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ON $D$-PARACOMPACT $p$- AND $\Sigma$-SPACES

By

Norihito SHIMANE and Takemi MIZOKAMI

1. Introduction

All spaces are assumed to be $T_{1}$ topological spaces and all mappings to be
continuous and onto. The letter $N$ always denotes all positive integers and $\tau_{X}$ the
topology of a space $X$.

As well known as Dowker’s Theorem, a $T_{2}$-space $X$ is paracompact if and
only if for each open cover $\mathscr{U}$ of $X$ there exists a $\mathscr{U}$-mapping $f$ of $X$ onto a metric
space $M$, where a mapping $f$ is called a $\mathscr{U}$-mapping if there exists an open cover
$\gamma$ of $M$ such that $f^{-1}(\mathscr{V})<\mathscr{U}$ . Taking into account that developable spaces is
one of the nicest generalizations of metric spaces, it is quite natural to substitute a
metric space $M$ in the above with a developable space $D$ in order to get a
generalization of both paracompact spaces and developable spaces.

DEFINITION 1.1 [12]. A spaoe X is called a D-paracompact if for each open
cover $\mathscr{U}$ of $X$ there exists a $\mathscr{U}$-mapping of $X$ onto a developable spaces.

Pareek originally gave its inner characterization to D-paracompact spaces
[12]. Besides many inner characterizations are given by Brandenburg [1], Chaber
[6] and Mizokami [9]. As for the overview of D-paracompact spaces, refer to [2].
In this paper, we consider the mapping properties of D-paracompact spaces on
the classes of D-paracompact p-spaces and D-paracompact $\Sigma$-spaces.

2. D-paracompact p-spaces

With respect to the mapping property of D-paracompact spaces, the fol-
lowing problem remains unsolved.

PROBLEM [1], [6]. Let $f$ : $X\rightarrow Y$ be a perfect mapping of a D-paracompact
space onto a space $Y$. Then is $Y$ D-paracompact?

Received January 13, 1997



380 Norihito SHIMANE and Takemi MIZOKAMI

Let us note that D-paracompactness is preserved by neither of perfect
preimages and closed images. The former is due to [6, Example 3.3] and the latter
due to [9, Example 3]. But we have the following positive partial answers given
by Chaber [6] and by Mizokami [9]: Let $\mathscr{C}$ be a class of spaces such that
$\mathscr{C}\subset$ {D-paracompact spaces}. Then $\mathscr{C}$ is closed under perfect images when $\mathscr{C}$ is
either of the class of D-paracompact p-spaces [6] of D-paracompact $\sigma$-spaces [9].

According to his definition there [6], a space $X$ is a D-paracompact p-space if and
only if for any open cover $\mathscr{U}$ of $X$ there exists a perfect $\mathscr{U}$-mapping of $X$ onto a
Moore space, that is a regular developable space. 0riginally, p-spaces are defined
for completely regular spaces by Arhangelskii as follows: A completely regular
space $X$ is a p-space if $X$ has a sequence $\{\mathscr{U}_{n}|n\in N\}$ of open covers of $X$ in $\beta X$

such that $\cap\{S(x, \mathscr{U}_{n})|n\in N\}\subset X$ for each $x\in X$ . A few inner characterizations
are given by Burke [4], Burke and Stoltenberg [5] and Pareek [13]. But, as
observed in Remark and the part preceding to Theorem 3.16 in [8, p. 442], since
the Stone-\v{C}ech compactification $\beta X$ can be changed by any compactification of
$X$, their discussions are applicable to regular spaces. In this sense, we consider
here p-spaces, strict p-spaces, Pareek’s p-spaces for regular spaces. Pareek gave
the definition of p-spaces in his paper and showed the equivalence of (iv) and (v)

below [12, Theorem 4.4]. But this was criticized to be based on a dubious lemma
by Mack [1974, Math. Reviews 47 (#1034)]. Here, we can show the equivalence
by a different way.

THEOREM 2.1. For a regular space $X$, the following are equivalent:
(i) $X$ is a D-paracompact $ w\Delta$-space.
(ii) $X$ is a D-paracompact p-space in the sense of Burke [4]. (Refer to [8,

Theorem 3.21]).
(iii) $X$ is a D-paracompact strict p-space in the sense of Burke and Stoltenberg

[5]. (Refer to [8, Theorem 3.17]).

(iv) $X$ is a D-paracompact p-space in the sense of Pareek [12, Definition 4.6].

(v) For any open cover $\mathscr{U}$ of $X$, there exists a perfect $\mathscr{U}$-mapping of $X$ onto a
Moore space.

(vi) $X$ is a D-paracompact space and has a perfect mapping of $X$ onto a Moore
space.

PROOF. Since D-paracompact spaces are submetacompact, the arguments of
[8, Theorem 3.19 and 3.21] can apply to get the equivalence of (i), (ii) and (iii). If
we again note the remark in [8, p. 442], the discussion of [13] holds true for
regular spaces, so that we have the equivalence of (iv) and (iii). $(iii)\rightarrow(v)$ : Let $\mathscr{U}$
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be an open cover of $X$ and let $\{\mathscr{G}_{n} : n\in N\}$ be a strict p-sequence for $X$ satisfying
the following:

(1) $C_{x}=\cap\{S(x, \mathscr{G}_{n}):n\in N\}$ is compact.
(2) $\{S(x, \mathscr{G}_{n}):n\in N\}$ is an open neighborhood base of $C_{X}$ in $X$.
Since $X$ is regular and D-paracompact, for some open cover $\mathscr{V}_{1}$ of $X$ such

that $\overline{\gamma_{1}}<\mathscr{G}_{1}\wedge \mathscr{U}$ , there exists a $\gamma_{1}$ -mapping $f_{1}$ of $X$ onto a developable space
$D_{1}$ . Without loss of generality, we can assume that $D_{1}$ has a decreasing
development $\{\mathscr{A}_{1n} : n\in N\}$ such that $f_{1}^{-1}(\mathscr{A}_{11})<\gamma_{1}$ . By regularity of $X$, there
exists an open cover $\gamma_{2}$ of $X$ such that

$\overline{\mathscr{V}_{2}}<\mathscr{G}_{2}\wedge f_{1}^{-1}(\mathscr{A}_{12})\wedge \mathscr{U}$ .

