ON THE GROUPS WITH HOMOGENEOUS THEORY

By
Kikyo Hirotaka

1. Introduction

D. MacPherson [5] proved that no infinite groups are interpretable in any finitely homogeneous structure. A countable structure M is called finitely homogeneous if its language is finite, its domain is countable, and every isomorphism between finite tuples in M extends to an automorphism of M.

We shall consider a similar condition which applies to general structures.

Defintion 1.1. Let $2 \leq m<n$. We say that a structure M is (m, n) homogeneous if for any two n-tuples \bar{a}, \bar{b} from $M, \operatorname{tp}(\bar{a})=\operatorname{tp}(\bar{b})$ if and only if corresponding m-tuples from \bar{a} and \bar{b} have the same type. A complete theory T is (m, n)-homogeneous if every model of T is (m, n)-homogeneous.

Note that the additive group of integers $(\boldsymbol{Z},+)$ is $(2, n)$-homogeneous for any $n>2$. But it turns out that its theory is not (n, n)-homogeneous for any m, n by the stability and Theorem 2.3 below.

In this paper, we treat the following conjecture:

Conjecture 1.2. If (M, \cdot) is a group (it may have other structures) then the theory of (M, \cdot) is not (m, n)-homogeneous for any m, n such that $2 \leq m<n$.

We call a theory (m, ∞)-homogeneous if it is (m, n)-homogeneous for any $n>m$. Handa [2] studied (m, ∞)-homogeneous theories and proved that no infinite Abelian p-groups are interpretable in a model of such a theory, and if the theory is ω-stable in addition then no infinite groups are interpretable.

If the above conjecture is true then no groups are interpretable in a model of (m, ∞)-homogeneous theories. However, we cannot claim that no groups are interpretable in a model of an (m, n)-homogeneous theory. The following

[^0]example suggested by Ehud Hrushovski is ω-stable, (2,3)-homogeneous, not (3,4)-homogeneous, and interprets an infinite group.

Example 1.3. Consider the projective line $\mathbf{P}^{\mathbf{1}}$ over an algebraically closed field K and the action of $\operatorname{PGL}(2, K)$ on it. This group acts sharply 3-transitively on \mathbf{P}^{1}. Define a relation $R\left(z_{1}, z_{2}, z_{3}, z_{4}, w_{1}, w_{2}, w_{3}, w_{4}\right)$ on \mathbf{P}^{1} as follows: There is a regular linear map A in $\operatorname{PGL}(2, K)$ such that $A z_{i}=w_{i}$ for each $i=1,2,3$ and 4.
R is invariant under the action of $\operatorname{PGL}(2, K)$. Since this group acts sharply 3-transitively on \mathbf{P}^{1}, given two sets of three points $\{p, q, r\}$ and $\left\{p^{\prime}, q^{\prime}, r^{\prime}\right\}$ for \mathbf{P}^{1}, the relation $R\left(z, p, q, r, w, p^{\prime}, q^{\prime}, r^{\prime}\right)$ between z and w represents an automorphism of $\left(\mathbf{P}^{1}, R\right)$ which belongs to $\operatorname{PGL}(2, K)$.

Now we can easily see that $\operatorname{Th}\left(\mathbf{P}^{1}, R\right)$ is (2,3)-homogeneous but ($\left.\mathbf{P}^{1}, R\right)$ interprets the infinite group $\operatorname{PGL}(2, K)$. As we can interpret $\left(\mathbf{P}^{1}, R\right)$ in the field K, $\operatorname{Th}\left(\mathbf{P}^{1}, R\right)$ is ω-stable.

Moreover, the theory is not (3,4)-homogeneous. Choose three distinct points, a, b, c from \mathbf{P}^{1} and a linear map A from $\operatorname{PGL}(2, K)$ sending a, b, c to b, c, a respectively. Since K is algebraically closed, A has a fixed point d in \mathbf{P}^{1}. Note that d is different from a, b and c. Choose a new point d^{\prime} from \mathbf{P}^{1} that is not fixed by A. Then $R(d, a, b, c, d, b, c, a)$ holds but $R\left(d^{\prime}, a, b, c, d^{\prime}, b, c, a\right)$ does not hold. Since there is only one 3-type realized by three distinct points, this shows that the theory is not $(3,4)$-homogeneous.

Also, we cannot claim that no groups are definable in a model of an (m, n)homogeneous theory. The following example is due to Akito Tsuboi. This example is ω-categorical, ω-stable, $(2,3)$-homogeneous, not (2,4)-homogeneous, but some infinite groups are definable with three parameters.

