ON TOTALLY REAL MINIMAL SUBMANIFOLDS IN $\boldsymbol{C P}^{\boldsymbol{n}}(\boldsymbol{c})$

By
Yoshio Matsuyama

1. Introduction

Recently, in [4] we proved : Let M^{n} be a minimal $n(\geq 4)$-submanifold in a Euclidean N-sphere S^{N} of radius 1 (resp. a Euclidean N-space R^{N}) which has at most two principal curvatures in the direction of any normal which satisfy that if exactly two are distinct, then we assume those multiplicites ≥ 2. Then the second fundamental form is parallel and the length S of the second fundamental form holds $S=0$ or $n \leq S \leq n^{2} / 4$ (resp. M^{n} is totally geodesic). And if $n=4$, then $S=4$ and M^{n} is locally isometric to the complex projective 2 -space $P^{2}(4 / 3)$ with constant holomorphic sectional curvature $4 / 3$ or the product $S^{2}(1 / \sqrt{2}) \times$ $S^{2}(1 / \sqrt{2})$ of two 2 -spheres, where we denote the radius of spheres in the parentheses. Moreover, we obtain that if $S=n^{2} / 4$ and that if $S=n>4$, then M^{n} is locally isometric to $S^{m}(\sqrt{m / n}) \times S^{n-m}(\sqrt{n-m / n})$.

Let $C P^{n}(c)$ be an n-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature $c(>0)$ and M^{n} be a totally real n-submanifold isometrically immersed in $C P^{n}(c)$. Then totally umbilical submanifolds, if there exists, are the simplest submanifolds next to totally geodesic submanifolds in a Riemannian manifold. However, it was proved in [2] that a complex space form of complex dimension ≥ 2 adimits no totally umbilical, totally real submanifolds except the totally geodesic ones. According to [1], a totally real H-umbilical n-submanifold of a Kaehler manifold \bar{M}_{n} which is introduced as the simplest totally real submanifolds next to the totally geodesic ones in complex space forms is a non-totally geodesic totally real submanifold whose second fundamental form takes the following simple form:

$$
\begin{aligned}
& h\left(\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu J e_{1},\right. \\
& h\left(e_{1}, e_{j}\right)=\mu J e_{j}, \quad h\left(e_{j}, e_{k}\right)=0, \quad j \neq k, j, k=2, \ldots, n
\end{aligned}
$$

[^0]for some suitable functions λ and μ with respect to some suitable orthonormal local frame field, where J is the complex structure of \bar{M}_{n} and also except some exceptional classes, their totally real H-umbilical n-submanifolds of complex projective spaces or of complex hyperbolic spaces are obtained from Legendre curves via Hopf's fibration in some nature ways. On the othe hand, it is given by O'Neill ([7]) the notion of an isotropic submanifolds of a Riemannian manifold which can be considered as a generalization of the totally geodesic submanifolds. With isotropic totally real n-submanifolds M^{n} of a complex Kaehler manifold \bar{M}_{n} Montiel and Urbano ([5]) proved: If $n \geq 3$ and M^{n} is minimal, then either M^{n} is totally geodesic or $n=5,8,14$ or 26

The purpose of this paper is to prove the following:
Theorem. Let M^{n} be a totally real, minimal submanifold in $C P^{n}(c)$ which has at most two principal curvatures in the direction of any normal. Then if M^{n} is not totally geodesic, then M^{n} is parallel ($n \geq 4$), or H-umbilical minimal surface in $C P^{2}(c)$. In the former case, if n is even (resp. odd), then M^{n} is isotropic (resp. M^{n} does not exist). Hence M^{n} is Einstein and is locally congruent to the following : $S U(3), n=8 ; S U(6) / S_{p}(3), n=14$ or $E_{6} / F_{4}, n=26$.

