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\S 0. Introduction

The purpose of this paper is to give sequent calculi for some 3-valued
(propositional) logics in a rather uniform way. Three-valued logic is an old
subject that has recently been taken a revived interest in, for its own sake as well
as for its potential applications in several areas of computer science.

After general preliminaries in the first section, we deal in \S 2 with the 3-valued
weakly-intuitionistic logic $I^{1}$ introduced in Sette-Camielli [15]. This logic has one
designated value, and its connectives have simple truth-value functions. Sequent
calculi for similar logics have been given by Miyama [9], in which Gill’s 3-valued
predicate logic studied in [5] is concemed with, and by Avron [1], in which
Kleene’s strong 3-valued logic (Kleene [7, \S 64]) is handled.

In \S 3, Sette’s 3-valued paraconsistent logic $P^{1}$ (Sette [14]) is dealt with, which
had been introduced in da Costa [3] for underivability proof. This logic has two
designated values. Avron [1] has given a sequent calculus for such a logic too,
precisely, the 3-valued logic of D’Ottaviano-da Costa [4].

Meanwhile, Wro\’{n}ski’s 3-valued logic constitutes the subject of \S 4. This logic
has one designated value, but the tmth-value function of its single connective
is rather complicated. Wro\’{n}ski showed in [17] that this logic forms a negative
answer to Bloom’s problem posed in [2], which asks whether the consequence
operation determined by a finite matrix is always finitely based. We will give a
sequent calculus for this logic, but this does not conflict with the above result; for,
not all the beginning sequents of our calculus are the ones with single succedent
formula (cf. 4.2). Meanwhile, this logic has been proved to be finitely axio-
matizable in Wojtylak [16]. (According to Palasi\’{n}ska [12], the latter had been
proved by Rautenberg [13, p. 116], but unfortunately I could not consult
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Rautenberg’s book.) We will give sequent calculi, as well, for the two logics
which have been proved not to be finitely axiomatizable in Palasi\’{n}ska [12].

Lastly, we constmct a sequent calculus for the 3-valued conditional logic
introduced in Guzm\’an [6], which had been studied in Nishimura-Ohya [10], [11]

under the name of McCarthy’s 3-valued logic. Designated values are not specified
in this logic, but the truth-values are linearly ordered. Similar calculi are given
in Nishimura-Ohya [10] for Kleene’s strong 3-valued logic and Lukasiewicz’
3-valued logic (cf. Kleene [7, \S 64]), though both of these have one designated
value originally.

\S 1. General framework

1.1. Three-valued logic. We use the set $T=\{t,u,f\}$ as the common tmth-
values set of the 3-valued logics considered in this paper. The truth values $t,$ $u$ and
$f$ usually denote “true”, “undefined” and “false”, respectively; but their proper
meanings depend on the logics.

To determine a 3-valued logic, it is necessary to fix the connectives together
with their tmth-value functions, which are mappings on $T$ having the same arity
as the corresponding connectives. Formulas are constmcted from propositional
variables by the help of connectives, and are denoted by $A,$ $B,$ $C,$ $D$ with or without
subscripts. We mean by the degree of a formula the number of occurrences of
connectives in it. A sequent (with multiple succedent formulas) is an expression
having the form $A_{1},$ $\ldots,A_{m}\rightarrow B_{1},$

$\ldots,$
$B_{n}$ , where $m,n\geq 0$ . If $m\geq 0$ and $n=1$

in particular, this expression forms a sequent with single succedent formula; if
$m=n=0$ on the other hand, this sequent is empty. In relation to sequents, finite
(possible empty) sequences of formulas with separating commas included are
denoted by $\Gamma,$ $\Theta,$ $\Delta,$

$\Lambda$ .
A valuation is a mapping of the set of propositional variables into the truth-

values set $T$. A valuation $v$ is extended uniquely to the mapping of the set of
formulas into $T$ in accordance with the tmth-value functions of the connectives,
and thus-extended mapping is also designated by $v$ . Validity of sequents will be
defined for each logic individually, according to the intended meaning of the
truth-values.

1.2. Sequent calculus. A sequent calculus consists of beginning sequents
and rules of inference. Every sequent calculus with which we deal in this paper
has any sequent of the form $A\rightarrow A$ as a beginning one. Meanwhile, rules of
inference are composed of stmctural ones and logical ones; and each of our
calculus has the following stmctural rules in common:
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$\Gamma\rightarrow\Theta$
$\underline{\Gamma\rightarrow\Theta}$

.(Thinning)
$\overline{A,\Gamma\rightarrow\Theta}$

’
$\Gamma\rightarrow\Theta,$ $A$

$A,$ $A,$ $\Gamma\rightarrow\Theta$ $\Gamma\rightarrow\Theta,A,A$

(Contraction)
$\overline{A,\Gamma\rightarrow\Theta}$ $\overline{\Gamma\rightarrow\Theta,A}$

.