Example 1.4. Let $V_{1}, V_{2}, V_{3}, V_{4}$ be four copies of $\boldsymbol{Z}_{2}^{(\omega)}$ where \boldsymbol{Z}_{2} is the Ablian group of order 2. Let M be the disjoint union of these four sets, and define the relation $R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by $x_{i} \in V_{i}$ and $x_{1}+x_{2}+x_{3}+x_{4}=0$. Then $\operatorname{Th}(M, R)$ is (2,3)-homogeneous but $Z_{2}^{(\omega)}$ is definable in it.

First, we can recover a group structure on each V_{i}. Fix three elements a, b, c one from each V_{2}, V_{3} and V_{4}. The formula

$$
\exists x_{2}, x_{3}\left[R\left(u_{2}, x_{2}, b, c\right) \wedge R\left(u_{3}, a, x_{3}, c\right) \wedge R\left(u_{1}, x_{2}, x_{3}, c\right)\right]
$$

is equivalent to $u_{1}+u_{2}+u_{3}+a+b+c=0$ for u_{1}, u_{2}, u_{3} in V_{1} which gives a group structure on V_{1}. The same argument works for each V_{i}.

To show that there is only one 3-type realized by three distinct elements from V_{1} is the most essential in the proof of $(2,3)$-homogeneity of the theory. Consider each V_{i} as a vector space over the prime field of characteristic 2 . Let $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ be two sets of three distinct elements from V_{1}. Whether each set is dependent or not, we can choose c from V_{1} so that $\left\{a_{1}-c, a_{2}-c, a_{3}-c\right\}$ and $\left\{b_{1}-c, b_{2}-c, b_{3}-c\right\}$ are both linearly independent sets. Let s be a linear automorphism on V_{1} sending each $a_{i}-c$ to $b_{i}-c$. Then $\sigma(x)=s(x-c)+c$ is an automorphism of V_{1} which sends a_{i} to b_{i} for $i=1,2,3$. Extend σ to V_{2}, V_{3} and V_{4} by $\sigma(x)=s(x+c)-c$ on V_{2}, and $\sigma(x)=s(x)$ on V_{3} and V_{4}. Then σ is an automorphism of (M, R).

We prove Conjecture 1.2 with various additional conditions such as ω categoricity, o-minimality, stability and simplicity (in Shelah's sense), but it seems very hard to prove it in general. In the simple case, we only prove that the theory is not (2,3)-homogeneous. Also, we have not found a pure group with the (m, n)homogeneous theory for some m and n.

In this paper, the language is countable and the notation follows Pillay's book [7].

2. (m, n)-Homogeneous Theory

In this section, we prove that Conjecture 1.2 holds if $\operatorname{Th}(M)$ is ω-categorical, stable, or o-minimal.

Theorem 2.1 If (M, \cdot) has an infinite Abelian p-subgroup then $\operatorname{Th}(M, \cdot)$ is not (m, n)-homogeneous for any m and n.

Proof. The proof is much the same as Handa's proof in [2] which is a modification of Macpherson's argument [5]. We give the proof for reader's convenience.

We work in an Abelian subgroup and write the group operation additively.
It is enough to show that the theory is not ($m, m+1$)-homogeneous for any m. We find elements a_{1}, \ldots, a_{m+1} that are linearly independent over a finite prime field F_{p} with the p elements, and the corresponding m-tuples from $\left(a_{1}, \ldots, a_{m}\right.$, $\left.a_{1}+\cdots+a_{m}+a_{m+1}\right)$ and ($a_{1}, \ldots, a_{m}, a_{1}+\cdots+a_{m}$) have the same type. Note that we can describe this condition by a set of elementary formulas. We show that for given finite set Δ of m-formulas, we can find elements a_{1}, \ldots, a_{m+1} satisfying the above condition except that the phrase "have the same type"
changed to "have the same Δ-type". Then by compactness, we get the desired tuple.

Let V be an infinite Abelian p-subgroup of (M, \cdot). Consider V as a vector space over \boldsymbol{F}_{p}. We can assume that V has the countable dimension over \boldsymbol{F}_{p}. Choose a basis $\left(v_{i}: i<\omega\right)$ of V. Now we give a rule for coloring the m dimensional subspaces of V.

First, we give a rule for ordering the elements of a such subspace. If U is an m-dimensional subspace of V, then the cardinality of U is p^{m}. Since U is a finite dimensional subspace of V, U is covered by the F_{p}-span of ($v_{i}: i<n$) for some natural number n. Every element of U can be written as a linear combination of ($v_{i}: i<n$) over F_{p}. If we list all of them, we naturally get a $|U| \times n$ matrix with entries in F_{p}. Then we can find a unique row reduced echelon form of the matrix. It has $m(=\operatorname{dim} U)$ nonzero rows, and the tuple of elements of U represented by those rows is an ordered basis of U. We call it the canonical basis of U. Order the elements of U lexicographically according to their coordinates with respect to the canonical basis.

