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ON TOTALLY REAL MINIMAL SUBMANIFOLDS IN $CP^{n}(c)$

By

Yoshio MATSUYAMA

1. Introduction

Recently, in [4] we proved : Let $M^{n}$ be a minimal $n(\geq 4)$ -submanifold in a
Euclidean N-sphere $S^{N}$ of radius 1 (resp. a Euclidean N-space $R^{N}$ ) which has at
most two principal curvatures in the direction of any normal which satisfy that if
exactly two are distinct, then we assume those multiplicites $\geq 2$ . Then the second
fundamental form is parallel and the length $S$ of the second fundamental form
holds $S=0$ or $n\leq S\leq n^{2}/4$ (resp. $M^{n}$ is totally geodesic). And if $n=4$ , then
$S=4$ and $M^{n}$ is locally isometric to the complex projective 2-space $P^{2}(4/3)$ with
constant holomorphic sectional curvature 4/3 or the product $ S^{2}(1/\sqrt{2})\times$

$S^{2}(1/\sqrt{2})$ of two 2-spheres, where we denote the radius of spheres in the
parentheses. Moreover, we obtain that if $S=n^{2}/4$ and that if $S=n>4$, then
$M^{n}$ is locally isometric to $S^{m}(\sqrt{m}/n)\times S^{n-m}(\sqrt{n-m}/n)$ .

Let $CP^{n}(c)$ be an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature $c(>0)$ and $M^{n}$ be
a totally real n-submanifold isometrically immersed in $CP^{n}(c)$ . Then totally
umbilical submanifolds, if there exists, are the simplest submanifolds next to
totally geodesic submanifolds in a Riemannian manifold. However, it was proved
in [2] that a complex space form of complex dimension $\geq 2$ adimits no totally
umbilical, totally real submanifolds except the totally geodesic ones. According to
[1], a totally real H-umbilical n-submanifold of a Kaehler manifold $M_{n}$ which is
introduced as the simplest totally real submanifolds next to the totally geodesic
ones in complex space forms is a non-totally geodesic totally real submanifold
whose second fundamental form takes the following simple form:

$h((e_{1}, e_{1})=\lambda Je_{1},$ $h(e_{2}, e_{2})=\cdots=h(e_{n}, e_{n})=\mu Je_{1}$ ,

$h(e_{1}, e_{j})=\mu Je_{j}$ , $h(e_{j},e_{k})=0$ , $j\neq k,j,$ $k=2,$ $\ldots,n$
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for some suitable functions $\lambda$ and $\mu$ with respect to some suitable orthonormal
local frame field, where $J$ is the complex stmcture of $\overline{M}_{n}$ and also except some
exceptional classes, their totally real H-umbilical n-submanifolds of complex
projective spaces or of complex hyperbolic spaces are obtained from Legendre
curves via Hopf’s fibration in some nature ways. On the othe hand, it is given by
O’Neill ([7]) the notion of an isotropic submanifolds of a Riemannian manifold
which can be considered as a generalization of the totally geodesic submanifolds.
With isotropic totally real n-submanifolds $M^{n}$ of a complex Kaehler manifold $\overline{M}_{n}$

Montiel and Urbano ([5]) proved: If $n\geq 3$ and $M^{n}$ is minimal, then either $M^{n}$ is
totally geodesic or $n=5,8,14$ or 26

The purpose of this paper is to prove the following:

THEOREM. Let $M^{n}$ be a totally real, minimal submanifold in $CP^{n}(c)$ which
has at most two principal curvatures in the direction of any normal. Then if $M^{n}$ is
not totally geodesic, then $M^{n}$ is parallel $(n\geq 4)$ , or H-umbilical minimal surface in
$CP^{2}(c)$ . In the former case, if $n$ is even (resp. odd), then $M^{n}$ is isotropic (resp. $M^{n}$

does not exist). Hence $M^{n}$ is Einstein and is locally congruent to the following:
$SU(3),$ $n=8;SU(6)/S_{p}(3),$ $n=14$ or $E_{6}/F_{4},$ $n=26$ .

