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CONFORMAL FLATNESS OF CIRCLE BUNDLE METRIC

By

Takafumi SATOU

\S .1. Introduction and Main Theorem

The aim of this paper is to investigate the conformal flatness of bundle metric
on a circle bundle.

A riemannian n-manifold is conformally flat if it is locally conformal to the
euclidean space $R^{n}$ ([1]). Riemann surfaces and space forms are conformally flat.
It is further known ([5]) that a riemannian product manifold $M\times N$ is con-
formally flat if and only if either (1) $M$ is a space form and $N$ is one dimensional,
or (2) $M$ and $N$ are space forms of same dimension $n\geq 2$ and they have opposite
curvatures.

So (1) means that a trivial circle bundle $M\times S^{1}$ with the product metric is
conformally flat if and only if the base space $M$ is of constant curvature. From
this fact we consider the conformal flatness of a bundle metric $g=\gamma^{2}+\pi^{*}h$ on a
non-trivial circle bundle $\pi:P\rightarrow M$ where $(M, h)$ is an oriented riemannian
manifold and $\gamma$ is a non-flat Yang-Mills connection.

A typical example is the Hopf bundle $\pi$ : $S^{2n+1}\rightarrow CF$ . The total space $S^{2n+1}$

is equipped with the standard metric $g$ which is conformally flat and it is easily
shown that the metric $g$ can be written as a bundle metric $g=\gamma^{2}+\pi^{*}h$ with
respect to the Fubini-Study metric $h$ and a canonical connection $\gamma$ whose cur-
vature form is proportional to the K\"ahler form of the Fubini-Study metric.

In this paper we restrict ourselves to a circle bundle $\pi:P\rightarrow M$ such that
$\dim M=4$ and a connection $\gamma$ has self-dual curvature form.

THEOREM 1.1. Let $\pi$ : $P\rightarrow M$ be a circle bundle over a connected oriented
riemannian 4-manifold $(M, h)$ , and $\gamma$ a non-flat connection on P. Define the bundle
metric $g=\gamma^{2}+\pi^{*}h$ on P. If the curvature form $\Gamma$ of $\gamma$ is self-dual and $g$ is
conformally flat, then
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(1) $(M, (1/24)\sigma h)$ is locally isometric and biholomorphic to a domain $D$ of
$CP^{2}$ with the Fubini-Study metric, and

(2) $(P, g)$ is of positive constant curvature $(1/24)\sigma$ ,
where $\sigma$ is the scalar curvature of $(M, h)$ .

This theorem says that if $\Gamma$ is self-dual and $(P, g)$ is conformally flat, then
$\pi$ : $P\rightarrow M$ is a part of the Hopf bundle $\pi$ : $S^{5}\rightarrow CP^{2}$ . In particular, if both $M$

and $P$ are complete and simply connected, then this circle bundle is the Hopf
bundle and the bundle metric $g$ is the standard metric on $S^{5}$ .

\S . 2. Weyl Conformal Curvature of $(P, g)$

When $n\geq 4$ , the conformal flatness of $M^{n}$ is equivalent to the vanishing of
the Weyl conformal curvature $W$.

Let $\pi$ : $P\rightarrow M$ be a circle bundle over an oriented riemannian 4-manifold
$(M, h)$ , and $\gamma$ a non-flat Yang-Mills connection on $P$, that is,the curvature form $\Gamma$

of $\gamma$ satisfies $*^{-1}d*\Gamma=0$ .
We define the bundle metric $g$ on $P$ by $g=\gamma^{2}+\pi^{*}h$ . Let $\{e_{1}, \ldots, e_{4}\}$ be a

local orthonormal frame field of $(M, h)$ which is compatible with the orientation
of $M$. Denote by $\{\theta^{1}, \ldots, \theta^{4}\}$ the dual coframe field of $\{e_{1}, \ldots, e_{4}\}$ . If we put
$\theta^{0}=\gamma$ , then $\{\theta^{0}, \pi^{*}\theta^{1}, \ldots, \pi^{*}\theta^{4}\}$ is a local orthonormal coframe field of $(P, g)$ .

From now on, we determine the range of the Roman indices $i,$ $j,$ $k,$ $l,$
$s,$

$t$

between 1 and 4, the Greek indices $\alpha,$
$\beta,$

$\gamma,$

$\delta$ between $0$ and 4. In addition, we
write the pull back $\pi^{*}T$ of a tensor $T$ simply by the same letter $T$. In this manner,
$\{\theta^{0}, \pi^{*}\theta^{1}, \ldots, \pi^{*}\theta^{4}\}$ is represented as $\{\theta^{0}, \theta^{1}, \ldots, \theta^{4}\}$ .