2. Preliminaries

Let M be an isometrically immersed in an $(n+p)$-dimensional Riemannian manifold \bar{M}. We denote by g the metric of \bar{M} as well as the one induced on M. Let ∇ (resp. $\bar{\nabla}$) denote the covariant differentiation in M (resp. \bar{M}), and D the covariant differentiation in the normal bundle. We denote by h and A_{ξ} the second fundamental form of the immersion and the Weingarten endomorphism associated to a normal vector ξ, respectively. If ξ_{1}, \ldots, ξ_{p} are now orthonormal normal vector fields in a neighborhood U of x, then they determine normal connection forms $s_{\alpha \beta}$ in U by

$$
D_{X} \xi_{\alpha}=\sum_{\beta} s_{\alpha \beta}(X) \xi_{\beta}, \quad s_{\alpha \beta}+s_{\beta \alpha}=0
$$

for $X \in T_{x} M$, where $T_{x} M$ denotes the tangent space of M at x. Let X and Y be tangent to M and ξ_{1}, \ldots, ξ_{p} orthonormal normal vector fields. Then we have the following relationships (in this paper Greek indices run from 1 to p):

$$
\begin{align*}
\left(\nabla_{X} A_{\alpha}\right) Y-\sum_{\beta} s_{\alpha \beta}(X) A_{\beta} Y= & \left(\nabla_{Y} A_{\alpha}\right) X-\sum_{\beta} s_{\alpha \beta}(Y) A_{\beta} X \tag{1}\\
& - \text { Codazzi equation }
\end{align*}
$$

Let ∇^{*} denote the sum of the tangential and the normal connections. ∇^{*} is the connection in the Whitney sum of the tangent bundle of M and the normal bundle of M induced by ∇ and D. Then we have

$$
\begin{gather*}
\nabla_{X}^{*} A_{\alpha}=\nabla_{X} A_{\alpha}-\sum_{\beta} s_{\alpha \beta}(X) A_{\beta} \tag{2}\\
\left(\nabla_{X}^{*} A_{\alpha}\right) Y=\left(\nabla_{Y}^{*} A_{\alpha}\right) X \tag{3}
\end{gather*}
$$

We say that M is λ-isotropic provided that $|h(v, v)|=\lambda$ for all unit vector v in M. And we call M an totally real submanifold of a Kaehler manifold \bar{M} if M admits an isometric immersion into \bar{M} such that for all $x, J\left(T_{x} M\right) \subset T_{x}^{\perp} M$, where $T_{x}^{\perp} M$ denotes the normal space at x and J the complex structure of \bar{M}.

Definition. For $x \in M$, the first normal space, $N_{1}(x)$, is the orthogonal complement in $T_{x}^{\perp} M$ of the set

$$
N_{0}(x)=\left\{\xi \in T_{x}^{\perp} M \mid A_{\xi}=0\right\} .
$$

We define a new inner product, \langle,$\rangle on N_{1}(x)$ ([4]) by

$$
\langle\xi, \eta\rangle=\operatorname{trace} A_{\xi} A \eta \text { for } \xi, \eta \in N_{1}(x) .
$$

One easily checks that \langle,$\rangle is a positive definite inner product on N_{1}(x)$. The following lemmas can be proved in the case of totally real, minimal submanifolds in $C P^{n}(c)$ ([4]):

Lemma 1. Let M^{n} be a totally real, minimal submanifolds in $C P^{n}(c)$. If at each point x of M, the second fundamental form of M in the direction of any normal ξ has two distinct eigenvalues $\lambda(\xi) \neq \mu(\xi)$, then we have the following:
(i) The distribution $T_{\lambda(\xi)}=\left\{X \mid A_{\xi} X=\lambda(\xi) X\right\}$ is differentiable.
(ii) If $X \in T_{\lambda(\xi)}$, then $A_{\eta} X \in T_{\mu(\xi)}$ for any normal η which is orthogonal to ξ with respect to the inner product 〈, \rangle.
(iii) If ξ is a unit normal with respect to the Riemannian metric g of \bar{M} and $\operatorname{dim} T_{\lambda(\xi)}>1$, then $X \cdot \lambda(\xi)=0$ for $X \in T_{\lambda(\xi)}$. Thus if the multiplicities of $\lambda(\xi)$ and $\mu(\xi) \geq 2$, then $\lambda(\xi)=$ const. and $\mu(\xi)=$ const.