Using D-paracompactness of $X$ again, there exists a $\mathscr{V}_{2}$ -mapping $f_{2}$ of $X$ onto a
developable space $D_{2}$ which has a decreasing development $\{\mathscr{A}_{2n} : n\in N\}$ such
that $f_{2}^{-1}(\mathscr{A}_{21})<\mathscr{V}_{2}$ . Repeating this process, we can get sequences $\{\mathscr{V}_{n} : n\in N\}$ ,
$\{\mathscr{A}_{ni} : i\in N\},$ $\{f_{n} : n\in N\}$ and $\{D_{n} : n\in N\}$ satisfying the following:

(3) $D_{n}$ has a decreasing development $\{\mathscr{A}_{nk} : k\in N\}$ such that $f_{n}^{-1}(\mathscr{A}_{n1})<$

$\gamma_{n}$ .
(4) For each $n,$ $f_{n}$ is a $\mathscr{V}_{n}$ -mapping of $X$ onto $D_{n}$ .
(5) $\gamma_{n}$ is an open cover of $X$ such that

$\overline{\gamma_{n}}<\mathscr{G}_{n}\wedge(_{\hat{i=1}}^{n-1}f_{i}^{-1}(\mathscr{A}_{in}))\wedge \mathscr{U}$ for $n\geq 2$ .

Let $f=\prod f_{i}$ : $X\rightarrow\prod D_{i}$ be defined by $f(x)=(f_{i}(x))_{i},$ $x\in X$ . Then it is easily
seen from (4) and (5) that $f$ is a $\mathscr{U}$-mapping of $X$ onto a developable space $D=$

$f(X)\subset\prod D_{n}$ . We show that $f$ is a perfect mapping, and consequently $D$ is a
Moore space. For each $p\in D$ , by virtue of (3) and (5) we have

$f^{-1}(p)\subset\bigcap_{n}S(x, \mathscr{G}_{n})$ ,

where $x\in f^{-1}(p)$ . So, because of (1), $f^{-1}(p)$ is compact. To see the closedness of
$f$, it suffices to show that for each point $p=(p_{i})_{j}\in D$ and each open subset $U$ of
$X$ such that $f^{-1}(p)\subset U$, there exists a neighborhood $V$ of $p$ in $D$ such that
$f^{-1}(V)\subset U$ . Let

$C_{X}=\bigcap_{n}S(x, \mathscr{G}_{n})$ , $x\in f^{-1}(p)$ .

We can easily observe by virtue of (1) that $f(C_{x}\backslash U)$ is a compact subset of $D$

and $p\not\in f(C_{X}\backslash U)$ . Take a neighborhood $G$ of $p$ in $D$ such that
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$G=(\prod_{i=1}^{k}S(p_{n(i)}, \mathscr{A}_{n(i)m(i)})\times\prod\{D_{t} : t\neq n(i)\})\cap D$

$\overline{G}\cap f(C_{X}\backslash U)=\emptyset$ .

By virtue of (3), (4) and (5), we can find some $n(O)\in N$ such that
(6) $\overline{f_{n(0)}^{-1}(S(p_{n(0)},\mathscr{A}_{n(0)1}))}\cap(C_{X}\backslash U)=\emptyset$ .
Set

$0=X\backslash (\overline{f_{n(0)}^{-1}(S(p_{n(0)},d_{n(0)1}))}\backslash U)$ .

Then $0$ is an open neighborhood of $C_{X}$ . By virtue of (2), there exists $s\in N$ such
that

(7) $C_{x}\subset S(x, \mathscr{G}_{s})\subset O$ .
Using all of (3) through (7), we can find some $t\in N$ such that

$V=(S(p_{t}, d_{t1})\times\prod\{D_{n} : n\neq t\})\cap D$

is an open neighborhood of $p$ in $D$ such that $f^{-1}(V)\subset U$ . Hence $f$ is a perfect
mapping. Since $(vi)\rightarrow(i)$ is trivial, we have completed the proof. $\square $

Let us note that in most cases, D-paracompact p-spaces go parallel to
paracompact p-spaces. For example, the following theorem on making the space
Moore corresponds to the metrization theorem of paracompact p-spaces.

THEOREM 2.2. A regular D-paracompact p-space $X$ is a Moore space if and
only if $X$ has a $G_{\delta}$-diagonal.

PROOF. Only if part is trivial. If part: Let $\{\mathscr{U}_{n} : n\in N\}$ be a sequence of
open covers of $X$ such that $\bigcap_{n}S(p, \mathscr{U}_{n})=\{p\}$ for each point $p\in X$ . By the
above theorem, for each $n$ there exists a perfect $\mathscr{U}_{n}$ -mapping $f_{n}$ of $X$ onto a
Moore space $D_{n}$ . Let $f$ : $X\rightarrow\prod_{n}D_{n}$ be defined by

$f(x)=(f_{n}(x))_{n}$ , $x\in X$ .