2. PreMin$ari\propto$

Let $M$ be an isometrically immersed in an $(n+p)$-dimensional Riemannian
manifold $\overline{M}$ . We denote by $g$ the metric of $\overline{M}$ as well as the one induced on $M$.
Let $\nabla$ (resp. V) denote the covariant differentiation in $M$ (resp. $\overline{M}$), and $D$ the
covariant differentiation in the normal bundle. We denote by $h$ and $A_{\xi}$ the second
fundamental form of the immersion and the Weingarten endomorphism asso-
ciated to a normal vector $\xi$ , respectively. If $\xi_{1},$

$\ldots,$
$\xi_{p}$ are now orthonormal

normal vector fields in a neighborhood $U$ of $x$ , then they determine normal
connection forms $s_{\alpha\beta}$ in $U$ by

$D_{X}\xi_{\alpha}=\sum_{\beta}s_{\psi}(X)\xi_{\beta}$
, $s\psi+s_{\beta\alpha}=0$

for $X\in T_{x}M$ , where $T_{X}M$ denotes the tangent space of $M$ at $x$ . Let $X$ and $Y$ be
tangent to $M$ and $\xi_{1},$

$\ldots,$
$\xi_{p}$ orthonormal normal vector fields. Then we have the

following relationships (in this paper Greek indices run from 1 to $p$):

(1)
$(\nabla_{X}A_{\alpha})Y-\sum_{\beta}s_{\alpha\beta}(X)A_{\beta}Y=(\nabla_{Y}A_{\alpha})X-\sum_{\beta}s_{\alpha\beta}(Y)A_{\beta}X$

–Codazzi equation
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Let $\nabla^{*}$ denote the sum of the tangential and the normal connections. $\nabla^{*}$ is the
connection in the Whitney sum of the tangent bundle of $M$ and the normal
bundle of $M$ induced by $\nabla$ and $D$ . Then we have

(2)
$\nabla_{X}^{*}A_{\alpha}=\nabla_{X}A_{\alpha}-\sum_{\beta}s_{\alpha\beta}(X)A_{\beta}$

,

(3) $(\nabla_{X}^{*}A_{\alpha})Y=(\nabla_{Y}^{*}A_{\alpha})X$ .
We say that $M$ is $\lambda$-isotropic provided that $|h(v, v)|=\lambda$ for all unit vector $v$ in

$M$. And we call $M$ an totally real submanifold of a Kaehler manifold $\overline{M}$ if $M$

admits an isometric immersion into $\overline{M}$ such that for all $x,$ $J(T_{X}M)\subset T_{x^{\perp}}M$ ,
where $T_{x^{\perp}}M$ denotes the normal space at $x$ and $J$ the complex stmcture of $\overline{M}$ .

DEFINITION. For $x\in M$, the first normal space, $N_{1}(x)$ , is the orthogonal
complement in $T_{X}^{\perp}M$ of the set

$N_{0}(x)=\{\xi\in T_{X}^{\perp}M|A_{\xi}=0\}$ .

We define a new inner product, $\langle, \rangle$ on $N_{1}(x)$ ([4]) by

$\langle\xi,\eta\rangle=tra\infty A_{\xi}A\eta$ for $\xi,\eta\in N_{1}(x)$ .

One easily checks that $\langle, \rangle$ is a positive definite inner product on $N_{1}(x)$ . The
following lemmas can be proved in the case of totally real, minimal submanifolds
in $CP^{n}(c)([4])$ :

LEMMA 1. Let $M^{n}$ be a totally real, minimal submanifolds in $CP^{n}(c)$ . If at
each point $x$ of $M$, the second fundamen $tal$ form of $M$ in the direction of any
normal $\xi$ has two distinct eigenvalues $\lambda(\xi)\neq\mu(\xi)$ , then we have the following:

