GENERALIZED HELICAL IMMERSIONS OF A RIEMANNIAN MANIFOLD ALL OF WHOSE GEODESICS ARE CLOSED INTO A EUCLIDEAN SPACE

By
Naoyuki Koike

Abstract

In this paper, we investigate an isometric immersion of a compact connected Riemannian manifold M into a Euclidean space and a sphere such that every geodesic in M is closed and viewed as a helix (of general order) in the ambient space.

Introduction

Let f be an isometric immersion of a Riemannian manifold M into a Riemannian manifold \tilde{M}. If geodesics in M are viewed as specific curves in \tilde{M}, what are the shape of $f(M)$? Several geometricians studied this problem. K. Sakamoto investigated an isometric immersion f of a complete connected Riemannian manifold M into a Euclidean space and a sphere such that every geodesic in M is viewed as a helix in the ambient space and that the order and the Frenet curvatures of the helix are independent of the choice of the geodesic (cf. [13], [14]). Such a immersion is called a helical immersion. On the other hand, we recently investigated an isometric immersion of a compact connected Riemannian manifold M into a Euclidean space and a sphere such that every geodesic in M is viewed as a helix in the ambient space, where the order and the Frenet curvatures of the helix may depend on the choice of the geodesic. We called such a immersion a generalized helical immersion and the maximal order of those helices the order of f. It is easy to show that f is of even order if M is compact and the ambient space is a Euclidean space. In [9], we obtained the following characterizing theorem:

[^0]Let f be a generalized helical immersion of order $2 d$ of a compact connected Riemannian manifold M into a Euclidean space. Assume that the following condition holds: (*) for each $p \in M$, there is at least one geodesic σ in M through p such that $f \circ \sigma$ is a generic helix of order $2 d$ in the ambient space. Then the second fundamental form of f is parallel and hence f is congruent to the standard isometric embedding of a symmetric R-space of rank d.

Here a generic helix of order $2 d$ is a helix in a Euclidean space whose closure is a d-dimensional Clifford torus. In case of $d \geq 2$, the above condition (*) assures the existence of a non-closed geodesic in M because a generic helix of order $2 d(d \geq 2)$ is non-closed. In this paper, we investigate a generalized helical immersion f of a compact connected Riemannian manifold M all of whose geodesics are closed into a Euclidean space or a sphere. Concretely, we show that, if such an immersion f is an embedding, then M is a SC-manifold (see Theorem 3.2) and, under certain additional conditions, f is helical, where f may not be an embedding (see Theorem 3.6). Here a SC-manifold is a Riemannian manifold all of whose geodesics are simply closed geodesics with the same length.

In Sect. 1 and 2, we prepare basic notations, definitions and lemmas. In Sect. 3 and 4, we prove main results in terms of basic lemmas prepared in Sect. 2.

Throughout this paper, unless otherwise mentioned, we assume that all geometric objects are of class C^{∞} and all manifolds are connected ones without boundary.

1. Notations and definitions

In this section, we shall state basic notations and definitions. Let $\sigma: I \rightarrow M$ be a curve in a Riemannian manifold M parametrized by the arclength s, where I is an open interval of the real line \boldsymbol{R}. Denote by v_{0} the velocity vector field $\dot{\sigma}$ of σ. Let ∇ be the Levi-Civita connection of M. If there exist an orthonormal system field (v_{1}, \ldots, v_{d-1}) along σ and positive constants $\lambda_{1}, \ldots, \lambda_{d-1}$ satisfying the following relations

$$
\left\{\begin{array}{l}
\nabla_{v_{0}} v_{0}=\lambda_{1} v_{1} \tag{1.1}\\
\nabla_{v_{0}} v_{1}=-\lambda_{1} v_{0}+\lambda_{2} v_{2} \\
\vdots \\
\nabla_{v_{0}} v_{d-2}=-\lambda_{d-2} v_{d-3}+\lambda_{d-1} v_{d-1} \\
\nabla_{v_{0}} v_{d-1}=-\lambda_{d-1} v_{d-2},
\end{array}\right.
$$

then σ is called a helix of order d. The relation (1.1), $\lambda_{i}, v_{i}(1 \leq i \leq d-1)$ and $\left(v_{0}, \ldots, v_{d-1}\right)$ are called the Frenet formula, the i-th Frenet curvature, the i-th

Frenet normal vector field and the Frenet frame field of σ, respectively. In particular, a helix σ of order $2 d$ in an m-dimensional Euclidean space \boldsymbol{R}^{m} is expressed as follows:

$$
\begin{equation*}
\sigma(s)=c_{0}+\sum_{i=1}^{d} r_{i}\left(\cos \left(a_{i} s\right) e_{2 i-1}+\sin \left(a_{i} s\right) e_{2 i}\right) \tag{1.2}
\end{equation*}
$$

where c_{0} is a constant vector of $\boldsymbol{R}^{m},\left(e_{1}, \ldots, e_{2 d}\right)$ is an orthonormal system of \boldsymbol{R}^{m}, $r_{i}(1 \leq i \leq d)$ are positive constants and $a_{i}(1 \leq i \leq d)$ are mutually distinct positive constants. Note that the image $\operatorname{Im} \sigma$ of σ is contained in the d dimensional Clifford torus

$$
T:=\left\{c_{0}+\sum_{i=1}^{d} r_{i}\left(\cos \theta_{i} \cdot e_{2 i-1}+\sin \theta_{i} \cdot e_{2 i}\right) \mid 0 \leq \theta_{i}<2 \pi(i=1, \ldots, d)\right\}
$$

Also, helices in an m-dimensional sphere S^{m} are as follows. Let σ be a helix in S^{m} and l the totally umbilic embedding of S^{m} into \boldsymbol{R}^{m+1}. Then we see that $l \circ \sigma$ is a helix of even order in R^{m+1}. Let $2 d$ be the order of $\tau \circ \sigma$. It is shown that the order of σ is $2 d-1$ (resp. 2d) if the centroid of the d-dimensional Clifford torus containing $\operatorname{Im}(\imath \circ \sigma)$ coincides (resp. does not coincide) with the center of S^{m}.