Then easily we can observe that $f$ is a homeomorphism of $X$ onto $f(X)\subset\prod_{n}D_{n}$ .
Since Moore spaces have countably productive and hereditary properties, $f(X)$ is
a Moore space. This completes the proof. $\square $

Nagata characterized a paracompact p-space as a space which is embedded in
the closed subspace of the product of a metrizable space and a compact space
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[11]. But this type of characterization does not work for D-paracompact p-spaces
stated below:

THEOREM 2.3. A regular D-paracompact p-space is embedded in a closed
subspace of the product of a Moore space and a compact space. But the converse is
not true.

$PR\infty F$ . The former is straightforward from [8, Lemma 3.13] and Theorem
2.1. For the latter, it suffices to consider the product space of a Moore space $S=$

$N\cup \mathscr{A}$ and a compact space $Z=A(\aleph_{1})$ for which $S\times Z$ is not D-paracompact
[6, Example 3.3].

3. D-paracompact $\Sigma$-spaces

As stated above, D-paracompact p-spaces and D-paracompact $\sigma$-spaces are
preserved by perfect mappings. Both are $\Sigma$-spaces in the sense of Nagami. So it is
quite natural to ask whether D-paracompact $\Sigma$-spaces are preserved by perfect
mappings. In this section, we give the positive answer to it. Here, we use the
definition of $\Sigma$-spaces due to Michael, which is equivalent to the original one due
to Nagami.

DEFINITION 3.1 [8, Definition 4.13]. A regular space $X$ is called a (strong) $\Sigma_{-}$

space if $X$ has a cover $\mathscr{C}$ by (resp. compact) countably compact subsets and has a
$\sigma$-locally finite family $\mathscr{F}$ of closed subsets of $X$ such that for $C\in \mathscr{C}$ and $U\in\tau_{X}$ , if
$C\subset U$, then $C\subset F\subset U$ for some $F\in \mathscr{F}$ .

Since D-paracompact space is subparacompact, a D-paracompact $\Sigma$-space is a
strong $\Sigma$-space. We state the terminology used in the proof. We call $\mathscr{P}$ a pair-
collection of a space $X$ if $\mathscr{P}$ is a collection of ordered pairs $P=(P_{1}, P_{2})$ of subsets
of $X$ such that $P_{1}\subset P_{2}$ and $P_{1},$ $P_{2}$ are closed, open in $X$, respectively. We call $\mathscr{P}$

discrete, locally finite, $\sigma$-discrete or $\sigma$-locally finite in $X$ if the family $\{P_{1} : P\in \mathscr{P}\}$

is so in $X$, that is, each point $p$ of $X$ has a neighborhood in $X$ intersecting $P_{1}$

for at most one $P\in \mathscr{P}$, and so forth. Let $\mathscr{U}$ be a family of open subsets of $X$.
Then we call that $\mathscr{P}$ is a pair-network for $\mathscr{U}$ in $X$ if for each point $p\in X$ and
each $U\in \mathscr{U}$ , if $p\in U$, then $p\in P_{1}\subset P_{2}\subset U$ for some $P=(P_{1}, P_{2})\in \mathscr{P}$ . As
known already [7], a space $X$ is developable if and only if there exists a $\sigma$-discrete
pair-network for the topology $\tau_{X}$ of $X$. We prepare two lemmas for the main
theorem.
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LEMMA 3.2. Let $X$ be a subparacompact space and let $\mathscr{F}$ be a locally finite
family of closed subsets of $X$ and $\{U(F):F\in \mathscr{F}\}$ its open expansion in X. Then
there exists a $\sigma$-discrete pair-collection $\mathscr{P}$ of $X$ such that for each point $p\in X$ and
each $F\in \mathscr{F}$ , if $p\in F$ , then $p\in P_{1}\subset P_{2}\subset U(F)$ for some $P=(P_{1}, P_{2})\in \mathscr{P}$ .

$PR\infty F$ . For each point $p\in X$, take an open neighborhood $V(p)$ of $p$ in $X$

such that

$V(p)\subset X\backslash \cup\{F\in \mathscr{F}:p\not\in F\}$

and such that if $p\in\cup \mathscr{F}$ , then

$V(p)\subset\cap\{U(F) : p\in F\in \mathscr{F}\}$ .

By subparacompactness of $X$, there exists a $\sigma$-discrete closed refinement $\mathscr{K}$ of
$\{V(p) : p\in X\}$ . For each $H\in \mathscr{K}$ with $ H\cap(\cup \mathscr{F})\neq\emptyset$ , choose an open subset
$W(H)$ of $X$ such that

$H\subset W(H)\subset\cap\{U(F) : F\cap H\neq\emptyset\}$ .

Then
$\mathscr{P}=$ { $(H,$ $W(H))$ : $H\in \mathscr{K}$ with $ H\cap(\cup \mathscr{F})\neq\emptyset$ }

is the required pair-collection of X.