Now, if U and U^{\prime} are m-dimensional subspaces of V, we say that U and U^{\prime} have the same color if every corresponding m-tuples with respect to the above ordering have the same Δ-type. Note that the number of the colors is finite.

By the affine version of Ramsey's theorem [1], V has an ($m+1$)-dimensional subspace W all of whose m-dimensional subspaces have the same color. Let $\left(a_{1}, \ldots, a_{m}, a_{m+1}\right)$ be the canonical basis of W.

All we have to show is that the corresponding m-tuples from $\left(a_{1}, \ldots, a_{m}\right.$, $\left.a_{1}+\cdots+a_{m}+a_{m+1}\right)$ and $\left(a_{1}, \ldots, a_{m}, a_{1}+\cdots+a_{m}\right)$ have the same Δ-type. Let U_{1} be the \boldsymbol{F}_{p}-span of $\left\{a_{1}, \ldots, a_{m}, a_{1}+\cdots+a_{m}+a_{m+1}\right\} \backslash\left\{a_{i}\right\}$ and U_{2} the \boldsymbol{F}_{p}-span of $\left\{a_{1}, \ldots, a_{m}, a_{1}+\cdots+a_{m}\right\} \backslash\left\{a_{i}\right\}$. Then their dimensions are both m. Since U_{1} has the canonical basis $\left(a_{1}, \ldots, a_{i}+a_{m+1}, \ldots, a_{m}\right)$ and U_{2} has the canonical basis $\left(a_{1}, \ldots, a_{i}, \ldots, a_{m}\right), a_{1}+\cdots+a_{m}+a_{m+1}$ in U_{1} and $a_{1}+\cdots+a_{m}$ in U_{2} have the same coordinate $(1, \ldots, 1)$. Thus, we get the desired result.

As there exists an infinite Abelian p-subgroup in a ω-categorical group (see [5]), we have the following.

Corollary 2.2. If $\operatorname{Th}(M, \cdot)$ is countably categorical then it is not (m, n)homogeneous for any m and n.

We now turn to the stable case. In this case, Conjecture 1.2 holds by the existence of stationary generic types.

Theorem 2.3. If $\operatorname{Th}(M, \cdot)$ is stable then it is not (m, n)-homogeneous for any m and n.

Proof. It is enough to show that the theory is not ($m, m+1$)-homogeneous for any m. Let p be a stationary generic type over a model N, and a_{1}, \ldots, a_{m} independent (over N) realizations of p. Let $b=a_{1} \cdots a_{m}$. Since p is generic, $\operatorname{tp}(b / N)$ is also a stationary generic type, and any m elements from a_{1}, \ldots, a_{m}, b are independent over N.

Now choose c such that $\operatorname{tp}\left(c / a_{1} \ldots a_{m} N\right)$ is a nonforking extension of $\operatorname{tp}(b / N)$ and consider the two ($m+1$)-tuples $\left(a_{1}, \ldots, a_{m}, b\right)$ and (a_{1}, \ldots, a_{m}, c). They do not have the same type since b is algebraic (definable) over $\left\{a_{1}, \ldots, a_{m}\right\}$ and c is independent of $\left\{a_{1}, \ldots, a_{m}\right\}$. But the corresponding m-tuples from both tuples have the same type by the stationarity of types over a model. This shows that the theory is not $(m, m+1)$-homogeneous.

To finish this section, we consider the o-minimal case.
Theorem 2.4. If $\operatorname{Th}(M, \cdot,<)$ is o-minimal then it is not (m, n)-homogeneous for any m and n.

Proof. Choose algebraically independent elements a_{1}, \ldots, a_{m} (in the big model). If we cannot choose such elements, then by compactness, there are formulas $\psi_{i}\left(x ; y_{1}, \ldots, y_{m-1}\right)(i=1, \ldots, m)$ such that any m-tuple satisfies one of ψ_{1} 's (by permuting if necessary) and if $x, y_{1}, \ldots, y_{m-1}$ satisfies ψ_{i} then x is algebraic over y_{1}, \ldots, y_{m-1}. But if we choose an infinite indiscernible sequence $\left\langle a_{i} \mid i<\omega\right\rangle$, we get a contradiction by considering $a_{k}, a_{2 k}, \ldots, a_{m k}$ for sufficiently large k.