Let k dimension of $N_{1}(x)$ of a totally real submanifold M in $C P^{n}(c)$, where k is constant by means of (iii) of Lemma 1. Then:

Lemma 2. Let M^{n} be a totally real, minimal submanifold in $C P^{n}(c)$ which has at most two principal curvatures (If exactly two are distinct, then we assume
those multiplicities ≥ 2) in the direction of any normal. Then $\nabla^{*} A_{\alpha}=0$ for $1 \leq \alpha \leq k$.

The following lemma also holds ([3]):

Lemma 3. Let M be a totally real, minimal submanifold in $C P^{n}(c)$. If M is λ-isotropic and $n \geq 3$, then M is Einstein so that λ is constant.

3. Proof of theorem

Let M be a totally real, minimal submanifold in $C P^{n}(c)$ which has at most two principal curvatures in the direction of any normal. At first, we suppose that if exactly two are distinct, then those multiplicities ≥ 2. Since M is totally real, it holds the same Codazzi equation of M as one of submanifolds of a Riemannian manifold, and the normal curvature tensor R^{\perp} satisfies

$$
R^{\perp}(X, Y) \xi=h\left(X, A_{\xi} Y\right)-h\left(Y, A_{\xi} X\right)+\frac{c}{4}\{g(J Y, \xi) J X-g(J X, \xi) J Y\}
$$

Let k the dimension of $N_{1}(x)$. From Lemma 2 we, at first, see that the second fundamental form $A_{\alpha}, \xi_{\alpha} \in N_{1}(x)$, is parallel. Assume that $\gamma>k$. Then $A_{\gamma}=0$ on $\quad M, \quad \nabla A_{\gamma}=0 \quad$ and $\left[A_{\gamma}, A_{\beta}\right]=0, \quad \gamma \neq \beta, \quad 1 \leq \beta \leq n$. Thus $R^{\perp}(X, Y) \xi_{\gamma}=$ $c / 4\left\{g\left(J Y, \xi_{\gamma}\right) J X-g\left(J X, \xi_{\gamma}\right) J Y\right\}$. Therefore for any tangent vector X orthogonal to $J \xi_{\gamma}$ the normal connection form $s_{\gamma \beta}$ satisfies

$$
s_{\gamma \beta}(X)=0, \quad \beta \neq \gamma
$$

By Codazzi equation

$$
\begin{aligned}
0 & =\left(\nabla_{X} A_{\gamma}\right) J \xi_{\gamma}-\sum s_{\gamma \beta}(X) A_{\beta} J \xi_{\gamma} \\
& =\left(\nabla_{J \xi_{\gamma}} A_{\gamma}\right) X-\sum s_{\gamma \beta}\left(J \xi_{\gamma}\right) A_{\beta} X
\end{aligned}
$$

Hence,

$$
\sum_{\beta=1}^{k} s_{\gamma \beta}\left(J \xi_{\gamma}\right) A_{\beta} X=0
$$

From (ii) of Lemma 1 and the assumption of the multiplicity we obtain

$$
s_{\gamma \beta}\left(J \xi_{\gamma}\right)=0, \quad 1 \leq \beta \leq k
$$

Thus A_{γ} is parallel. Therefore we see that the second fundamental form of M is parallel. From (ii) of Lemma 1 we can choose a normal basis ξ_{1}, \ldots, ξ_{k} for
$N_{1}(x)$ which are orthogonal with respect to \langle,$\rangle and unit with respect to the$ Riemannian metric g of \bar{M} so that

$$
A_{\alpha}=\left(\begin{array}{cc}
\lambda_{\alpha} I_{p} & 0 \\
0 & \mu_{\alpha} I_{n-p}
\end{array}\right), \quad A_{\beta}=\left(\begin{array}{cc}
0 & B \\
{ }^{t} B & 0
\end{array}\right), \quad \beta \neq \alpha
$$

where I_{p} (resp. I_{n-p}) is a $p \times p$ (resp. an $\left.(n-p) \times(n-p)\right)$ identity matrix.
Now, we define f by $f(v)=|h(v, v)|^{2}$. Let v be any unit vector in $T_{x} M$ which satisfies $f(v) \neq 0$. We choose a normal basis $\left\{\xi_{1}=(h(v, v) /|h(v, v)|), \xi_{2}, \ldots, \xi_{n}\right\}$ at x such that $\xi_{1}, \ldots, \xi_{n-1}$ and ξ_{n} are unit with respect to the Riemannian metric of \bar{M} and mutually orthogonal with respect to \langle,$\rangle .$