Let f be an isometric immersion of an n-dimensional Riemannian manifold M^{n} into an m-dimensional Riemannian manifold \tilde{M}^{m}. Denote by $T_{p} M$ (resp. $S_{p} M$) the tangent space (resp. the unit tangent sphere) of M at p and $S M$ the unit tangent bundle of M. We shall identify $T_{p} M$ with $f_{*}\left(T_{p} M\right)$, where f_{*} is the differential of f. Denote by ∇ (resp. $\tilde{\nabla}$) the Levi-Civita connection on M (resp. \tilde{M}) and A, h and ∇^{\perp} the shape operator, the second fundamental form and the normal connection of f, respectively. Denote by the same symbol $\bar{\nabla}$ both $\nabla^{*} \otimes \cdots \otimes \nabla^{*} \otimes \nabla^{\perp}$ and $\nabla^{\perp^{*}} \otimes \nabla^{*} \otimes \cdots \otimes \nabla^{*} \otimes \nabla$, where ∇^{*} is the dual connection of ∇. Also, we shall denote the i-th order derivative of h (resp. A) with respect to $\bar{\nabla}$ by $\bar{\nabla}^{i} h$ (resp. $\bar{\nabla}^{i} A$). If, for every geodesic σ in $M, f \circ \sigma$ is a helix of order d and the Frenet curvatures of $f \circ \sigma$ do not depend on the choice of σ, then f is called a helical immersion of order d. Also, if, for every geodesic σ in $M, f \circ \sigma$ is a helix of order at most d and there is at least one geodesic σ_{0} in M such that $f \circ \sigma_{0}$ is a helix of order d, then we shall call f a generalized helical immersion of order d.

2. Basic lemmas

In this section, we prepare basic lemmas which will be used in the next section. Let f be a generalized helical immersion of an n-dimensional complete

Riemannian manifold M^{n} into an m-dimensional Euclidean space \boldsymbol{R}^{m}. For each $v \in S M$, denote by σ_{v} the maximal geodesic in M parametrized by the arc-length s whose velocity vector at $s=0$ is equal to v. For $p \in M$, we set $V_{p, i}:=$ $\left\{v \in S_{p} M \mid f \circ \sigma_{v}:\right.$ helix of order $\left.i\right\}(i \geq 1)$ and define a function $\hat{\lambda}_{i}(i \geq 1)$ on $S M$ by

$$
\hat{\lambda}_{i}(v):= \begin{cases}\lambda_{i} & \left(v \in \bigcup_{i+1 \leq j} \bigcup_{p \in M} V_{p, j}\right) \\ 0 & \left(v \in \bigcup_{1 \leq j \leq i} \bigcup_{p \in M} V_{p, j}\right)\end{cases}
$$

where λ_{i} is the i-th Frenet curvature of $f \circ \sigma_{v}$. It is easy to show that $\hat{\lambda}_{i}$ is continuous on $\bigcup_{i \leq j} \bigcup_{p \in M} V_{p, j}(i \geq 1)$. In [9], we proved the following lemma.

Lemma 2.1. Assume that $V_{p, d} \neq \varnothing$ and $V_{p, i}=\varnothing(i \geq d+1)$ for $p \in M$. Then the set $V_{p, i}(1 \leq i \leq d-1)$ are closed sets of measure zero in $S_{p} M$ and $V_{p, d}$ is a dense open set in $S_{p} M$.

In the sequel, assume třat $V_{p, 2 d} \neq \varnothing$ and $V_{p, i}=\varnothing(i \geq 2 d+1)$ for some $p \in M$. For each $v \in V_{p, 2 d}, f \circ \sigma_{v}$ is uniquely expressed as

$$
\left(f \circ \sigma_{v}\right)(s)=c(v)+\sum_{i=1}^{d} r_{i}(v)\left(\cos \left(a_{i}(v) s\right) e_{2 i-1}(v)+\sin \left(a_{i}(v) s\right) e_{2 i}(v)\right)
$$

where $c(v)$ is a constant vector of $\boldsymbol{R}^{m},\left(e_{1}(v), \ldots, e_{2 d}(v)\right)$ is an orthonormal system of $\boldsymbol{R}^{m}, r_{i}(v)(1 \leq i \leq d)$ are positive constants and $a_{i}(v)(1 \leq i \leq d)$ are positive constants with $a_{1}(v)<\cdots<a_{d}(v)$. We regard r_{i} and $a_{i}(1 \leq i \leq d)$ as functions on $V_{p, 2 d}$. In [9], we proved the following lemma.

Lemma 2.2. The functions $a_{i}(1 \leq i \leq d)$ are analytic.
Also, we prepare the following lemma.
Lemma 2.3 On $V_{p, 2 d}$, the following relation holds:

$$
\left(\begin{array}{ccc}
a_{1}^{2} & \cdots & a_{d}^{2} \\
a_{1}^{4} & \cdots & a_{d}^{4} \\
\vdots & & \vdots \\
a_{1}^{2 d} & \cdots & a_{d}^{2 d}
\end{array}\right)\left(\begin{array}{c}
r_{1}^{2} \\
\vdots \\
r_{d}^{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
F_{1}\left(\hat{\lambda}_{1}\right) \\
\vdots \\
F_{d-1}\left(\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{d-1}\right)
\end{array}\right)
$$

where F_{i} is a polynomial of i-variables $(1 \leq i \leq d-1)$.