(Interchange) $\frac{\Delta,A,B,\Gamma\rightarrow\Theta}{\Delta,B,A,\Gamma\rightarrow\Theta}$ $\frac{\Gamma\rightarrow\Theta,A,B,\Lambda}{\Gamma\rightarrow\Theta,B,A,\Lambda}$

(Cut) $\frac{\Gamma\rightarrow\Theta,AA,\Delta\rightarrow\Lambda}{\Gamma,\Delta\rightarrow\Theta,\Lambda}$

Thus, our sequent calculi are determined by the choice of the additional
beginning sequents and the logical mles of inference.

DEFINITION 1.1. Let $G$ be a sequent calculus. A sequent is provable [provable

without cut] in $G$, if it is obtained from beginning sequents by applying mles of
inference [mles of inference except (Cut)] of $G$.

Next, we introduce the notion of a complete consistent system from Maehara
[8] for our completeness proofs.

DEFINITION 1.2. Let $G$ be a sequent calculus. A set $\alpha$ of formulas of $G$ forms
a complete consistent system on $G$, if for every finite sequence $\Gamma$ of elements of $\alpha$

and every finite sequence $\Theta$ of non-elements of $\alpha$ , the sequent $\Gamma\rightarrow\Theta$ is
unprovable in $G$.

A unique valuation will be correlated with a given complete consistent
system, for each sequent calculus individually.

By enumerating all the formulas and applying stmctural mles, we have the
following lemma.

LEMMA 1.1 (Maehara [8, Theorem 2]). Let $G$ be a sequent calculus. If the
sequent $A_{1},$

$\ldots,$
$A_{m}\rightarrow B_{1},$

$\ldots,$
$B_{n}$ is unprovable in $G$, then there is a complete

consistent system $\alpha$ on $G$ such that $A_{1},$
$\ldots,$

$ A_{m}\in\alpha$ but $B_{1},$
$\ldots,$

$ B_{n}\not\in\alpha$ .

1.3. Calculi beyond our scope. Avron [1] summarized and introduced
varied notions of validity of sequents, and two of them break our regulation. The
first is this; namely, the sequent $\Gamma\rightarrow\Theta$ is called to be valid iff for every
valuation, either one of the formulas in $\Theta$ gets $t$, or one of the formulas in $\Gamma$ gets
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$f$, or else at least two (occurrences of) formulas in $\Gamma$ or $\Theta$ get $u$ . According to this
definition, the class of valid sequents is not closed under (Contraction).

By his second definition that violates our $mle$, the sequent $\Gamma\rightarrow\Theta$ is valid iff
for every valuation, either one of the formulas in $\Theta$ gets $t$, or one of the formulas
in $\Gamma$ gets $f$, or else the sequent is not empty and all its formulas get $u$ . Then
(Thinning) does not preserve validity of sequents.

Nishimura-Ohya [11] too investigated, among others, a sequent calculus lying
out of our scope (cf. 5.1).

\S 2. The three-valued weakly-intuitiomistic logic $I^{1}$

2.1. Validity. We are concemed in this section with the 3-valued weakly-
intuitionistic logic $I^{1}$ introduced in Sette-Camielli [15]. This logic has $\rceil$ (negation)
and $\supset$ (implication) as the connectives. The tmth-value functions of these are
given by the following tables:

So for a valuation $v$, if $v(A)=t$ and $v(B)=u$, then $v(\rceil A)=f,$ $v(A\supset B)=f$,
and $ v(B\supset A)=\iota$, for example.

This logic has $t$ as the only designated value. Correspondingly, we define
validity of sequents as follows.

DEFINITION 2.1. The sequent $A_{1},$
$\ldots,$

$A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is valid in $I^{1}$ , if
$\{v(A_{1}), \ldots, v(A_{m})\}\subset\{t\}$ implies $\{v(B_{1}), \ldots, v(B_{n})\}\cap\{t\}\neq\emptyset$ for every valuation
$v$ .

2.2. The system $GI^{1}$ . We let the Gentzen system $GI^{1}$ for $I^{1}$ have the
additional beginning sequents (1) $-(8)$ below and no logical mles of inference:

(1) $\rceil A,$ $ A\rightarrow$ (2) $\rightarrow\rceil A,$ $\rceil\rceil A$ .
(3) $A\supset B,$ $A\rightarrow B$ . (4) $\rightarrow A,$ $A\supset B$ .

(5) $B\rightarrow A\supset B$ . (6) $\rceil(A\supset B)\rightarrow A$ .