For brevity, in the next lemma we call that a space $X$ satisfies the condition
$(*)$ if for each discrete pair-collection $\{(F, U(F)) : F\in \mathscr{F}\}$ of $X$ there exists a pair
$\langle\gamma \mathscr{P}\rangle$ of a family $\gamma$ of subsets of $X$ and a $\sigma$-discrete pair-collection $\mathscr{P}$ of $X$

satisfying the following (1) and (2):
(1) $\gamma=\{V(F) : F\in \mathscr{F}\}$ is an open expansion of $\mathscr{F}$ in $X$ such that $ F\subset$

$V(F)\subset U(F)$ for each $F\in \mathscr{F}$ .
(2) For each point $p\in X$ and each $F\in \mathscr{F}$ if $p\in V(F)$ then $ p\in P_{1}\subset$

$P_{2}\subset U(F)$ for some $P=(P_{1}, P_{2})\in \mathscr{P}$ .
(We call the pair $\langle\gamma \mathscr{P}\rangle$ the $(*)$ -pair for $\{(F,$ $U(F)):F\in \mathscr{F}\}.$ )

LEMMA 3.3. Let $X$ be a subparacompact space satisfying the condition $(*)$ .
Then $X$ is D-paracompact.

$PR\infty F$ . By [1, Theorem 1, (iii)], it suffices to show that $X$ is D-expandable,
that is, for each discrete pair-collection $\{(F, U(F)):F\in \mathscr{F}\}$ of $X$ with $ F\cap$

$ U(F^{\prime})=\emptyset$ if $F\neq F^{\prime}$ and $F,$ $F^{\prime}\in \mathscr{F}$ , there exists a “dissectable” family $\gamma=$
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$\{V(F):F\in \mathscr{F}\}$ of open subsets of $X$ such that $F\subset V(F)\subset U(F)$ for each
$F\in \mathscr{F}$ . To show the existence of such $\gamma$ by argument of the proof of
[1, Theorem 1, $(ii)\rightarrow(iii)$ ], it suffices to find a $\sigma$-discrete pair-network $\mathscr{P}$ for $\gamma$ in
X. Thus we will constmct such $\gamma$ and $\mathscr{P}$ for a given discrete pair-collection
$\{(F, U(F)) : F\in \mathscr{F}\}$ of $X$. First, by $(*)$ there exists a (*)-pair $\langle\gamma_{1}\mathscr{P}_{1}\rangle$ for
$\{(F, U(F)) : F\in \mathscr{F}\}$ satisfying (1) and (2):

(1) $\gamma_{1}=\{V_{1}(F) : F\in \mathscr{F}\}$ is an open expansion of $\mathscr{F}$ such that $ F\subset$

$V_{1}(F)\subset U(F)$ for each $F\in \mathscr{F}$ .
(2) $\mathscr{P}_{1}$ is a $\sigma$-discrete pair-collection of $X$ such that for each $p\in X$ and each

$F\in \mathscr{F}$ , if $p\in V_{1}(F)$ , then $p\in P_{1}\subset P_{2}\subset U(F)$ for some $P=(P_{1}, P_{2})\in \mathscr{P}_{1}$ .
Write $\mathscr{P}_{1}=\cup\{\mathscr{P}_{1n} : n\in N\}$ , where each $\mathscr{P}_{1n}=\{P_{\alpha} : \alpha\in A_{1n}\}$ is a discrete pair-
collection of $X$. By $(*)$ , for each $n$ there exists a (*)-pair

$\langle\{P_{\alpha 2}^{\prime} : \alpha\in A_{1n}\}, \mathscr{P}_{2n}\rangle$

for $\mathscr{P}_{1n}$ satisfying the following (3) and (4):

(3) $P_{\alpha 1}\subset P_{\alpha 2}^{\prime}\subset P_{\alpha 2}$ for each $\alpha\in A_{1n}$ .
(4) $\mathscr{P}_{2n}$ is a $\sigma$-discrete pair-collection of $X$ such that for each $\alpha\in A_{1n}$ and

each $p\in X$ , if $p\in P_{\alpha 2}^{\prime}$ , then $p\in P_{1}\subset P_{2}\subset P_{\alpha 2}$ for some $P=(P_{1}, P_{2})\in \mathscr{P}_{2n}$ .
For each $F\in \mathscr{F}$ set

$V_{2}(F)=\cup\{P_{\alpha 2}^{\prime}$ : $\alpha\in\bigcup_{n}A_{1n},P_{\alpha 1}\cap V_{1}(F)\neq\emptyset$ and $P_{\alpha 2}\subset U(F)\}$

and set

$\mathscr{P}_{1}^{\prime}=\{(P_{\alpha 1}, P_{\alpha 2}^{\prime})$ : $\alpha\in\bigcup_{n}A_{1n}\}$ .

Then $\{V_{2}(F):F\in \mathscr{F}\}$ is an open expansion of $\mathscr{F}$ and $\mathscr{P}_{1}^{\prime}$ is a $\sigma$-discrete pair-
collection of $X$ such that for each $p\in X$ and each $F\in \mathscr{F}$ , if $p\in V_{1}(F)$ , then
$p\in P_{1}\subset P_{2}\subset V_{2}(F)$ for some $P=(P_{1}, P_{2})\in \mathscr{P}_{1}^{\prime}$ . Write each $\sigma$-discrete pair-
collection $\mathscr{P}_{2n}$ as

$\mathscr{P}_{2n}=\cup\{\mathscr{P}_{2nm} : m\in N\}$ ,

where each $\mathscr{P}_{2nm}=\{(P_{\alpha 1}, P_{\alpha 2}):\alpha\in A_{2nm}\}$ is a discrete pair-collection of $X$. For
each $n,$ $m\in N$, by $(*)$ there exists a (*)-pair

$\langle\{P_{\alpha 2}^{\prime} : \alpha\in A_{2nm}\}, \mathscr{P}_{3nm}\rangle$

for $\mathscr{P}_{2nm}$ satisfying the following (5) and (6):