Proof. Fix $v \in V_{p, 2 d}$. Let $\left(v_{0}, v_{1}, \ldots, v_{2 d-1}\right)$ be the Frenet frame field of $f \circ \sigma_{v}$. Then we have

$$
\begin{equation*}
v_{0}=\sum_{i=1}^{d} r_{i}(v) a_{i}(v)\left(-\sin \left(a_{i}(v) s\right) e_{2 i-1}(v)+\cos \left(a_{i}(v) s\right) e_{2 i}(v)\right) \tag{2.1}
\end{equation*}
$$

and hence $\sum_{i=1}^{d} r_{i}(v)^{2} a_{i}(v)^{2}=1$. Thus, if $d=1$, then the proof is completed. In the sequel, assume $d \geq 2$. By operating $\tilde{\nabla}_{v_{0}}$ to (2.1), we have

$$
\begin{equation*}
\hat{\lambda}_{1}(v) v_{1}=-\sum_{i=1}^{d} r_{i}(v) a_{i}(v)^{2}\left(\cos \left(a_{i}(v) s\right) e_{2 i-1}(v)+\sin \left(a_{i}(v) s\right) e_{2 i}(v)\right) \tag{2.2}
\end{equation*}
$$

and hence $\sum_{i=1}^{d} r_{i}(v)^{2} a_{i}(v)^{4}=\hat{\lambda}_{1}(v)^{2}$. Thus, if $d=2$, then the proof is completed. In the sequel, assume $d \geq 3$. Furthermore, by operating $\tilde{\nabla}_{v_{0}}$ to (2.2), we have

$$
\begin{aligned}
\hat{\lambda}_{1}(v) & \left(-\hat{\lambda}_{1}(v) v_{0}+\hat{\lambda}_{2}(v) v_{2}\right) \\
& =\sum_{i=1}^{d} r_{i}(v) a_{i}(v)^{3}\left(\sin \left(a_{i}(v) s\right) e_{2 i-1}(v)-\cos \left(a_{i}(v) s\right) e_{2 i}(v)\right)
\end{aligned}
$$

and hence $\sum_{i=1}^{d} r_{i}(v)^{2} a_{i}(v)^{6}=\hat{\lambda}_{1}(v)^{4}+\hat{\lambda}_{1}(v)^{2} \hat{\lambda}_{2}(v)^{2}$. Thus, if $d=3$, then the proof is completed. In case of $d \geq 4$, by repeating the same process, we can obtain

$$
\sum_{i=1}^{d} r_{i}(v)^{2} a_{i}(v)^{2 j}=F_{j-1}\left(\hat{\lambda}_{1}(v), \ldots, \hat{\lambda}_{j-1}(v)\right) \quad(4 \leq j \leq d)
$$

where F_{j-1} is a polynomial of $(j-1)$-variables $(4 \leq j \leq d)$. This completes the proof.

3. Generalized helical immersions into a Euclidean space

In this section, we shall investigate a generalized helical immersion f of an n dimensional compact Riemannian manifold M all of whose geodesics are closed into an m-dimensional Euclidean space \boldsymbol{R}^{m}. Since M is compact, f is of even order. Let $2 d$ be the order of f. Take $p \in M$ with $V_{p, 2 d} \neq \varnothing$. Since all of geodesics in M are closed, they admit a common period by Lemma 7.11 of [1, P182]. Let $\mu:=\max _{v \in S_{p} M} l\left(\sigma_{v}\right)$, where $l\left(\sigma_{v}\right)$ is the length of σ_{v} (i.e., the minimal period of $\left.\sigma_{v}\right)$. Let $W:=\left\{v \in V_{p, 2 d} \mid l\left(\sigma_{v}\right)=\mu\right\}$. Since $l\left(\sigma_{v}\right)\left(v \in V_{p, 2 d}\right)$ are divisors of the common period, $\left\{l\left(\sigma_{v}\right) \mid v \in V_{p, 2 d}\right\}$ is a discrete set. The function ϕ on $V_{p, 2 d}$ defined by $\phi(v)=l\left(\sigma_{v}\right)$ is lower semi-continuous. These facts deduce that $W=$ $\phi^{-1}(\mu)$ is an open set in $V_{p, 2 d}$. Let $a_{i}(1 \leq i \leq d)$ be functions on $V_{p, 2 d}$ stated in Sect. 2. First we shall show the following lemma.

Lemma 3.1. The set $V_{p, 2 d}$ coincides with $S_{p} M$ and $a_{i}(1 \leq i \leq d)$ are constant on $S_{p} M$.

Proof. (Step I) First we shall show that the functions $a_{i}(1 \leq i \leq d)$ are constant on each component of $V_{p, 2 d}$ which intersects with W. Let W_{0} be a component of W. For each $v \in W_{0}$, set $s_{v}:=\min \left\{s \mid a_{i}(v) s \in N(1 \leq i \leq d)\right\}$. Clearly $l\left(f \circ \sigma_{v}\right)=2 \pi s_{v}$ holds. Also, we can show $l\left(\sigma_{v}\right) / l\left(f \circ \sigma_{v}\right) \in N$. Hence we have $\mu / 2 \pi s_{v} \in N$, which together with $a_{i}(v) s_{v} \in N$ implies $a_{i}(v) \mu / 2 \pi \in N$. Therefore, it follows from the continuity of a_{i} that a_{i} is constant on W_{0}. Thus a_{i} is constant on each component of W. This together with the analyticity of a_{i} (by Lemma 2.2) implies that a_{i} is constant on each component of $V_{p, 2 d}$ which intersects with W.
(Step II) Next we shall show $V_{p, 2 d}=S_{p} M$. Let V_{0} be a component of $V_{p, 2 d}$ which intersects with W. We showed that $a_{i}(1 \leq i \leq d)$ are constant on V_{0}. Denote by \bar{V}_{0} the closure of V_{0} in $S_{p} M$. Take $v \in \bar{V}_{0}$ and a sequence $\left\{w_{k}\right\}_{k=1}^{\infty}$ in V_{0} with $\lim _{k \rightarrow \infty} w_{k}=v$. The helix $f \circ \sigma_{w_{k}}$ is uniquely expressed as

$$
\begin{equation*}
\left(f \circ \sigma_{w_{k}}\right)(s)=c\left(w_{k}\right)+\sum_{i=1}^{d} r_{i}\left(w_{k}\right)\left(\cos \left(a_{i}\left(w_{k}\right) s\right) e_{2 i-1}\left(w_{k}\right)+\sin \left(a_{i}\left(w_{k}\right) s\right) e_{2 i}\left(w_{k}\right)\right) \tag{3.1}
\end{equation*}
$$