(7) $\rceil(A\supset B),$ $ B\rightarrow$ . (8) $A\rightarrow B,$ $\rceil(A\supset B)$ .
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2.3. Completeness. We will prove the following completeness theorem in
this subsection.

THEOREM 2.1. A sequent is valid in $I^{1}$ , if and only if it is provable in $GI^{1}$ .

Since the if-part is clear, we confine ourselves to the proof of the only-if-part.
The following lemma is effective in the proof of Lemma 2.3.

LEMMA 2.2. Let $\alpha$ be a complete consistent system on $GI^{1}$ .
(a) $\rceil\rceil A\in\alpha$, iff $\rceil A\not\in\alpha$ .
(b) $ A\supset B\in\alpha$ , iff either $ A\not\in\alpha$ or $ B\in\alpha$ .
(c) $\rceil(A\supset B)\in\alpha$ , iff $ A\in\alpha$ but $ B\not\in\alpha$ .

PROOF. (a) Since the sequent $\rceil\rceil A,$ $\rceil A\rightarrow is$ a beginning sequent of the form
(1) and so is provable, we have the only-if-part. The if-part holds by (2).

(b) Similar to (a), using (3), (4) and (5).
(c) Similar to (a), using (6), (7) and (8). $\blacksquare$

In view of the tmth-value function of $\rceil$ and the fact that $t$ is the only
designated value, we give the following definition.

DmNITION 2.2. Let $\alpha$ be a complete consistent system on $GI^{1}$ . The val-
uation correlated with $\alpha$ is the valuation $v$ such that for every propositional
variable $p$ ,

$v(p)=\left\{\begin{array}{l}l, ifp\in\alpha.\cdot\\ f, if\rceil p\in\alpha.\\u, otherwise.\end{array}\right.$

Since the sequent $\rceil p,$ $p\rightarrow is$ a beginning sequent of the form (1) and so
is provable, it is not the case that both $\rceil p\in\alpha$ and $ p\in\alpha$ hold. So, with each
complete consistent system, a unique valuation is correlated certainly.

The following forms the cmcial lemma for our proof of the only-if-part of
Theorem 2.1.

LEMMA 2.3. Let $\alpha$ be a complete consistent system on $GI^{1}$ , and $v$ the valuation
correlated with $\alpha$ .

(a) $v(C)=t$ iff $ C\in\alpha$ .
(b) $v(C)=f$ $\iota ff$ $\rceil C\in\alpha$ .
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PROOF. We prove (a) and (b) simultaneously by induction on the degree of $C$.

CASE 1: $C$ is a propositional variable. Clear by the assumption.

CASE 2: $C$ is $\rceil A$ . $(a)v(\rceil A)=t$, iff $v(\Lambda)=f$, iff $\rceil A\in\alpha$ by the hypothesis of
induction. (b) $v(\rceil A)=f$ , iff $v(A)\neq f$ , iff $\rceil A\not\in\alpha$ by the hypothesis of induction, iff
$\rceil\rceil A\in\alpha$ by Lemma 2.2 (a).

CASE 3: $C$ is $A\supset B$ . Similar to Case 2, using Lemma 2.2 (b) and (c). $\blacksquare$

PROOF OF Tffl OmY-lF-PART OF THEOREM 2.1. To prove the contraposition,
suppose that the sequent $A_{1},$ $\ldots,A_{m}\rightarrow B_{1},$

$\ldots,$
$B_{n}$ is unprovable in $GI^{1}$ . By

Lemma 1.1, there is a complete consistent system $\alpha$ on $GI^{1}$ such that $A_{1},$ $\ldots,A_{m}\in$

$\alpha$ but $B_{1},$ $\ldots,B_{n}\not\in\alpha$ . Let $v$ be the valuation correlated with $\alpha$ . Then by Lemma 2.3
(a), $\{v(A_{1}), \ldots, v(A_{m})\}\subset\{t\}$ but $\{v(B_{1}), \ldots, v(B_{n})\}\cap\{t\}=\emptyset$ . So $A_{1},$ $\ldots,A_{m}\rightarrow$

$B_{1},$ $\ldots,B_{n}$ is not valid in $I^{1}$ . $\blacksquare$

2.4. The cut-free system $\overline{G}I^{1}$ . We introduce another Gentzen system $\overline{G}I^{1}$

for $I^{1}$ which enjoys the cut-elimination property. The system $\overline{G}I^{1}$ has the fol-
lowing logical mles of inferenoe and no additional beginning sequents:

$(\rceil\rightarrow)$ $\frac{\Gamma\rightarrow\Theta,A}{\rceil A,\Gamma\rightarrow\Theta}$