(i) The distribution $T_{\lambda(\xi)}=\{X|A_{\xi}X=\lambda(\xi)X\}$ is differentiable.
(ii) If $X\in T_{\lambda(\xi)}$ , then $A_{\eta}X\in T_{\mu(\xi)}$ for any normal $\eta$ which is orthogonal to $\xi$

with respect to the inner product $\langle$ , $\rangle$ .
(iii) If $\xi$ is a unit normal with respect to the Riemannian metric $g$ of $\overline{M}$ and

$\dim T_{\lambda(\xi)}>1$ , then $X\cdot\lambda(\xi)=0$ for $X\in T_{\lambda(\xi)}$ . Thus if the multiplicities of $\lambda(\xi)$ and
$\mu(\xi)\geq 2$ , then $\lambda(\xi)=const$ . and $\mu(\xi)=const$ .

Let $k$ dimension of $N_{1}(x)$ of a totally real submanifold $M$ in $CP^{n}(c)$ , where $k$

is constant by means of (iii) of Lemma 1. Then:

LEMMA 2. Let $M^{n}$ be a totally real, minimal submamfold in $CP^{n}(c)$ which
has at most two principal curvatures (If exactly two are distinct, then we assume
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those multiplicities $\geq 2$ ) in the direction of any normal. Then $\nabla^{*}A_{\alpha}=0$ for
$1\leq\alpha\leq k$ .

The following lemma also holds ([3]):

LEMMA 3. Let $M$ be a totally real, minimal submanifold in $CP^{n}(c)$ . If $M$ is
$\lambda$-isotropic and $n\geq 3$, then $M$ is Einstein so that $\lambda$ is constant.

3. Proof of theorem

Let $M$ be a totally real, minimal submanifold in $CP^{n}(c)$ which has at most
two principal curvatures in the direction of any normal. At first, we suppose that
if exactly two are distinct, then those multiplicities $\geq 2$ . Since $M$ is totally real, it
holds the same Codazzi equation of $M$ as one of submanifolds of a Riemannian
manifold, and the normal curvature tensor $R^{\perp}$ satisfies

$R^{\perp}(X, Y)\xi=h(X,A_{\xi}Y)-h(Y,A_{\xi}X)+\frac{c}{4}\{g(JY, \xi)JX-g(JX, \xi)JY\}$ .

Let $k$ the dimension of $N_{1}(x)$ . From Lemma 2 we, at first, see that the second
fundamental form $A_{\alpha},$ $\xi_{\alpha}\in N_{1}(x)$ , is parallel. Assume that $\gamma>k$ . Then $A_{\gamma}=0$

on $M$, $\nabla A_{\gamma}=0$ and $[A_{\gamma},A_{\beta}]=0$ , $\gamma\neq\beta$, $1\leq\beta\leq n$ . Thus $R^{\perp}(X, Y)\xi_{\gamma}=$

$c/4\{g(JY, \xi_{\gamma})JX-g(JX, \xi_{\gamma})JY\}$ . Therefore for any tangent vector $X$ orthogonal
to $J\xi_{\gamma}$ the normal connection form $s_{\gamma\beta}$ satisfies

$s_{\gamma\beta}(X)=0$ , $\beta\neq\gamma$ .

By Codazzi equation

$0=(\nabla_{X}A_{\gamma})J\xi_{\gamma}-\sum s_{\gamma\beta}(X)A_{\beta}J\xi_{\gamma}$

$=(\nabla_{J\xi_{\gamma}}A_{\gamma})X-\sum s_{\gamma\beta}(J\xi_{\gamma})A_{\beta}X$ .

Hence,

$\sum_{\beta=1}^{k}s_{\gamma\beta}(J\xi_{\gamma})A_{\beta}X=0$ .

From (ii) of Lemma 1 and the assumption of the multiplicity we obtain

$s_{\gamma\beta}(J\xi_{\gamma})=0$ , $1\leq\beta\leq k$ .