Since helices $f \circ \sigma_{w_{k}}(k \in N)$ are contained in a compact set $f(M)$, we have $\sup _{k}\left\|c\left(w_{k}\right)\right\|<\infty$ and $\sup _{k} r_{i}\left(w_{k}\right)<\infty(1 \leq i \leq d)$. Set $C:=\sup _{k}\left\|c\left(w_{k}\right)\right\|$ and $R_{i}:=$ $\sup _{i}\left(w_{k}\right)(1 \leq i \leq d) . \quad \stackrel{k}{k}$ Since $\quad\left\{\left(e_{1}\left(w_{k}\right), \ldots, e_{2 d}\left(w_{k}\right), c\left(w_{k}\right), r_{1}\left(w_{k}\right), \ldots, r_{d}\left(w_{k}\right)\right)\right\}_{k=1}^{\infty}$ is a sequence in a compact set $S_{m, 2 d} \times B^{m}(C) \times\left[0, R_{1}\right] \times \cdots \times\left[0, R_{d}\right]$, its convergent subsequence $\left\{\left(e_{1}\left(w_{\alpha(k)}\right), \ldots, e_{2 d}\left(w_{\alpha(k)}\right), c\left(w_{\alpha(k)}\right), r_{1}\left(w_{\alpha(k)}\right), \ldots, r_{d}\left(w_{\alpha(k)}\right)\right)\right\}_{k=1}^{\infty}$ exists, where $S_{m, 2 d}$ is the Stiefel manifold of all orthonormal $2 d$-frames in \boldsymbol{R}^{m}, $B^{m}(C)$ is the m-dimensional ball of center O and radius C in \boldsymbol{R}^{m} and $\left[0, R_{i}\right]$ $(1 \leq i \leq d)$ are closed intervals. Let $\left(e_{1}^{0}, \ldots, e_{2 d}^{0}, c^{0}, r_{1}^{0}, \ldots, r_{d}^{0}\right):=\lim _{k \rightarrow \infty}\left(e_{1}\left(w_{\alpha(k)}\right)\right.$, $\left.\ldots, e_{2 d}\left(w_{\alpha(k)}\right), c\left(w_{\alpha(k)}\right), r_{1}\left(w_{\alpha(k)}\right), \ldots, r_{d}\left(w_{\alpha(k)}\right)\right)$. From (3.1) and the constancy of a_{i} on V_{0}, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(f \circ \sigma_{w_{\alpha(k)}}\right)(s)= & \lim _{k \rightarrow \infty}\left\{c\left(w_{\alpha(k)}\right)+\sum_{i=1}^{d} r_{i}\left(w_{\alpha(k)}\right)\left(\cos \left(a_{i}\left(w_{\alpha(k)}\right) s\right) e_{2 i-1}\left(w_{\alpha(k)}\right)\right.\right. \\
& \left.+\sin \left(a_{i}\left(w_{\alpha(k)}\right) s\right) e_{2 i}\left(w_{\alpha(k)}\right)\right\} \\
= & c_{0}+\sum_{i=1}^{d} r_{i}^{0}\left(\cos \left(a_{i}\left(w_{1}\right) s\right) e_{2 i-1}^{0}+\sin \left(a_{i}\left(w_{1}\right) s\right) e_{2 i}^{0}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(f \circ \sigma_{\left.w_{\alpha(k)}\right)}\right)(s) & =\lim _{k \rightarrow \infty}\left(f \circ \exp _{p}\right)\left(s w_{\alpha(k)}\right)=\left(f \circ \exp _{p}\right)(s v) \\
& =\left(f \circ \sigma_{v}\right)(s)
\end{aligned}
$$

where $\exp _{p}$ is the exponential map of M at p. Thus we can obtain

$$
\left(f \circ \sigma_{v}\right)(s)=c_{0}+\sum_{i=1}^{d} r_{i}^{0}\left(\cos \left(a_{i}\left(w_{1}\right) s\right) e_{2 i-1}^{0}+\sin \left(a_{i}\left(w_{1}\right) s\right) e_{2 i}^{0}\right)
$$

which implies that $f \circ \sigma_{v}$ is a helix of order $2 d$, that is, $v \in V_{p, 2 d}$. Clearly, this implies $v \in V_{0}$. Therefore, we have $\bar{V}_{0}=V_{0}$, that is, V_{0} is closed in $S_{p} M$. On the other hand, since $V_{p, 2 d}$ is open in $S_{p} M$ by Lemma 2.1, so is also V_{0}. Hence, it follows from the connectedness of $S_{p} M$ that $V_{0}=S_{p} M$, that is, $V_{p, 2 d}=S_{p} M$. This completes the proof.

From this lemma, we can prove the following result.

Theorem 3.2. Let f be a generalized helical immersion of an n-dimensional compact Riemannian manifold M all of whose geodesics are closed into an mdimensional Euclidean space \boldsymbol{R}^{m}. Then the following statements (i) and (ii) hold:
(i) all geodesics in M are viewed as closed helices of the same order with the same length in \boldsymbol{R}^{m},
(ii) if f is an embedding, then M is a $S C$-manifold.