Let $b=a_{1} \cdots a_{m}$ and consider the types

$$
\operatorname{tp}\left(b / A_{i}\right) \quad \text { where } \quad A_{i}=\left\{a_{1}, \ldots, a_{m}\right\} \backslash\left\{a_{i}\right\} .
$$

Note that they are non-algebraic types. If a formula $\varphi_{i}(x)$ belongs to $\operatorname{tp}\left(b / A_{i}\right)$ then it is a finite union of intervals by o-minimality. Without loss of generality, we can assume that $\varphi_{i}(x)$ represents a single interval $\left[c_{i}, d_{i}\right]$ where c_{i} and d_{i} are definable elements over A_{i} (this may not be a closed interval, but the argument will be the same in any case). Since b is not algebraic over A_{i}, b belongs to the open interval $\left(c_{i}, d_{i}\right)$. As this is true for each $i=1, \ldots, m$, the type

$$
\operatorname{tp}\left(b / A_{1}\right) \cup \cdots \cup \operatorname{tp}\left(b / A_{m}\right)
$$

is non-algebraic by compactness. Choose $b^{\prime} \neq b$ satisfying this type. Considering the tuples $\left(a_{1}, \ldots, a_{m}, b\right)$ and $\left(a_{1}, \ldots, a_{m}, b^{\prime}\right)$, we see that the theory is not ($m, m+1$)-homogeneous.

3. (2,3)-Homogeneous Theory

If the theory is simple then we can still find a generic type, but it is not necessarily stationary. Instead, we can use the Independence Theorem due to B. Kim and A. Pillay to prove the conjecture in a special form. But we could not prove the conjecture in the general form.

We use the following definition and facts from [4] and [6].

Definition 3.1. A 1-type $p(x)$ over A is called generic if for any a realizing p and b such that a is independent from b over $A, a \cdot b$ is independent from $a b$ over \emptyset and so is $b \cdot a$.

FACT 3.2. If $\operatorname{Th}(M, \cdot)$ is simple then there is a generic type.

Fact 3.3 (Independence Theorem). Suppose the theory is simple. If A and B are independent over a model M and a type p_{1} over A and a type q_{2} over B are both nonforking extensions of a type p over M, then there is a type q over $a \cup B$ such that q extends both p_{1} and p_{2}, and q does not fork over M.

Theorem 3.4. If $\operatorname{Th}(M, \cdot)$ is simple then it is not (2,3)-homogeneous.

Proof. Let p be a generic type over some model N, and a_{1}, a_{2} independent realizations of p. Let $b=a_{1} \cdot a_{2}$. Then both $\operatorname{tp}\left(b / a_{1} N\right)$ and $\operatorname{tp}\left(b / a_{2} N\right)$ do not fork over N. By the Independence Theorem, we can choose c such that $\operatorname{tp}\left(c / a_{1} a_{2} N\right)$ does not fork over N and $\operatorname{tp}\left(c / a_{1} a_{2} N\right)$ extends both $\operatorname{tp}\left(b / a_{1} N\right)$ and $\operatorname{tp}\left(b / a_{2} N\right)$. This implies that corresponding pairs from $\left(a_{1}, a_{2}, b\right)$ and ($\left.a_{1}, a_{2}, c\right)$ have the same type. On the other hand, $\left(a_{1}, a_{2}, b\right)$ and ($\left.a_{1}, a_{2}, c\right)$ have different types over \emptyset since $b=a_{1} \cdot a_{2}$ but c is non-algebraic over $\left\{a_{1}, a_{2}\right\} \cup N$.

References

[1] R. L. Graham, K. Leeb, and B. L. Rothschild, Ramsey's theorem for a class of categories, Advances in Math. 8 (1972), 417-433.
[2] M. Handa, Master's Thesis (in Japanese), University of Tsukuba, 1994.
[3] B. Kim, Forking in simple unstable theories, J. London Math. Soc., to appear.
[4] B. Kim and A. Pillay, Simple theories, preprint.

On the Groups with Homogeneous

[5] D. MacPherson, Interpreting groups in ω-categorical structures, J. Symb. Logic 56 (1991), 1317-1324.
[6] A. Pillay, Definability and definable groups in simple theories, preprint, July, 1996.
[7] A. Pillay, An Introduction to Stability Theory, Clarendon Press, Oxford, 1983.
[8] B. Poizat, Sous-groupes définissables d'un groupe stable, J. Symb. Logic 46 (1981), 137-146.
[9] S. Shelah, Classification Theory (revised), North-Holland, Amsterdam, 1990.

> Department of Mathematical Sciences
> Tokai University
> Hiratsuka, Kanagawa 259-1292
> Japan

[^0]: Recived May 14, 1997
 Revised October 7, 1997