$\rceil A,$ $\Gamma\rightarrow\Theta$

$(\rightarrow\rceil\rceil)$

$\overline{\Gamma\rightarrow\Theta,\rceil\rceil A}$

$(\supset\rightarrow)$ $\frac{\Gamma\rightarrow\Theta,AB,\Gamma\rightarrow\Theta}{A\supset B,\Gamma\rightarrow\Theta}$

$(\rightarrow\supset)$ $\frac{A,\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta,A\supset B\prime}$ $\frac{\Gamma\rightarrow\Theta,B}{\Gamma\rightarrow\Theta,A\supset B}$

$(\rceil\supset\rightarrow)$ $\frac{A,\Gamma\rightarrow\Theta}{\rceil(A\supset B),\Gamma\rightarrow\Theta}$ $\frac{\Gamma\rightarrow\Theta,B}{\rceil(A\supset B),\Gamma\rightarrow\Theta}$

$(\rightarrow 1\supset)$ $\frac{\Gamma\rightarrow\Theta,AB,\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta,\rceil(A\supset B)}$

It is easily seen that $\overline{G}I^{1}$ has the same provable sequents as $GI^{1}$ . Moreover,
by mimicking the familiar proof, the mle (Cut) is eliminable from the proof-
figures in $\overline{G}I^{1}$ . Hence we have the following theorem.
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THEOREM 2.4. A sequent is valid in $I^{1},$ $lf$ and only if it is provable in $\overline{G}I^{1},$
$\iota f$

and only if it is provable without cut in $\overline{G}I^{1}$ .

\S 3. The three-valued paraconsistent logic $P^{1}$

3.1. Validity. In this section, the 3-valued paraconsistent logic $P^{1}$ introduced
in Sette [14] is concemed with. The connectives of $P^{1}$ are $\rceil$ (negation) as well
as $\supset$ (implication); and their tmth-value functions are given by the following
tables:

This logic has both $t$ and $u$ as the designated values, and so the definition of
validity mns as follows.

DEFINITION 3.1. The sequent $A_{1},$
$\ldots,$

$A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is valid in $P^{1}$ , if
$\{v(A_{1}), \ldots, v(A_{m})\}\subset\{t, u\}$ implies $\{v(B_{1}), \ldots, v(B_{n})\}\cap\{t, u\}\neq\emptyset$ for every val-
uation $v$ .

Though they do not look so at first glance, two logics $P^{1}$ and $I^{1}$ are closely
similar as a matter of fact. Namely, both have the following properties for every
valuation $v$ : $v(\rceil\rceil A)$ is designated iff $v(\rceil A)$ is not; $v(A\supset B)$ is designated iff, either
$v(A)$ is not or $v(B)$ is; and $v(\rceil(A\supset B))$ is designated iff, $v(A)$ is but $v(B)$ is not.
This similarity makes the sequent calculi for them almost the same.

3.2. The system $GP^{1}$ . The Gentzen system $GP^{1}$ for $P^{1}$ differs from the
system $GI^{1}$ (cf. 2.2) only on the point that the former has (1) and (2) below as
additional beginning sequents instead of (1) and (2):

(1) $\rightarrow A,$ $\rceil A$ . (2) $\rceil\rceil A,$ $\rceil A\rightarrow$ .

3.3. Completeness. We have the following theorem.

THEOREM 3.1. A sequent is valid in $P^{1}$ , if and only if it is provable in
$GP^{1}$ .
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The if-part of this theorem is clear, too. On the other hand, the only-if-part is
proved similarly to that part of Theorem 2.1 by the help of the following lemmas
and definition.

LEMMA 3.2. Let $\alpha$ be a complete consistent system on $GP^{1}$ .
(a) $\rceil\rceil A\in\alpha$ , iff $\rceil A\not\in\alpha$ .
(b) $ A\supset B\in\alpha$ , iff either $ A\not\in\alpha$ or $ B\in\alpha$ .
(c) $\rceil(A\supset B)\in\alpha$ , iff $ A\in\alpha$ but $ B\not\in\alpha$ .

DEFINITION 3.2. Let $\alpha$ be a complete consistent system on $GP^{1}$ . The valua-
tion correlated with $\alpha$ is the valuation $v$ such that for every propositional
variable $p$ ,

$v(p)=\left\{\begin{array}{l}t, if\rceil p\not\in\alpha.\\f, ifp\not\in\alpha.\\u, otherwise.\end{array}\right.$

LEMMA 3.3. Let $\alpha$ be a complete consistent system on $GP^{1}$ , and $v$ the
valuation correlated with $\alpha$.

(a) $v(C)=t$ iff $\rceil C\not\in\alpha$ .
(b) $v(C)=f$ iff $ C\not\in\alpha$ .