Proof. Let $2 d$ be the order of f. Take $p \in M$ with $V_{p, 2 d} \neq \varnothing$. From Lemma 3.1, it follows that $V_{p, 2 d}=S_{p} M$ and that $a_{i}(1 \leq i \leq d)$ are constant on $S_{p} M$. This implies that all geodesics in M through p are viewed as closed helices of order $2 d$ with the same length in \boldsymbol{R}^{m}. Take an arbitrary $q \in M$. Since M is compact and hence complete, there is a geodesic in M through p and q. This implies $V_{q, 2 d} \neq \varnothing$. Hence, we see that all geodesics in M through p or q are viewed as closed helices of order $2 d$ with the same length in \boldsymbol{R}^{m}. Thus the statement (i) is deduced from the arbitrarity of q. Assume that f is an embedding. Since a closed helix in \boldsymbol{R}^{m} are simply closed, all geodesics in M are simply closed geodesics. Also, $l(\sigma)=l(f \circ \sigma)$ holds for each geodesic σ in M. From the statement (i), $l(f \circ \sigma)$ is independent of the choice of σ. Therefore, so is also $l(\sigma)$, that is, all geodesics in M have the same length. Thus M is a SC-manifold.

From the statement (ii) of this theorem, we can obtain the following corollary.

Corollary 3.3. Let $f: M \hookrightarrow \boldsymbol{R}^{m}$ be an immersion as in Theorem 3.2. If f is an embedding and M is a Riemannian homogeneous space, then M is isometric to a compact symmetric space of rank one.

Proof. By the statement (ii) of Theorem 3.2, M is a SC-manifold. Hence, since M is a Riemannian homogeneous space, M is isometric to a compact symmetric space of rank one by Theorem 7.55 of [1, P196].

Next we shall investigate in what case an immersion as in Theorem 3.2 is helical. First we shall show the following lemma.

Lemma 3.4. Let f be an immersion as in Theorem 3.2 and $2 d$ the order of f. In case of $d \geq 2$, assume that $\hat{\lambda}_{i}(1 \leq i \leq d-1)$ are constant on $S M$, where $\hat{\lambda}_{i}$ ($1 \leq i \leq d-1$) are functions defined in Sect. 2. Then f is helical.

Proof. Fix $p \in M$. By Theorem 3.2, $V_{p, 2 d}=S_{p} M$ holds. For each $v \in S_{p} M$, $f \circ \sigma_{v}$ is uniquely expressed as

$$
\begin{equation*}
\left(f \circ \sigma_{v}\right)(s)=c(v)+\sum_{i=1}^{d} r_{i}(v)\left(\cos \left(a_{i}(v) s\right) e_{2 i-1}(v)+\sin \left(a_{i}(v) s\right) e_{2 i}(v)\right) \tag{3.2}
\end{equation*}
$$

It follows from Lemma 3.1 that $a_{i}(1 \leq i \leq d)$ are constant on $S_{p} M$. Hence, since $\hat{\lambda}_{i}(1 \leq i \leq d-1)$ are constant on $S_{p} M$ by the assumption, so are also $r_{i}(1 \leq i \leq d)$ by Lemma 2.3. Therefore, by (3.2), $f \circ \sigma_{v}\left(v \in S_{p} M\right)$ are mutually congruent, that is, they have the same Frenet curvatures. This together with the arbitrarity of p and the completeness of M implies that f is helical.

Define functions $F_{i j}(i \geq 0, j \geq 0)$ on SM by

$$
F_{i j}(v):=\left\langle\left(\bar{\nabla}^{i} h\right)(v, \ldots, v),\left(\bar{\nabla}^{j} h\right)(v, \ldots, v)\right\rangle \quad(v \in S M)
$$

and functions $G_{i j}$ on the Stiefel bundle $V_{2}(M)$ of M of all orthonormal 2-frames of M by

$$
G_{i j}(v, w):=\left\langle\left(\bar{\nabla}^{i} h\right)(v, \ldots, v),\left(\bar{\nabla}^{j} h\right)(v, \ldots, v, w)\right\rangle \quad\left((v, w) \in V_{2}(M)\right) .
$$

Now we shall prepare another lemma.

Lemma 3.5. Let f be an immersion as in Theorem 3.2 and $2 d$ the order of f. Assume that $F_{k k}$ is constant on $S M$ and $\bar{\nabla}^{i} h(i \geq 2)$ are symmetric, where k is a fixed non-negative integer. Then the following relations hold:

$$
\begin{gathered}
G_{k k}=0, \quad \sum_{i=0}^{j}\binom{j}{i} F_{k+j-i, k+i+1}=0, \\
\sum_{i=0}^{j}\binom{j}{i} G_{k+i+1, k+j-i}=0, \quad \sum_{i=0}^{j}\binom{j}{i} G_{k+i, k+j-i+1}=0 \quad(j \geq 0) .
\end{gathered}
$$

Proof. Take an arbitrary point p of M and furthermore, take an arbitrary orthonormal 2 -frame (v, w) of M at p. Let \tilde{v} be the velocity vector field of the geodesic σ_{v}. By operating $d / d s$ to the constant function $F_{k k}(\tilde{v})$, we have $F_{k, k+1}(\tilde{v})=0$, where s is the arclength of σ_{v}. Furthermore, by operating $(d / d s)^{j}$ to $F_{k, k+1}(\tilde{v})=0$ and substituting $s=0$, we can obtain $\sum_{i=0}^{j}\binom{j}{i} F_{k+j-i, k+i+1}(v)=$ 0 . Hence, by the arbitrarity of v and $p, \sum_{i=0}^{j}\binom{j}{i} F_{k+j-i, k+i+1}=0$ holds on $S M$. By differentiating $\left.F_{k k}\right|_{S_{p} M}$ in the direction $w\left(\in T_{v}\left(S_{p} M\right)\right.$, we have $G_{k k}(v, w)=0$. By the arbitrarity of (v, w) and $p, G_{k k}=0$ holds on $V_{2}(M)$. Let \tilde{w} be the parallel vector field along σ_{v} with $\tilde{w}(0)=w$. By operating $d / d s$ to $G_{k k}(\tilde{v}, \tilde{w})$ and substituting $s=0$, we have $G_{k+1, k}(v, w)+G_{k, k+1}(v, w)=0$. Also, by differentiating $\left.F_{k, k+1}\right|_{S_{p} M}=0$ in the direction $w\left(\in T_{v}\left(S_{p} M\right)\right)$, we have