(5) $P_{\alpha 1}\subset P_{\alpha 2}^{\prime}\subset P_{\alpha 2}$ for each $\alpha\in A_{2nm}$ .
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(6) $\mathscr{P}_{3m}$ is a $\sigma$-discrete pair-collection of $X$ such that for each $\alpha\in A_{2nm}$ and
each $P\in X$ , if $p\in P_{\alpha 2}^{\prime}$ , then $p\in P_{1}\subset P_{2}\subset P_{\alpha 2}$ for some $P=(P_{1}, P_{2})\in \mathscr{P}_{3nm}$ .
Set

$ V_{3}(F)=\cup$ { $P_{\alpha 2}^{\prime}$ : $\alpha\in\cup\{A_{2m}$ : $n,m\in N\},$ $ P_{\alpha 1}\cap V_{2}(F)\neq\emptyset$ and $P_{\alpha 2}\subset U(F)$ }
for each $F\in \mathscr{F}$ and set

$\mathscr{P}_{2}^{\prime}=\{(P_{\alpha 1}, P_{\alpha 2}^{\prime}) : \alpha\in\cup\{A_{2m} : n,m\in N\}\}$ .

Then $\{V_{3}(F) : F\in \mathscr{F}\}$ is an open expansion of $\mathscr{F}$ satisfying the following (7) and
(8):

(7) $F\subset V_{1}(F)\subset V_{2}(F)\subset V_{3}(F)\subset U(F)$ for each $F\in \mathscr{F}$ .
(8) $\mathscr{P}_{2}^{\prime}$ is a $\sigma$-discrete pair-collection of $X$ such that for each $p\in X$ and each

$F\in \mathscr{F}$ , if $p\in V_{2}(F)$ , then $p\in P_{1}\subset P_{2}\subset V_{3}(F)$ for some $P=(P_{1},P_{2})\in \mathscr{P}_{2}^{\prime}$ .
By repeating this process, we can constmct a sequence $\{V_{n}(F):F\in \mathscr{F}\}$ of open
expansion of $\mathscr{F}$ and a sequence $\{\mathscr{P}_{n}^{\prime} : n\in N\}$ of $\sigma$-discrete pair-collections of $X$

satisfying the following (9) and (10):
(9) $F\subset V_{1}(F)\subset V_{2}(F)\subset\cdots\subset V_{n}(F)\subset V_{n+1}(F)\subset\cdots\subset U(F)$ for each

$F\in \mathscr{F}$ .
(10) For each $p\in X$ and $F\in \mathscr{F}$ , if $p\in V_{n}(F)$ , then $p\in P_{1}\subset P_{2}\subset V_{n+1}(F)$

for some $P=(P_{1}, P_{2})\in \mathscr{P}_{n}^{\prime}$ .
Set

$V(F)=\cup\{V_{n}(F) : n\in N\}$ for each $F\in \mathscr{F}$

and
$\mathscr{P}^{\prime}=\cup\{\mathscr{P}_{n}^{\prime} : n\in N\}$ .

Then each $V(F)$ is an open subset of $X$ such that $F\subset V(F)\subset U(F)$ and
obviously $\mathscr{P}^{\prime}$ is a $\sigma$-discrete pair-network for $\{V(F) : F\in \mathscr{F}\}$ in $X$. This com-
pletes the proof.

For a closed mapping $f:X\rightarrow Y$, we use the following notation: For each
open subset $U$ of $X$, we write

$f^{*}(U)=Y\backslash f(X\backslash U)$ ,

which is open in Y.

THEOREM 3.4. Let $f$ be a perfect mapping of a space $X$ onto a space Y. If $X$

is a D-paracompact $\Sigma$-space, then so is $Y$.
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$PR\infty F$ . By [10, Theorem 1.8], $Y$ is a $\Sigma$-space. Since subparacompactness is
preserved by perfect mappings, $Y$ is subparacompact. Thus by Lemma 3.3, it
suffices to show that $Y$ satisfies the condition $(*)$ . Let $\{(F, U(F)):F\in \mathscr{F}\}$ be a
discrete pair-collection of $Y$. We may assume that $ F\cap U(F^{\prime})=\emptyset$ for $F,$ $F^{\prime}\in \mathscr{F}$

with $F\neq F^{\prime}$ . Since $X$ is D-paracompact, there exists a $\mathscr{U}_{1}$ -mapping $g1$ of $X$ onto a
developable space $D_{1}$ , where

$\mathscr{U}_{1}=\{f^{-1}(U(F)) : F\in \mathscr{F}\}\cup\{X\backslash \cup f^{-1}(\mathscr{F})\}$ .

0bviously there exists an open expansion $\{V_{1}(F) : F\in \mathscr{F}\}$ of $f^{-1}(\mathscr{F})$ in $X$ such
that for each $F\in \mathscr{F}$

$f^{-1}(F)\subset V_{1}(F)\subset f^{-1}(U(F))$

and $V_{1}(F)=g_{1}^{-1}(O)$ with $O$ open in $D_{1}$ . For each $F\in \mathscr{F}$ ,

$V_{1}(F)^{*}=f^{-1}(f^{*}(V_{1}(F)))$

is an open subset of $X$ such that

$f^{-1}(F)\subset V_{1}(F)^{*}\subset V_{1}(F)\subset f^{-1}(U(F))$ .

Using the D-paracompactness of $X$, there exists a $\mathscr{U}_{2}$-mapping $g2$ of $X$ onto a
developable space $D_{2}$ , where

$\mathscr{U}_{2}=\{V_{1}(F)^{*} : F\in \mathscr{F}\}\cup\{X\backslash \cup f^{-1}(\mathscr{F})\}$ .