3.4. The cut-free system $\overline{G}P^{1}$ . We have a system for $P^{1}$ , say $\overline{G}P^{1}$ , enjoying
the cut-elimination property, too. The systems $\overline{G}P^{1}$ and $\overline{G}I^{1}$ (cf. 2.4) differ only
on the point that the former has $(\rightarrow\rceil)$ and $(\rceil\rceil\rightarrow)$ below as logical mles instead
of $(\rceil\rightarrow)$ and $(\rightarrow\rceil\rceil)$ :

$(\rightarrow\rceil)$ $\frac{A,\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta,\rceil A}$

$\Gamma\rightarrow\Theta,\rceil A$

$(\rceil\rceil\rightarrow)$

$\overline{\rceil\rceil A,\Gamma\rightarrow\Theta}$

Similarly to the case of $\overline{G}I^{1}$ , we have the following theorem.

THEOREM 3.4. A sequent is valid in $P^{1},$ $\iota f$ and only $lf$ it is provable in $\overline{G}P^{1}$ ,
$lf$ and only $lf$ it is provable without cut in $\overline{G}P^{1}$ .
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\S 4. Wro\’{n}ski’s three-valued logic and Palasi\’{n}ska’s ones

4.1. Validity. The logic which we are to study in 4.1-4.3 is Wro\’{n}ski’s
3-valued logic, say $W$, introduced in [17]. It $has*as$ the only (binary) connective.
The tmth-value function of $*is$ given by the following table:

This logic has $t$ as the only designated value, and so has the following
definition similarly to the logic $I^{1}$ .

DfflmITIoN 4.1. The sequent $A_{1},$ $\ldots,A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is valid in $W$, if
$\{v(A_{1}), \ldots, v(A_{m})\}\subset\{\iota\}$ implies $\{v(B_{1}), \ldots, v(B_{n})\}\cap\{\iota\}\neq\emptyset$ for every valuation $v$ .

4.2. The system $GW$. The system $GW$ for $W$ has the additional beginning
sequents (9) $-(13)$ below and no logical mles of inference:

(9) $\rightarrow C*(A*B)$ . (10) $\rightarrow C*A,$ $A*B$ .

(11) $A\rightarrow A*B$. (12) $B\rightarrow A*B$ .

(13) $C*A,$ $A*B\rightarrow A,$ $C*B$ .

4.3. Completeness. We obtain the following theorem.

THEOREM 4.1. A sequent is valid in $W,$ $lf$ and only $lf$ it is provable in $GW$.

The if-part is clear in this theorem too, and so we devote ourselves to the
proof of the converse.

The following lemma is complicated, but after Lemma 4.3, it merely claims
that for any valuation $v:v(A*B)=t$ iff, either $v(A)=t$, or $v(A)=u$, or else
$v(B)\neq u$; and $v(A*B)\neq u$ .

LEMMA 4.2. Let $\alpha$ be a complete consistent system on $GW$.
(a) $ A*B\in\alpha$ , iff either $ A\in\alpha$ , or $ C*A\not\in\alpha$ for some formula $C$, or else

$ C*B\in\alpha$ for every formula $C$.
(b) $ C*(A*B)\in\alpha$ for every formula $C$.
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$PR\infty F$ . The only-if-part of (a) follows from (13), the if-part from (11) and
(10); while (b) from (9). $\blacksquare$

DEFINITION 4.2. Let $\alpha$ be a complete consistent system on $GW$. The valua-
tion correlated with $\alpha$ is the valuation $v$ such that for every propositional
variable $p$ ,

$v(p)=1_{f}^{t}u$, $ifD*p\not\in.\alpha ifp\in\alpha;otherwise$ for some formula $D$ ;

For every formula $D$ , since $p\rightarrow D*p$ is a beginning sequent of the form (12)

and so is provable, $ p\in\alpha$ implies $ D*p\in\alpha$ . So, a unique valuation is correlated
with each complete consistent system on $GW$.

LEMMA 4.3. Let $\alpha$ be a complete consistent system on $GW$, and $v$ the
valuation correlated with $\alpha$ .

(a) $v(C)=t$ , iff $ C\in\alpha$ .
(b) $v(C)=u$ , iff $ D*C\not\in\alpha$ for some formula $D$ .

PROOF. By simultaneous induction on the degree of $C$, utilizing Lemma 4.2.
$\blacksquare$

Now, the only-if-part of Theorem 4.1 can be proved quite similarly to the
same part of Theorem 2.1.

The author could not constmct a cut-free calculus for $W$.

4.4. Palasmska’s 3-valued logics. In this paragraph, we are concemed with
the two logics studied in Palasi\’{n}ska [12]. These differ from Wro\’{n}ski’s logic $W$

only in that the tmth-value functions of the connective * are given by the
following tables, respectively:
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First, consider the logic with the left table. By noting for any valuation $v$ ,
that $v(A*B)=t$ iff either $v(A)\neq t$ or $v(B)\neq u$ , and that $v(A*B)\neq u$ , this logic
is axiomatized as the sequent calculus with the additional beginning sequents (9),
(12), and (14), (15) below and with no logical mles of inference:

(14) $\rightarrow A,$ $A*B$ . (15) $A*B,$ $A\rightarrow C*B$ .