$$
(k+2) G_{k+1, k}(v, w)+(k+3) G_{k, k+1}(v, w)=0
$$

Therefore, we can obtain $G_{k+1, k}(v, w)=G_{k, k+1}(v, w)=0$ and hence, by the arbitrarity of (v, w) and $p, G_{k+1, k}=G_{k, k+1}=0$ holds on $V_{2}(M)$. Furthermore, by operating $(d / d s)^{j}$ to $G_{k+1, k}(\tilde{v}, \tilde{w})=G_{k, k+1}(\tilde{v}, \tilde{w})=0$ and substituting $s=0$, we can obtain

$$
\sum_{i=0}^{j}\binom{j}{i} G_{k+i+1, k+j-i}(v, w)=\sum_{i=0}^{j}\binom{j}{i} G_{k+i, k+j-i+1}(v, w)=0
$$

Hence, by the arbitrarity of (v, w) and p,

$$
\sum_{i=0}^{j}\binom{j}{i} G_{k+i+1, k+j-i}=\sum_{i=0}^{j}\binom{j}{i} G_{k+i, k+j-i+1}=0
$$

holds on $V_{2}(M)$.

From these lemmas, we can show the following result.

Theorem 3.6. Let f be a generalized helical immersion of order $2 d$ of an n-dimensional compact Riemannian manifold M all of whose geodesics are closed into an m-dimensional Euclidean space \boldsymbol{R}^{m}. In case of $d \geq 2$, assume that, for each $p \in M,\left\|\left(\bar{\nabla}^{i} h\right)(v, \ldots, v)\right\|$ is independent of the choice of $v \in S_{p} M(0 \leq i \leq d-2)$ and furthermore, in case of $d \geq 6$, assume that $\bar{\nabla}^{i} h$ is symmetric $(2 \leq i \leq$ [d/2]-1), where [] is the Gauss's symbol. Then f is helical.

Proof. If $d=1$, then f is a planar geodesic immersion and hence a helical immersion of order 2 . In the sequel, assume that $d \geq 2$. Take an arbitrary point p_{0} of M and furthermore take an arbitrary orthonormal 2-frame (v, w) of M at p_{0}. Let $\left(v_{0}, \ldots, v_{2 d-1}\right)$ (resp. $\left.\lambda_{i}(1 \leq i \leq 2 d-1)\right)$ be the Frenet frame (resp. i-th Frenet curvature) of $f \circ \sigma_{v}$, where we note that $f \circ \sigma_{v}$ is of order $2 d$ by Theorem 3.2. From the Gauss formula and the Frenet formula, we have

$$
\begin{equation*}
\lambda_{1} v_{1}=h\left(v_{0}, v_{0}\right) \tag{3.3}
\end{equation*}
$$

and hence $\hat{\lambda}_{1}(v)^{2}=F_{00}(v)$. By the arbitrarity of v and p_{0}, we see that $\hat{\lambda}_{1}^{2}=F_{00}$ holds on $S M$. By the assumption, $\hat{\lambda}_{1}$ is constant on $S_{p} M$ for each $p \in M$. Furthermore, since f is generalized helical and there exists a geodesic through arbitrary two points of M by the compactness of $M, \hat{\lambda}_{1}\left(=F_{00}\right)$ is constant on $S M$. Thus, if $d=2$, then f is helical by Lemma 3.4. In the sequel, assume $d \geq 3$. By operating $\tilde{\nabla}_{v_{0}}$ to (3.3), we have

$$
-\lambda_{1}^{2} v_{0}+\lambda_{1} \lambda_{2} v_{2}=-A_{h\left(v_{0}, v_{0}\right)} v_{0}+(\bar{\nabla} h)\left(v_{0}, v_{0}, v_{0}\right)
$$

Also, since F_{00} is constant on $S M$, it follows from Lemma 3.5 that $G_{00}=0$ and hence $A_{h\left(v_{0}, v_{0}\right)} v_{0}=F_{00}\left(v_{0}\right) v_{0}$, where we note that the symmetricness of h is used. So we can obtain

$$
\begin{equation*}
-\lambda_{1}^{2} v_{0}+\lambda_{1} \lambda_{2} v_{2}=-F_{00}\left(v_{0}\right) v_{0}+(\bar{\nabla} h)\left(v_{0}, v_{0}, v_{0}\right) \tag{3.4}
\end{equation*}
$$

and hence

$$
\hat{\lambda}_{1}(v)^{4}+\hat{\lambda}_{1}(v)^{2} \hat{\lambda}_{2}(v)^{2}=F_{00}(v)^{2}+F_{11}(v) .
$$