Then there exists an open expansion $\{V_{2}(F) : F\in \mathscr{F}\}$ of $f^{-1}(\mathscr{F})$ in $X$ such that
for each $F\in \mathscr{F}$

$f^{-1}(F)\subset V_{2}(F)\subset V_{1}(F)^{*}$

and $V_{2}(F)=g_{2}^{-1}(O)$ with $O$ open in $D_{2}$ . Let $g:X\rightarrow g(X)\subset D_{1}\times D_{2}$ be a
mapping defined by

$g(x)=(g\iota(x), g2(x))$ for each $x\in X$ .

0bviously both $V_{1}(F)$ and $V_{2}(F)$ are the inverse images of open subsets of
$X^{\prime}=g(X)$ for each $F\in \mathscr{F}$ . Since $X^{\prime}$ is a developable space, there exists a
$\sigma$-discrete pair-network $\mathscr{P}^{\prime}$ for the topology of $X^{\prime}$ . Set

$\mathscr{P}=\{(g^{-1}(P_{1}), g^{-1}(P_{2})) : P=(P_{1},P_{2})\in \mathscr{P}^{\prime}\}$ .

and write newly

$\mathscr{P}=$ { $(F_{\alpha},$ $V_{\alpha})$ : $\alpha\in A_{n}^{\prime}$ and $n\in N$}.



388 Norihito SHIMANE and Takemi MIZOKAMI

where for each $n,$ $\{F_{\alpha} : \alpha\in A_{n}^{\prime}\}$ is a discrete family of closed subsets of $X$.
Obviously $\mathscr{P}$ satisfies the following (1):

(1) $\mathscr{P}$ is a pair-network for $\{V_{1}(F), V_{2}(F) : F\in \mathscr{F}\}$ in $X$.
By the definition of a strong $\Sigma$-space, $Y$ has a cover 9 by compact subsets and
has a $\sigma$-locally finite family $\mathscr{K}=\{H_{\lambda} : \lambda\in\Lambda\}$ of closed subsets of $Y$ such that:

(2) For each $0\in\tau_{Y}$ and each $C\in \mathscr{C}$ , if $C\subset O$, then $C\subset H_{\lambda}\subset O$ for some
$\lambda\in\Lambda$ .

Without loss of generality, we can assume that $\mathscr{K}$ is closed under any finite
intersections. For each $n$ , let $A_{n}=\cup\{A_{i}^{\prime} : i\leq n\}$ . Then $\{F_{\alpha} : \alpha\in A_{n}\}$ is locally
finite in $X$ and $A_{n}\subset A_{n+1}$ . For each $n$ , let $\Delta_{n}$ be the totality of finite subsets of $A_{n}$

and for each $(\delta, \lambda)\in\Delta_{n}\times\Lambda,$ $(\delta,\delta^{\prime})\in\Delta_{n}\times\Delta_{m},$
$n,$ $m\in N$, set

$F(\delta)=\cap\{f(F_{\alpha}) : \alpha\in\delta\}$ ,

$f(\delta, \lambda)=F(\delta)\cap H_{\lambda}$ ,

$W(\delta)=f^{*}(\cup\{V_{\alpha} : \alpha\in\delta\})$ ,

$W(\delta,\delta^{\prime})=W(\delta)\cup W(\delta^{\prime})$ .

For each $n,$ $m\in N$ let $T(m,n)$ be the set of all combinations $(\delta_{1}, \lambda,n)\in$

$\Delta_{m}\times\Lambda\times\{n\}$ such that

$A_{n}(\delta_{1}, \lambda)=\{\alpha\in A_{n} : f(F_{\alpha})\cap(F(\delta_{1}, \lambda)\backslash W(\delta_{1}))\neq\emptyset\}$

is finite. $(T(m, n)$ may be empty for some $m,$ $n.$ ) For each combination $(\delta_{1}, \lambda, n)\in$

$T(m,n)$ , let

$\Delta(\delta_{1}, \lambda,n)=$ {$\delta_{2}\in\Delta_{n}$ : $\delta_{2}\subset A_{n}(\delta_{1},$ $\lambda)$ and $F(\delta_{1},$ $\lambda)\subset W(\delta_{1})\cup W(\delta_{2})$ }.

From the definition of $T(m, n),$ $\Delta(\delta_{1}, \lambda,n)$ is finite. For each $\delta_{2}\in\Delta(\delta_{1}, \lambda, n)$ with
$(\delta_{1}, \lambda, n)\in T(m, n),$ $m,$ $n\in N$, constmct an order pair of subsets of $Y$

$P(\delta_{1}, \lambda,\delta_{2})=(P_{1}(\delta_{1}, \lambda,\delta_{2}), P_{2}(\delta_{1}, \lambda,\delta_{2}))$

where

$P_{1}(\delta_{1}, \lambda,\delta_{2})=F(\delta_{1}, \lambda)$

and

$P_{2}(\delta_{1}, \lambda,\delta_{2})=W(\delta_{1},\delta_{2})$ .

Set

$\mathscr{P}(\delta_{1}, \lambda,n)=\{P(\delta_{1}, \lambda,\delta_{2}) : \delta_{2}\in\Delta(\delta_{1}, \lambda,n)\}$
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and

$\mathscr{Q}=\cup$ { $\mathscr{P}(\delta_{1},$ $\lambda,n)$ : $(\delta_{1},$ $\lambda,$ $n)\in T(m,$ $n)$ and $m,n\in N$}.