Next, mention the logic with the right table in tum. In this logic, $v(A*B)=t$
iff either $v(A)\neq t$ and $v(A)\neq u$, or $v(B)\neq u$ ; and $v(A*B)\neq u$ . So the sequent
calculus for this logic has the beginning sequents (9), (12), (15) and (16), (17)
below and no logical mles of inference:

(16) $A*B\rightarrow C*A,$ $D*B$ . (17) $A*A\rightarrow A,$ $A*B$ .

The proofs of these claims are similar to that for Theorem 4.1 and so are
omitted.

\S 5. The three-valued conditional logic

5.1. Validity. In this last section, we are concemed with the 3-valued
conditional logic, say $C$, introduced in Guzm\’an [6]. The connectives of $C$ are $\rceil$

(negation), $\wedge(conjunction)$ , and $\vee$ (disjunction); and their tmth-value functions
are given by the following tables:

Designated values are not specified in this logic, but the tmth-values are
linearly ordered as $f<u<t$ instead. In correspondence with this, validity of
sequents is defined as follows, where the minimum [the maximum] of the empty
set of tmth-values designates the maximum tmth-value $t$ [the minimum tmth-
value $f$ ], as usual.

DEFINITION 5.1. The sequent $A_{1},$ $\ldots,A_{m}\rightarrow B_{1},$ $\ldots,B_{n}$ is valid in $C$, if
$\min\{v(A_{1}), \ldots, v(A_{m})\}\leq\max\{v(B_{1}), \ldots, v(B_{n})\}$ for every valuation $v$ .

Guzman in [6] confined himself to handling only the sequents with single
succedent formula, and defined that, the sequent $A_{1},$ $\ldots,A_{m}\rightarrow B$ is valid if
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$\min\{v(A_{1}), \ldots, v(A_{m})\}\leq v(B)$ for every valuation $v$ . Thus, our definition forms a
natural extension of Guzm\’an’s to the sequents with multiple succedent formulas.
On the other hand, the sequent $A_{1},$

$\ldots,$
$A_{m}\rightarrow B_{1},$

$\ldots,$
$B_{n}$ had been defined in

Nishimura-Ohya [11] to be valid, if $v(A_{1}\wedge\cdots\wedge A_{m})\leq v(B_{1}\vee\cdots\vee B_{n})$ for every
valuation $v$ ; note that the tmth-value functions of $\wedge$ and $\vee$ are associative,
though not commutative. Since $\min\{v(A_{1}), \ldots, v(A_{m})\}\leq v(A_{1}\wedge\cdots\wedge A_{m})$ and
$v(B_{1}\vee\cdots\vee B_{n})\leq\max\{v(B_{1}), \ldots, v(B_{n})\}$ for every valuation $v$, any sequent
which is valid in Nishimura-Ohya’s sense is valid in our sense too. Meanwhile,
the converse does not hold in general; for, the sequent $q,$ $p\rightarrow p$ is valid in our
sense, but is not valid in Nishimura-Ohya’s sense, where $p$ and $q$ are mutually
distinct propositional variables. Moreover, validity of sequents in their sense is
not preserved by neither (Thinning) nor (Interchange); for, the sequents $p\rightarrow p$

and $p,$ $q\rightarrow p$ are valid, but $q,$ $p\rightarrow p$ is not.

5.2. The system $GC$. We let the Gentzen system $GC$ for $C$ have (18)$-(36)$

below as the additional beginning sequents and no logical mles of inference:

(18) $\rceil A,$ $A\rightarrow B,$ $\rceil B$ .

(19) $\rceil\rceil A\rightarrow A$ . (20) $A\rightarrow\rceil\rceil A$ .

(21) $A\wedge B\rightarrow A$ . (22) $A\wedge B\rightarrow\rceil A,$ $B$ .

(23) $A,$ $B\rightarrow A\wedge B$ . (24) $A,$ $\rceil A\rightarrow A\wedge B$ .

(25) $\rceil(A\wedge B)\rightarrow\rceil A,$ $\rceil B$ . (26) $\rceil(A\wedge B)\rightarrow A,$ $\rceil A$ .

(27) $\rceil A\rightarrow\rceil(A\wedge B)$ . (28) $A,$ $\rceil B\rightarrow\rceil(A\wedge B)$ .

(29) $A\vee B\rightarrow A$ , B. (30) $A\vee B\rightarrow A,$ $\rceil A$ .
(31) $A\rightarrow A\vee B.$ (32) $\rceil A,$ $B\rightarrow A\vee B$.