By the arbitrarity of v and p_{0}, we see that

$$
\begin{equation*}
\hat{\lambda}_{1}^{4}+\hat{\lambda}_{1}^{2} \hat{\lambda}_{2}^{2}=F_{00}^{2}+F_{11} \tag{3.5}
\end{equation*}
$$

holds on $S M$. Since $\hat{\lambda}_{1}$ and F_{00} are constant on $S M$ and F_{11} is constant on $S_{p} M$ for each $p \in M$, it follows from (3.5) that $\hat{\lambda}_{2}$ is constant on $S_{p} M$ for each $p \in M$. Furthermore, since f is a generalized helical and there exists a geodesic through arbitrary two points of $M, \hat{\lambda}_{2}$ is constant on $S M$. Thus, if $d=3$, then f is helical by Lemma 3.4. In the sequel, assume $d \geq 4$. By operating $\tilde{\nabla}_{v_{0}}$ to (3.4), we have

$$
\begin{aligned}
&-\lambda_{1}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) v_{1}+\lambda_{1} \lambda_{2} \lambda_{3} v_{3} \\
&=-2 F_{10}\left(v_{0}\right) v_{0}+F_{00}\left(v_{0}\right) h\left(v_{0}, v_{0}\right) \\
&-A_{(\bar{\nabla} h)\left(v_{0}, v_{0}, v_{0}\right)} v_{0}+\left(\bar{\nabla}^{2} h\right)\left(v_{0}, \ldots, v_{0}\right) .
\end{aligned}
$$

Also, since F_{00} is constant on $S M$, we have $F_{10}=0$ and $G_{10}=0$ by Lemma 3.5, where we note that the symmetricness of $\bar{\nabla} h$ is used. So we have

$$
\begin{equation*}
-\lambda_{1}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) v_{1}+\lambda_{1} \lambda_{2} \lambda_{3} v_{3}=F_{00}\left(v_{0}\right) h\left(v_{0}, v_{0}\right)+\left(\bar{\nabla}^{2} h\right)\left(v_{0}, \ldots, v_{0}\right) . \tag{3.6}
\end{equation*}
$$

and hence

$$
\begin{gathered}
\hat{\lambda}_{1}(v)^{2}\left(\hat{\lambda}_{1}(v)^{2}+\hat{\lambda}_{2}(v)^{2}\right)^{2}+\hat{\lambda}_{1}(v)^{2} \hat{\lambda}_{2}(v)^{2} \hat{\lambda}_{3}(v)^{2} \\
=F_{00}(v)^{3}+2 F_{00}(v) F_{20}(v)+F_{22}(v) .
\end{gathered}
$$

By the arbitrarity of v and p_{0}, we see that

$$
\begin{equation*}
\hat{\lambda}_{1}^{2}\left(\hat{\lambda}_{1}^{2}+\hat{\lambda}_{2}^{2}\right)^{2}+\hat{\lambda}_{1}^{2} \hat{\lambda}_{2}^{2} \hat{\lambda}_{3}^{2}=F_{00}^{3}+2 F_{00} F_{20}+F_{22} \tag{3.7}
\end{equation*}
$$

holds on $S M$. Since $\hat{\lambda}_{1}, \hat{\lambda}_{2}$ and F_{00} are constant on $S M$, so is also F_{11} by (3.5). Furthermore, since F_{00} and F_{11} are constant on $S M$, so is also F_{20} by Lemma 3.5. Therefore, since $\hat{\lambda}_{1}, \hat{\lambda}_{2}, F_{00}$ and F_{20} are constant on $S M$ and F_{22} is constant on $S_{p} M$ for each $p \in M$, it follows from (3.7) that $\hat{\lambda}_{3}$ is constant on $S_{p} M$ for each $p \in M$. Moreover, since f is generalized helical and there exists a geodesic through arbitrary two points of $M, \hat{\lambda}_{3}$ is constant on $S M$. Thus, if $d=4$, then f is helical by Lemma 3.4. In case of $d \geq 5$, by repeating the same process, we can show that $\hat{\lambda}_{i}(4 \leq i \leq d-1)$ are constant on $S M$. Hence f is helical by Lemma 3.4.

Now we shall recall examples of a helical immersion into a sphere (or a Euclidean space) given by K. Tsukada in [18]. Let M be an n-dimensional compact symmetric space of rank one. Let V_{k} be the eigenspace for k-th eigenvalue λ_{k} of the Laplace operator on M and let $\operatorname{dim} V_{k}=m(k)+1$. We define an inner product \langle,$\rangle on V_{k}$ by $\langle\phi, \psi\rangle:=\int_{M} \phi \psi d V$, where $d V$ is the volume element of M. We define a map $\Phi_{k}: M \rightarrow \boldsymbol{R}^{m(k)+1}$ by $\Phi_{k}(p):=$ $\sqrt{n / \lambda_{k}}\left(\phi_{0}(p), \ldots, \phi_{m(k)}(p)\right)$, where $\left(\phi_{0}, \ldots, \phi_{m(k)}\right)$ is an orthonormal base of V_{k}.

Then Φ_{k} becomes a helical immersion. Furthermore, it is shown that $\Phi_{k}(M)$ is contained in a hypersphere $S^{m(k)}$ of $\boldsymbol{R}^{m(k)+1}$ and that $\Phi_{k}: M \hookrightarrow S^{m(k)}$ is minimal and helical. The isometric immersion Φ_{k} is called the k-th standard minimal immersion into $S^{m(k)}$. K. Tsukada defined an isometric immersion $\Phi_{k_{1} \cdots k_{r}}$ of M into $\boldsymbol{R}^{m\left(k_{1}\right)+\cdots m\left(k_{r}\right)+r}$ by

$$
\Phi_{k_{1} \cdots k_{r}}(p):=\left(c_{1} \Phi_{k_{1}}(p), \ldots, c_{r} \Phi_{k_{r}}(p)\right)
$$

where k_{1}, \ldots, k_{r} are positive integers and c_{1}, \ldots, c_{r} are positive numbers with $c_{1}^{2}+\cdots+c_{r}^{2}=1$. He showed that it is a helical immersion into a hypersphere $S^{m\left(k_{1}\right)+\cdots m\left(k_{r}\right)+r-1}$ of $\boldsymbol{R}^{m\left(k_{1}\right)+\cdots m\left(k_{r}\right)+r}$ (cf. [18]). Now we can obtain the following result in terms of Theorem 3.6 and Theorem 4.7 of [14].