Then obviously $\mathscr{Q}$ is a $\sigma$-locally finite pair-collection of $Y$. We establish the
following claim:

CLAIM: For each $p\in Y$ and each $F\in \mathscr{F}$ , if $p\in f^{*}(V_{2}(F))$ , then $ p\in Q_{1}\subset$

$Q_{2}\subset f^{*}(V_{1}(F))$ for some $Q=(Q_{1}, Q_{2})\in \mathscr{Q}$ .
Suppose $p\in f^{*}(V_{2}(F))$ . Then $f^{-1}(p)\subset V_{2}(F)$ . By the compactness of $f^{-1}(p)$

and by (1), there exists $n_{0}\in N$ such that for each $n\geq n_{0}$ there exists $\delta_{n}\in\Delta_{n}$ such
that

$ f^{-1}(p)\cap F_{\alpha}\neq\emptyset$ for each $\alpha\in\delta_{n}$ ,

$f^{-1}(p)\subset\cap\{V_{\alpha} : \alpha\in\delta_{n}\}\subset V_{2}(F)$

and $\delta_{n}\subset\delta_{n+1}$ , which imply

$p\in F(\delta_{n})\cap W(\delta_{n})$ , $W(\delta_{n})\subset f^{*}(V_{2}(F))$ .

Take $C\in \mathscr{C}$ with $p\in C$ and let $\{H_{\lambda(i)} : i\in N\}$ be a decreasing sequence of
members of $\mathscr{H}$ containing $C$ satisfying the following (3):

(3) For each $O\in\tau_{Y}$ , if $C\in O$, then $C\subset H_{\lambda(i)}\subset O$ for some $i$ .
In fact, such a sequence $\{H_{\lambda(i)}\}$ exists because of (2) and of the assumption on
$\mathscr{K}$ . We show the following (4):

(4) For each $t\in N$, there exists $i_{0}\in N$ such that

$(\delta_{n_{0}}, \lambda(i_{0}),$ $t$) $\in T(n_{0}, t)$ .

To show (4), assume the contrary, i.e., for some $s\in N,$ $A_{s}(\delta_{n_{0}}, \lambda(i))$ is infinite for
each $i$. Then, since $\{f(F_{\alpha}):\alpha\in A_{s}\}$ is locally finite in $Y$, we can choose a
sequence $\{\alpha_{i} : i\in N\}\subset A_{s}$ and a sequence $\{p_{i} : i\in N\}$ of points of $Y$ such that
$p_{i}\in Y\backslash \{p1\cdots,p_{\iota-1}\}$ and

$p_{i}\in f(F_{\alpha_{i}})\cup(F(\delta_{n_{0}}, \lambda(i))\backslash W(\delta_{n_{0}}))$

and $F_{\alpha_{l}}\neq F_{\alpha_{j}}$ whenever $i\neq j$ . By (3) $\{p_{i} : i\in N\}$ has a cluster point in Y. But this
is a contradiction, because $p_{i}\in f(F_{\alpha_{i}})$ for each $j$. This establishes (4). Since

$C\cap(F(\delta_{n_{0}})\backslash W(\delta_{n_{0}}))$

is a compact subset and is contained in $f^{*}(V_{1}(F))$ , there exists $n_{1}\geq n_{0}$ and
$\delta_{1}\in\Delta_{n_{1}}$ such that

$C\cap(F(\delta_{n_{0}})\backslash W(\delta_{n_{0}}))\subset W(\delta_{1})\subset f^{*}(V_{1}(F))$ .
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Using (4), there exists $i_{1}\in N$ such that $(\delta_{n_{0}}, \lambda(i_{1}),$ $n_{1}$ ) $\in T(n_{0}, n_{1})$ . By (3), we can
easily find $i_{2}\geq i_{1}$ such that

$F(\delta_{n_{0}}, \lambda(i_{2}))\subset W(\delta_{n_{0}},\delta_{1})$ .

Since $\{H_{\lambda(i)}\}$ is decreasing, it is obvious that $(\delta_{n_{0}}, \lambda(i_{2}),$ $n_{1}$ ) $\in T(n_{0}, n_{1})$ . Recalling
the definition of $\mathscr{P}(\delta_{n_{0}}, \lambda(i_{2}),\delta_{1})$ , we have

$p\in P_{1}(\delta_{n_{0}}, \lambda(i_{2}),\delta_{1})\subset P_{2}(\delta_{n_{0}}, \lambda(i_{2}),\delta_{1})\subset f^{*}(V_{1}(F))$

and $P(\delta_{n_{0}}, \lambda(i_{2}),\delta_{1})\in \mathscr{Q}$ . This establishes the validity of the claim. Using Lemma
3.3, we can conclude that $Y$ is D-paracompact. This completes the proof. $\square $

Finally, we give a positive result to the mapping property of D-paracompact
spaces. To state it, we need the definition of $\beta$-spaces. $\Sigma$-spaces and Moore spaces
are $\beta$-spaces [8, Theorem $7.8(i)$].

DEFINITION 3.5 [8, Definition 7.7]. A space $X$ is called a $\beta$-space if there
exists a $\beta$-function $g:N\times X\rightarrow\tau_{X}$ such that

(i) $x\in g(n,x)$ for each $n\in N,$ $x\in X$ .
(ii) If $x\in g(n, x_{n})$ for each $n\in N$, then $\{x_{n} : n\in N\}$ has a cluster point in $X$.

THEOREM 3.6. Let $f$ : $X\rightarrow Y$ be a perfect mapping. If $X$ is a D-paracompact
$\beta$-space with a $G_{\delta}$-diagonal, then $Y$ is a D-paracompact $\beta$-space.