Thus $A_{\gamma}$ is parallel. Therefore we see that the second fundamental form of $M$

is parallel. From (ii) of Lemma 1 we can choose a normal basis $\xi_{1},$

$\ldots,$
$\xi_{k}$ for
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$N_{1}(x)$ which are orthogonal with respect to $\langle, \rangle$ and unit with respect to the
Riemannian metric $g$ of $\overline{M}$ so that

$A_{\alpha}=(^{\lambda_{\alpha}}0^{I_{p}}$ $\mu_{\alpha}I_{n-p}0$ , $A_{\beta}=(_{{}^{t}B}0$ $B0$ , $\beta\neq\alpha$ ,

where $I_{p}$ (resp. $I_{n-p}$ ) is a $p\times p$ (resp. an $(n-p)\times(n-p)$ ) identity matrix.
Now, we define $f$ by $f(v)=|h(v, v)|^{2}$ . Let $v$ be any unit vector in $T_{X}M$ which

satisfies $f(v)\neq 0$ . We choose a normal basis $\{\xi_{1}=(h(v, v)/|h(v, v)|), \xi_{2}, \ldots, \xi_{n}\}$ at
$x$ such that $\xi_{1},$

$\ldots,$
$\xi_{n-1}$ and $\xi_{n}$ are unit with respect to the Riemannian metric of

$\overline{M}$ and mutually orthogonal with respect to $\langle$ , $\rangle$ .
Then if $n$ is even, then

$A_{1}=(^{|h(v,v)|I_{n/2}}0$ $-|h(v^{0}v)|I_{n/2}$ , $A_{\beta}=(_{{}^{t}C}0$ $C0$ , $\beta\neq 1$

Thus we have

$f(e_{1})=\cdots=f(e_{n})$

for an orthonormal basis $\{v=e_{1}, \ldots, e_{n}\}$ of $T_{X}M$ which diagonalizes the matrix
$A_{1}$ . Then we see that for any orthonormal vectors $u,$ $v$

$g(h(v, v),h(v, u))=0$ .

Hence $M$ is isotropic (for example, see [3]). From Lemma 3 we see that $M$ is
Einstein. By [6] we obtain the conclusions.

On the other hand, if $n$ is odd, then the equation

$|\lambda I_{n}-A_{\beta}|=0,\beta\neq 1$

has the solution $0$ . Thus $A_{\beta}=0$ .
Then,

$A_{1}=(^{|h(v_{0}v)|I_{p}}$ $-\frac{p}{n-p}|h^{0}(v, v)|I_{n-p}$ , $2\leq p<n-p$ .

Note that $k=1=$ constant. Then we can choose an orthonormal basis
$\{e_{1}, \ldots, e_{n}\}$ such that

$A_{Je_{1}}=(0^{p}$ $-\frac{p^{0}}{n-p}\lambda I_{n-p}$ , $2\leq p<n-p$ , $A_{Je_{\beta}}=0$ , $\beta\neq 1$ .
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Since $M^{n}$ then is totally real, we see that $\lambda=g(A_{Je_{1}}e_{2}, e_{2})=g(h(e_{2}, e_{2}),$ $Je_{1}$ ) $=$

$g(h(e_{1}, e_{2}),Je_{2})=0$ .
Next, if at least one, say, $A_{\alpha}$ of $A_{\beta},$ $1\leq\beta\leq n$ has a eigenvalue $\lambda$ with the

multiplicity 1, then

$A_{\alpha}=(_{0}^{\lambda}$ $\mu I_{n-1}0$ , $A_{\beta}=(_{{}^{t}D}0$ $D0$ , $\beta\neq\alpha$ ,

where $D=(a_{2}, \ldots,a_{n})$ . $1fn\geq 3$ , then

$|\lambda I_{n}-A_{\beta}|=0$

has O-solution. Hence $A_{\beta}=0$ . Then by the similar way with the above we see
that $M$ is totally geodesic. It remains the case of $n=2$ . Then from Lemma 1 we
see that $M$ is H-umbilical minimal surface. This proves Theorem.
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