Then if n is even, then

$$
A_{1}=\left(\begin{array}{cc}
|h(v, v)| I_{n / 2} & 0 \\
0 & -|h(v, v)| I_{n / 2}
\end{array}\right), \quad A_{\beta}=\left(\begin{array}{cc}
0 & C \\
{ }^{t} C & 0
\end{array}\right), \quad \beta \neq 1
$$

Thus we have

$$
f\left(e_{1}\right)=\cdots=f\left(e_{n}\right)
$$

for an orthonormal basis $\left\{v=e_{1}, \ldots, e_{n}\right\}$ of $T_{x} M$ which diagonalizes the matrix A_{1}. Then we see that for any orthonormal vectors u, v

$$
g(h(v, v), h(v, u))=0 .
$$

Hence M is isotropic (for example, see [3]). From Lemma 3 we see that M is Einstein. By [6] we obtain the conclusions.

On the other hand, if n is odd, then the equation

$$
\left|\lambda I_{n}-A_{\beta}\right|=0, \beta \neq 1
$$

has the solution 0 . Thus $A_{\beta}=0$.
Then,

$$
A_{1}=\left(\begin{array}{cc}
|h(v, v)| I_{p} & 0 \\
0 & -\frac{p}{n-p}|h(v, v)| I_{n-p}
\end{array}\right), \quad 2 \leq p<n-p
$$

Note that $k=1=$ constant. Then we can choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ such that

$$
A_{J e_{1}}=\left(\begin{array}{cc}
\lambda I_{p} & 0 \\
0 & -\frac{p}{n-p} \lambda I_{n-p}
\end{array}\right), \quad 2 \leq p<n-p, \quad A_{J_{\beta}}=0, \quad \beta \neq 1
$$

Since M^{n} then is totally real, we see that $\lambda=g\left(A_{J_{e_{1}}}, e_{2}, e_{2}\right)=g\left(h\left(e_{2}, e_{2}\right), J e_{1}\right)=$ $g\left(h\left(e_{1}, e_{2}\right), J e_{2}\right)=0$.

Next, if at least one, say, A_{α} of $A_{\beta}, 1 \leq \beta \leq n$ has a eigenvalue λ with the multiplicity 1 , then

$$
A_{\alpha}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu I_{n-1}
\end{array}\right), \quad A_{\beta}=\left(\begin{array}{cc}
0 & D \\
t D & 0
\end{array}\right), \quad \beta \neq \alpha,
$$

where $D=\left(a_{2}, \ldots, a_{n}\right)$. If $n \geq 3$, then

$$
\left|\lambda I_{n}-A_{\beta}\right|=0
$$

has 0 -solution. Hence $A_{\beta}=0$. Then by the similar way with the above we see that M is totally geodesic. It remains the case of $n=2$. Then from Lemma 1 we see that M is H-umbilical minimal surface. This proves Theorem,

References

[1] Chen, B. Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99 (1997), 69-108.
[2] Chen, B. Y. and Ogiue, K., Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225-266
[3] Itoh, T. and Ogiue, K., Isotropic immersions and veronese manifolds, Trans. Amer. Math. Soc. 209 (1975), 109-117
[4] Matsuyama, Y., Minimal submanifolds in S^{N} and R^{N}, Math. Z. 175 (1980), 275-282
[5] Montiel, S. and Urbano, F., Isotropic totally real submanifolds, Math. Z. 1990 (1988), 55-60
[6] Naitoh, H., Totally real parallel submanifolds of $P^{n}(c)$, Tokyo J. Math. 4 (1981), 279-306
[7] O'Neill, B, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 905-915
Department of Mathematics Chuo University
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

[^0]: Received April 10, 1997
 Revised August 8, 1997
 This was supported financially by Chuo Univ. as one of the '96-'97 Research Projects for Promotion of Advanced Research at Graduate School.