Corollary 3.7. Under the hypothesis in Theorem 3.6, assume that f is a full embedding and $\operatorname{dim} M=2$ or odd integer. Then M is isometric to a sphere or a real projective space and f is congruent to the above immersion $\Phi_{k_{1} \cdots k_{r}}$.

4. Generalized helical immersions into a sphere

In this section, we shall deduce some results for a generalized helical immersion into a sphere in terms of results in the previous section. First we can deduce the following result from Theorem 3.2.

Theorem 4.1. Let f be a generalized helical immersion of an n-dimensional compact Riemannian manifold M all of whose geodesics are closed into an mdimensional sphere S^{m}. Then the following statements (i) and (ii) hold:
(i) if f is of odd (resp. even) order d, then all geodesics in M are viewed as closed helices of order d (resp. d or $d-1$) with the same length in S^{m},
(ii) if f is an embedding, then M is a $S C$-manifold.

Proof. Let l be the totally umbilical embedding of S^{m} into R^{m+1} and set $\tilde{f}:=\imath \circ f$. It is clear that \tilde{f} is generalized helical. Hence, it follows from Theorem 3.2 that all geodesics in M are viewed as closed helices of the same order with the same length in \boldsymbol{R}^{m+1}. This deduces the statement (i) because a helix of order d in S^{m} is viewed as a helix of order $2[(d+1) / 2]$ in R^{m+1}. If f is an embedding, then so is also \tilde{f}. Hence, the statement (ii) is deduced from Theorem 3.2.

From the statement (ii) of this theorem, we can obtain the following corollary.

Corollary 4.2. Let $f: M \hookrightarrow S^{m}$ be an immersion as in Theorem 4.1. If f is an embedding and M is a Riemannian homogeneous space, then M is isometric to a compact symmetric space of rank one.

Also, we can deduce the following result from Theorem 3.6.

Theorem 4.3. Let f be a generalized helical immersion of order $2 d-1$ or $2 d$ of an n-dimensional compact Riemannian manifold M all of whose geodesics are closed into an m-dimensional sphere S^{m}. In case of $d \geq 2$, assume that, for each $p \in M,\left\|\left(\bar{\nabla}^{i} h\right)(v, \ldots, v)\right\|$ is independent of $v \in S_{p} M(0 \leq i \leq d-2)$ and furthermore, in case of $d \geq 6$, assume that $\bar{\nabla}^{i} h$ is symmetric $(2 \leq i \leq[d / 2]-1)$. Then f is helical.

Proof. Let l be the totally umbilical embedding of S^{m} into \boldsymbol{R}^{m+1} and set $\tilde{f}:=\imath \circ f$. From the assumptions, we can show that \tilde{f} satisfies the conditions of Theorem 3.6. Hence \tilde{f} is helical by Theorem 3.6. This implies that so is also f.

Also, we can obtain the following result from Corollary 3.7.

Corollary 4.4. Under the hypothesis in Theorem 4.3, assume that f is a full embedding and $\operatorname{dim} M=2$ or odd integer. Then M is isometric to a sphere or a real projective space and f is congruent to the immersion $\Phi_{k_{1} \cdots k_{r}}$ stated in Sect. 3.

References

[1] Besse, A. L.: Manifolds all of whose geodesics are closed. Berlin, Heidelberg, New York: Springer 1978.
[2] Ferus, D.: Immersionen mit paralleler zweiter Fundamentalform. Beispiele und Nicht-Beispiele. Manuscripta Math. 12, 153-162 (1974).
[3] Ferus, D.: Immersions with parallel second fundamental form. Math. Z. 140, 87-93 (1974).
[4] Ferus, D., Schirrmacher, S.: Submanifolds in Euclidean space with simple geodesics. Math. Ann. 260, 57-62 (1982).
[5] Helgason, S.: Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978.
[6] Hong, S. L.: Isometric immersions of manifolds with plane geodesics into a Euclidean space. J. Differential Geometry 8, 259-278 (1973).
[7] Ki, U. H., Kim, Y. H.: Surfaces with simple geodesics through a point. J. of Geometry 51, 6778 (1994).
[8] Kobayashi, S.: Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. 20, 21-25 (1968).
[9] Koike, N.: Generalized Helical Immersions. Tsukuba J. of Math. 22, 407-425 (1998).
[10] Little, J. A.: Manifolds with planar geodesics. J. Differential Geometry 11, 265-285 (1976).
[11] Nakagawa, H.: On a certain minimal immersion of a Riemannian manifold into a sphere. Kōdai Math. J. 3, 321-340 (1980).
[12] Sakamoto, K.: Planar geodesic immersions. Tôhoku Math. J. 29, 25-56 (1977).
[13] Sakamoto, K.: Helical immersions into a unit sphere. Math. Ann. 261, 63-80 (1982).
[14] Sakamoto, K.: Helical immersions into a Euclidean space. Michigan Math. J. 33, 353-364 (1986).
[15] Song, H. H., Kimura, T., Koike, N.: On proper helices and extrinsic spheres in pseudoRiemannian geometry. Tsukuba J. of Math. 20, 263-280 (1996).
[16] Takeuchi, M.: Parallel submanifolds of space forms. Manifolds and Lie groups: Papers in honor of Yôzô Matsushima, Birkhäuser 1981, 429-447.
[17] Takeuchi, M., Kobayashi, S.: Minimal imbeddings of R-spaces. J. Differential Geometry 2, 203215 (1968).
[18] Tsukada, K.: Helical geodesic immersions of compact rank one symmetric spaces into spheres. Tokyo J. Math. 6, 267-285 (1983).

Department of Mathematics, Faculty of Science,
 Science University of Tokyo, Tokyo 162-0827, Japan

[^0]: Mathematics Subject Classification (1991):53C42.
 Received December 19, 1997.