(33) $\rceil(A\vee B)\rightarrow\rceil A$ . (34) $\rceil(A\vee B)\rightarrow A,$ $\rceil B$ .

(35) $\rceil A,$ $\rceil B\rightarrow\rceil(A\vee B)$ . (36) $A,$ $\rceil A\rightarrow\rceil(A\vee B)$ .

5.3. Completeness. We have the following completeness theorem as well.

THEOREM 5.1. A sequent is valid in $C,$ $\iota f$ and only $\iota f$ it is provable in $GC$.

Again, the if-part of this theorem is clear. For the proof of the converse, we
use the following lemmas and definition; we omit the proof of the lemmas.
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LEMMA 5.2. Let $\alpha$ be a complete consistent system on $GC$.
(a) $\rceil A\in\alpha$ but $\rceil\rceil A\not\in\alpha$ , iff $\rceil A\in\alpha$ but $ A\not\in\alpha$ .
(b) $\rceil\rceil A\in\alpha$ but $\rceil A\not\in\alpha,$ lff $ A\in\alpha$ but $\rceil A\not\in\alpha$ .
(c) $ A\wedge B\in\alpha$ but $\rceil(A\wedge B)\not\in\alpha$ , iff $A,$ $ B\in\alpha$ but $\rceil A,$ $\rceil B\not\in\alpha$ .
(d) $\rceil(A\wedge B)\in\alpha$ but $ A\wedge B\not\in\alpha$ , iff either $A,$ $\rceil B\in\alpha$ but $\rceil A,$ $ B\not\in\alpha$ , or $\rceil A\in\alpha$

but $ A\not\in\alpha$ .
(e) $ A\vee B\in\alpha$ but $\rceil(A\vee B)\not\in\alpha,$ lff either $\rceil A,$ $ B\in\alpha$ but $A,$ $\rceil B\not\in\alpha$ , or $ A\in\alpha$ but

$\rceil A\not\in\alpha$ .
(f) 1 $(A\vee B)\in\alpha$ but $A\vee B\not\in\alpha,$ lff $\rceil A,$ $\rceil B\in\alpha$ but $A,$ $ B\not\in\alpha$ .

DEFINITION 5.2. Let $\alpha$ be a complete consistent system on $GC$. The valuation
correlated with $\alpha$ is the valuation $v$ such that for every propositional variable $p$ ,

$v(p)=\left\{\begin{array}{l}t, ifp\in\alpha but\rceil p\not\in\alpha,\\f, if\rceil p\in\alpha butp\not\in\alpha,\\u, otherwise.\end{array}\right.$

LEMMA 5.3. Let $\alpha$ be a complete consistent system on $GC$, and $v$ the valuation
correlated with $\alpha$ .

(a) $v(C)=t$, iff $ C\in\alpha$ but $\rceil C\not\in\alpha$ .
(b) $v(C)=f$, iff $\rceil C\in\alpha$ but $ C\not\in\alpha$ .

Now, we can prove the rest of Theorem 5.1.

PROOF OF THE OmY-lF-PART OF THEOREM 5.1. We suppose that the sequent
$A_{1},$

$\ldots$ , $A_{m}\rightarrow B_{1},$
$\ldots,$

$B_{n}$ is unprovable in $GC$. By Lemma 1.1, $A_{1},$
$\ldots$ , $ A_{m}\in\alpha$ but

$B_{1},$
$\ldots,$

$ B_{n}\not\in\alpha$ for some complete consistent system $\alpha$ on $GC$. Then, there is not
a couple of formulas $A$ and $B$ such that $\rceil A,$ $ A\in\alpha$ but $B,$ $\rceil B\not\in\alpha$, since (18) is a
beginning sequent and so is provable.

CASE 1: $\rceil A,$ $ A\in\alpha$ for no formula $A$ . For $i=1,$ $\ldots,m$ , since $ A_{i}\in\alpha$ , we have
$\rceil A_{i}\not\in\alpha$ , so $v(A_{i})=t$ by Lemma 5.3 (a). On the other hand, for $j=1,$

$\ldots,$
$n$ ,

since $ B_{j}\not\in\alpha$ , we have $v(B_{j})\neq t$ by the same lemma. Hence, it holds
that $\min\{v(A_{1}), \ldots, v(A_{m})\}=t>u\geq\max\{v(B_{1}), \ldots, v(B_{n})\}$ . So $A_{1},$ $\ldots,A_{m}\rightarrow$

$B_{1},$ $\ldots,B_{n}$ is not valid in $C$.