$PR\infty F$ . Since as easily checked $\beta$-spaces are preserved by perfect mappings,
$Y$ has a $\beta$-function $g:N\times Y\rightarrow\tau_{Y}$ . To see that $Y$ satisfies the condition $(*)$ in
Lemma 3.3, let $\{(F, U(F)) : F\in \mathscr{F}\}$ be a discrete pair-collection. Without loss
of generality, we can assume that $ U(F)\cap F^{\prime}=\emptyset$ whenever $F\neq F^{\prime}$ . Since $X$ is
subdevelopable [12, Proposition 5.1], in the sense of [3], there exists a one-to-one
$\mathscr{U}$-mapping $h$ of $X$ onto a developable space $D$ , where

$\mathscr{U}=\{f^{-1}(U(F)) : F\in \mathscr{F}\}\cup\{X\backslash \cup f^{-1}(\mathscr{F})\}$ .

Then there exists a family $\gamma=\{V(F) : F\in \mathscr{F}\}$ of open subsets of $X$ and a
$\sigma$-locally fimite pair-network

$\mathscr{P}=\{(F_{\alpha}, V_{\alpha}) : \alpha\in A_{n},n\in N\}$

for $\gamma\cup h^{-1}(\tau_{D})$ in $X$ satisfying the following:
(1) $f^{-1}(F)\subset V(F)\subset f^{-1}(U(F)),$ $F\in \mathscr{F}$ .
(2) For each $n,$ $\{F_{\alpha} : \alpha\in A_{n}\}$ is locally finite in $X$ and $A_{n}\subset A_{n+1}$ .
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(3) For each $p\in X$ and $F\in \mathscr{F}$ , if $p\in V(F)$ , then there exists $\alpha\in A_{n},$ $n\in N$,
such that $p\in F_{\alpha}\subset V_{\alpha}\subset V(F)$ .

Let $\Delta_{n}$ be the totality of finite subsets of $A_{n}$ and for each $\delta\in\Delta_{n},$ $k\in N$ , let

$H(\delta,k)=\cap\{f(F_{\alpha}) : \alpha\in\delta\}\backslash \cup\{g(k,y) : y\in K(\delta)\}$ ,

$K(\delta)=\cap\{f(F_{\alpha}) : \alpha\in\delta\}\backslash f^{*}(\cup\{V_{\alpha} : \alpha\in\delta\})$

and

$W(\delta,k)=f^{*}(\cup\{V_{\alpha} : \alpha\in\delta\})$ .

Then obviously $H(\delta,k)\subset W(\delta,k)$ for each $\delta$ and $k$, and by virtue of (2),
$\{H(\delta,k):\delta\in\Delta_{n}\}$ is locally finite in $Y$. Constmct the pair-collection of $Y$

$\mathscr{Q}=\{(H(\delta,k), W(\delta, k)) : \delta\in\Delta_{n},k,n\in N\}$ .

Then we show that $\mathscr{Q}$ is a $\sigma$-locally finite pair-network for $\psi=\{W(F):F\in \mathscr{F}\}$

in $Y$, where $W(F)=f^{*}(V(F)),$ $F\in \mathscr{F}$ . It is trivial that $\mathscr{Q}$ is $\sigma$-locally finite in $Y$.
To see that $\mathscr{Q}$ is a pair-network for $\psi$ in $Y$, let $p\in W(F),$ $F\in \mathscr{F}$ . Then there
exists a sequence $\{\delta_{n} : n\geq n_{0}\}$ with $\delta_{n}\in\Delta_{n}$ for each $n\geq n_{0}$ , satisfying for each
$n\geq n_{0}$

$p\in W(\delta_{n},k)$ , $\delta_{n}\subset\delta_{n+1}$ and

$\delta_{n}=$ { $\alpha\in A_{n}$ : $ F_{\alpha}\cap f^{-1}(p)\neq\emptyset$ and $V_{\alpha}\subset V(F)$ }.

In this case we have $\cap\{K(\delta_{n}) : n\geq n_{0}\}=\emptyset$ . For, if $q\in\bigcap_{n}K(\delta_{n})$ , then $ q\in$

$\cap\{f(F_{\alpha}):\alpha\in\delta_{n}\}$ for each $n$ , which implies

$ h(f^{-1}(p))\cap h(f^{-1}(q))\neq\emptyset$ ,

but this is a contradiction to $ f^{-1}(p)\cap f^{-1}(q)=\emptyset$ . Assume $p\not\in H(\delta_{n}, n)$ for each
$n$ . Then $p\in g(n,p_{n})$ for some point $p_{n}\in K(\delta_{n})$ . Since $g$ is a $\beta$-function, $\{p_{n}\}$ has a
cluster point $p0$ , which must belong to $\bigcap_{n}K(\delta_{n})$ . But this is a contradiction to the
above. Hence we have

$p\in Q_{1}\subset Q_{2}\subset W(F)$

for some $Q=(Q_{1}, Q_{2})\in \mathscr{Q}$ . This completes the proof. $\square $

REMARK. (i) $Y$ need not have a $G_{\delta}$-diagonal. In fact, there exists a perfect
mapping of a disjoint topological sum of two Michael lines onto a space which
has no $G_{\delta}$-diagonal [14].
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(ii) This theorem is not a corollary to the result in [9] that if $X$ is a perfect
image of a perfect D-paracompact space, then so is $X$ because there exists a
compact subdevelopable space $X$ but not perfect.
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