . For a map $q:X\rightarrow P$ , let $n(q)$ denote the number of simplices
contained in the smallest subpolyhedron of $P$ containing $q(X)$ . Clearly, $p\leq q$

implies $n(p)\leq n(q)$ . Let $m=\min\{n(q):q\leq f\}$ . Evidently, for some $g:X\rightarrow P$

with $g\leq f,$ $n(g)=m$ . Let $Q$ be the smallest subpolyhedron of $P$ containing
$g(X)$ , and consider $h:X\rightarrow Q$ with $h\leq g$ . Suppose $h$ is not onto $Q$ and pick $a$ in
$Q-h(X)$ . Then $p_{a}h\leq h\leq g\leq f$ and $n(p_{a}h)<n(g)=m$ . For $a$ cannot be an
isolated vertex of $Q,$ $a$ belongs to a proper simplex $s$ of $Q$ and $p_{a}$ collapses
$s-\{a\}$ onto a proper face of $s$ . It follows that $h$ is onto $Q$ .

The uniform case is similar. If in the above argument $h(X)$ is not dense in
$Q$ , we choose $a$ in the interior of $Q-h(X)$ so that $p_{a}$ is uniform on $h(X)$ .

In the sequel, a special triangulation $K$ of an element $P$ of $\Pi$ will mean a
triangulation such that every subpolyhedron of $P$ with respect to $K$ belongs to $\Pi$ .

PROOF OF PROPOSITION 2. Let $X$ be weakly $\Pi$-like. Let $\mathscr{F}$ consist of all dense
maps $f:X\rightarrow P$ , such that $P$ is in $\Pi,$ $P$ is the realisation of some special tri-
angulation $K$ and every map $g:X\rightarrow P$ with $g\leq f$ is dense.
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Any uniform cover $\mathscr{W}$ of $X$ has a refinement of the form $f^{-1}(\mathscr{U})$ , where
$f$ : $X\rightarrow P$ is a map into a member $P$ of $\Pi$ and $\mathscr{U}$ is a uniform cover of $P$ . Let
$K$ be a special triangulation of $P$ such that the cover $\mathscr{V}$ consisting of the stars of
the vertices of $K$ refines $\mathscr{U}$ . By lemma 1, there is a subpolyhedron $Q$ of $P$ and a
map $g:X\rightarrow Q$ in $\mathscr{F}$ with $g\leq f$ . Then, for any vertex $v$ of $P,$ $g^{-1}(st(v))$ is
contained in $f^{-1}(st(v))$ . Hence, $g^{-1}(\mathscr{V})$ refines $\mathscr{W}$ , and condition (i) of $(^{**})$ is
satisfied.

Let $\epsilon>0$ and consider a finite number of maps $f_{i}$ : $X\rightarrow P_{j}$ in $\mathscr{F}$ . Let $K_{i}$ be
a special triangulation of $P_{j}$ of mesh $<\epsilon$ and $\mathscr{V}_{\iota}$ the cover consisting of the
starts of its vertices. Then, by the previous paragraph, there is a map $f$ : $X\rightarrow P$

in $\mathscr{F}$ such that, if $\mathscr{V}$ consists of the stars of the vertices of $P$, then $f^{-1}(\mathscr{V})$ refines
each $f_{i}^{-1}(\mathscr{V}_{\iota})$ . For each vertex $v$ of $P$, pick a vertex $\varphi_{j}(v)$ of $P_{i}$ such that
$f^{-1}(st(v))$ is contained in $f_{i}^{-1}(st(\varphi_{i}(v)))$ . Define $p_{j}$ : $P\rightarrow P_{j}$ to be the simplicial
map that sends $v$ to $\varphi_{j}(v)$ . Then $p_{i}f\leq f_{i}$ . Hence $ d(f_{i}, p_{i}f)<\epsilon$ and, because $f_{i}$ is
in $\mathscr{F},$ $p_{j}f$ is dense. Hence $p_{j}$ is dense and, because $P$ is compact, $p_{j}$ is surjective.
Thus, $X$ is $\Pi$-approximable.

A consequence of proposition 2 is the following result, which generalizes the
compactification theorem for covering dimension.

COROLLARY 3. Let $\Pi$ be a weakly hereditary class of compact polyhedra, and
$X$ a topological space such that the covers of $X$ of the form $f^{-1}(\mathscr{U})$ , where
$f$ : $X\rightarrow P$ is a continuous function into a member $P$ of $\Pi$ and $\mathscr{U}$ is a uniform cover
of $P$, form a uniformity on X. Then $X$ has a $\Pi$-like compactification of the same
weight as $X$.

PROOF. $X$ with the obvious uniformity is weakly $\Pi$-like and, by proposition
2, $\Pi$-approximable. Theorem 4 does the rest.

References

[1] F. D. Ancel, An altemative proof of M. Brown’s theorem on inverse sequences of near
homeomorphisms, Proceedings, Geometric Topology and Shape Theory, Dubrovnik
1986, Lecture Notes Math. 1283, Springer, Berlin, 1987, 1-2.

[2] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math.
Soc. 11 (1960), 478-483.

[3] M. G. Charalambous, Approximate inverse systems of uniform spaces and an application of
inverse systems, Comment. Math. Univ. Carolinae 32 (1991), 551-565.

[4] M. G. Charalambous, A note on the non-emptiness of the limit of approximate systems,
Comment. Math. Univ. Carolinae 37 (1996), 155-157.

[5] H. Freudenthal, Entwicklungen von R\"aumen and ihren gmppen, Comp. Math. 4 (1937), 145-
234.



446 M. G. CHARALAMBOUS

[6] S. Marde\v{s}i\v{c}, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4
(1960), 278-291.

[7] S. Marde\v{s}i\v{c}, On approximate inverse systems and resolutions, Fund. Math. 142 (1993), 241-255.
[8] S. Marde\v{s}i\v{c} and L. R. Rubin, Approximate inverse systems of compacta and covering dimension,

Pacific J. Math. 138 (1989), 129-144.
[9] S. Marde\v{s}i\v{c} and J. Segal, $\epsilon$-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-

164.
[10] S. Marde\v{s}i\v{c} and J. Segal, 9-like continua and approximate inverse limits, Math. Japonica 33

(1988), 895-908.
[11] S. Marde\v{s}i\v{c} and J. Segal, Stability of almost commutative inverse systems of compacta, Topology

and Appl. 31 (1989), 285-299.
[12] S. Marde\v{s}i\v{c} and T. Watanabe, Approximate resolutions of spaces and mappings, Glas. Mat. 24

(1989), 583-633.
[13] M. C. McCord, Embedding :?-like compacta in manifolds, Canadian J. Math. 19 (1967), 321-

332.
[14] J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland,

Amsterdam, 1989.
[15] B. A. Pasynkov, On universal compacta, Russian Math. Surveys 21 (1966), 77-86.
[16] N. Ugle\v{s}i\v{c}, A simple construction of meshes in approximate systems, Tsukuba J. Math. 19

(1995), 219-232.

Department of Mathematics
University of the Aegean,
Karlovassi 83200 Samos
Greece
e-mail: mcha\copyright aegean.gr


	CONSTRUCTING APPROXIMATE ...
	2. A General Result
	3. Brown's Theorem for ...
	4. McCord's Embedding ...
	5. $\Pi$ -Like Spaces
	References