CASE 2: $B,$ $\rceil B\not\in\alpha$ for no formula $B$ . Similarly by Lemma 5.3 (b),
$\min\{v(A_{1}), \ldots, v(A_{m})\}\geq u>f=\max\{v(B_{1}), \ldots, v(B_{n})\}$ , and so $A_{1},$

$\ldots,$
$ A_{m}\rightarrow$

$B_{1},$
$\ldots,$

$B_{n}$ is not valid either. $\blacksquare$
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5.4. The cut-free system $\overline{G}C$ . Another system $\overline{G}C$ for $C$ is obtained from
$GC$ by replacing the additional beginning sequents (19)$-(36)$ with their natural
translation into logical mles of inference; for example, the translation of (21) and
(22) are

$\frac{A,\Gamma\rightarrow\Theta}{A\wedge B,\Gamma\rightarrow\Theta}$ and $\frac{\rceil A,\Gamma\rightarrow\Theta B,\Gamma\rightarrow\Theta}{A\wedge B,\Gamma\rightarrow\Theta}$

respectively. Clearly, $\overline{G}C$ and $GC$ have the same provable sequents. Besides, by
noting that the restriction of the additional beginning sequent (18) to the case
where both $A$ and $B$ are propositional variables causes no reduction in the
provable sequents, and by following the familiar proof, we can see the cut-
elimination property of $\overline{G}C$ . Hence we have the following theorem.

THEOREM 5.4. A sequent is valid in $C$, if and only $\iota f$ it is provable in $\overline{G}C,$ $\iota f$

and only $\iota f$ it is provable without cut in $\overline{G}C$ .

References

[1] Avron, A., Natural 3-valued logics–characterization and proof theory, J. Symbolic Logic 56
(1991), 276-294.

[2] Bloom, S. L., A representation theorem for the lattice of standard consequence operations,
Studia Logica 34 (1975), 235-237.

[3] da Costa, N. C. A., Calculs propositionnels pour les syst\‘emes formels inconsistants, C.R. Acad.
Sci. Paris SCr. A 257 (1963), 3790-3792.

[4] D’0ttaviano, I. M. L. et da Costa, N. C. A., Sur un probl\‘eme de Ja\’{s}kowski, C.R. Acad. Sci.
Paris ser. A 270 (1970), 1349-1353.

[5] Gill, R. R. R., The Craig-Lyndon interpolation theorem in 3-valued logic, J. Symbolic Logic 35
(1970), 230-238.

[6] Guzm\’an, F., A Gentzen system for conditional logic, Studia Logica 53 (1994), 243-257.
[7] Kleene, S. C., Introduction to Metamathematics, North-Holland, Amsterdam, 1967.
[8] Maehara, S., A general theory of completeness proofs, Ann. Japan Assoc. Philos. Sci. 3 (1966-

70), 242-256.
[9] Miyama, T., Another proof and an extension of Gill’s interpolation theorem, Sci. Rep. Tokyo

Kyoiku Daigaku, Sect. A 12 (1973-74), 59-65.
[10] Nishimura, T. and Ohya, T., The formal system for various 3-valued logics I, Sci. Rep. Tokyo

Kyoiku Daigaku, Sect. A 13 (1975-77), 7-22.
[11] Nishimura, T. and Ohya, T., The formal system for various 3-valued logics II, J. Math. Soc.

Japan 29 (1977), 513-527.
[12] Palasi\’{n}ska, K., Three-element nonfnitely axiomatizable matrices, Studia Logica 53 (1994),

361-372.
[13] Rautenberg, W., Klassische und nichtklassische Aussagenlogik, Vieweg, Wiesbaden, 1979.
[14] Sette, A. M., On the propositional calculus $P^{1}$ , Math. Japon. 18 (1973), 173-180.
[15] Sette, A. M. and Camielli, W. A., Maximal weakly-intuitionistic logics, Studia Logica 55 (1995),

181-203.
[16] Wojtylak, P., An example of a finite though finitely non-axiomatizable matrix, Rep. Math. Logic

17 (1984), 39-46.



Sequent calculi for three-valued 461

[17] Wro\’{n}ski, A., A three element matrix whose consequence operation is not finitely based, Polish
Acad. Sci. Inst. Philos. Sociol. Bull. Sect. Logic 8 (1979), 68-71.

Department of Mathematics
Faculty of Education
Niigata University
Niigata 950-2181, Japan


	SEQUENT CALCULI FOR THREE-VALUED ...
	\S 0. Introduction
	\S 1. General framework
	\S 2. The three-valued ...
	THEOREM 2.1. ...
	THEOREM 2.4. ...

	\S 3. The three-valued ...
	THEOREM 3.1. ...
	THEOREM 3.4. ...

	\S 4. Wro\'{n}ski's three-valued ...
	THEOREM 4.1. ...

	\S 5. The three-valued ...
	THEOREM 5.4. ...

	References