Let $\nabla$ be the Levi-Civita connection of $(M, h)$ . We write the 2-form $\Gamma$

as

(1) $\Gamma=\frac{1}{2}\sum_{s,t}\Gamma_{sl}\theta^{s}\wedge\theta^{l}$ , $\Gamma_{ts}=-\Gamma_{sl}$ .

The covariant derivative $\nabla_{i}\Gamma_{jk}$ of $\Gamma$ with respect to $\nabla$ is defined by

(2) $\sum_{s}\nabla_{s}\Gamma_{ij}\theta^{s}=d\Gamma_{ij}-\sum_{s}\omega_{j^{s}}\Gamma_{is}-\sum_{s}\omega_{i}^{s}\Gamma_{sj}$ ,

where $\omega_{/^{i}}$ is the connection form of $\nabla$ . Since $\gamma$ is a Yang-Mills connection and
$\Gamma=d\gamma$ , the $\Gamma$ satisfies

(3) $\sum_{s}\nabla_{s}\Gamma_{si}=0$ .
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We denote the trace-free Ricci tensor $T$ of $(M, h)$ by

(4) $T_{ij}=R_{ij}-\frac{\sigma}{4}\delta_{ij}$ ,

where $R_{ij}$ and $\sigma$ are respectively the Ricci tensor and the scalar curvature of
$(M,h)$ .

Let $\tilde{\omega}_{\beta}^{\alpha}$ be the connection form of the Levi-Civita connection of $(P, g)$ . It
follows from [3] that $\tilde{\omega}_{\beta}^{\alpha}$ is

(5) $\tilde{\omega}_{0}^{0}=0$ ,

(6) $\tilde{\omega}_{i}^{0}=\frac{1}{2}\sum_{s}\Gamma_{is}\theta^{s}$

(7) $\tilde{\omega}_{j^{i}}=\omega_{j^{i}}-\frac{1}{2}\Gamma_{ij}\theta^{0}$ .

Hence, the curvature form $\tilde{\Omega}_{\beta}^{\alpha}$ of $\tilde{\omega}_{\beta}^{\alpha}$ is

(8) $\tilde{\Omega}_{0}^{0}=0$ ,

(9) $\tilde{\Omega}_{i}^{0}=\frac{1}{4}\sum_{s,t}\Gamma_{si}\Gamma_{sl}\theta^{0}\wedge\theta^{l}+\frac{1}{2}\sum_{s,l}\nabla_{s}\Gamma_{it}\theta^{s}\wedge\theta^{l}$ ,

(10) $\tilde{\Omega}_{j}^{i}=\Omega_{j}^{i}-\frac{1}{4}\sum_{s,l}\wedge$ .

Applying the Bianchi identity for $\Gamma$ , we have the riemannian curvature $K_{\alpha\beta\gamma\delta}$ of
$(P, g)$ as

(11) $K_{ijkl}=R_{ijkl}-\frac{1}{4}(2\Gamma_{ij}\Gamma_{kl}+\Gamma_{ik}\Gamma_{jl}-\Gamma_{il}\Gamma_{jk})$ ,

(12) $K_{0ijk}=\frac{1}{2}\nabla_{i}\Gamma_{jk}$ ,

(13) $K_{0i0j}=\frac{1}{4}\sum_{s}\Gamma_{si}\Gamma_{sj}$ ,

where $R_{ijkl}$ is the riemannian curvature of $(M, h)$ , and $|\Gamma|$ is the norm of $\Gamma$ with
respect to $h$ :

(14) $|\Gamma|^{2}=\sum_{s<l}\Gamma_{st}^{2}$ .

The Ricci tensor $K_{\alpha\beta}$ of $(P, g)$ is
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(15) $K_{ij}=R_{ij}-\frac{1}{2}\sum_{s}\Gamma_{si}\Gamma_{sj}$ ,

(16) $K_{0i}=0$ ,

(17) $K_{\alpha)}=\frac{1}{2}|\Gamma|^{2}$ ,

where $R_{ij}$ is the Ricci tensor of $(M, h)$ . The scalar curvature $\kappa$ of $(P, g)$ is

(18) $\kappa=\sigma-\frac{1}{2}|\Gamma|^{2}$ ,

where $\sigma$ is the scalar curvature of $(M,h)$ . Let $\mathscr{V}_{\alpha\beta\gamma\delta}$ and $W_{ijkl}$ be the Weyl
conformal curvatures of $(P, g)$ and of $(M, h)$ respectively. By (3), we have the
following:

PROPOSmON 2.1. If $\gamma$ is a Yang-Mills connection, then the Weyl conformal
curvature $\nu_{\alpha\beta\gamma\delta}^{\sim}$ of $(P, g)$ is

(19) $W_{ijkl}=W_{ijkl}-\frac{1}{4}(2\Gamma_{ij}\Gamma u+\Gamma_{ik}\Gamma_{jl}-\Gamma_{il}\Gamma_{jk})$

$-\frac{1}{8}|\Gamma|^{2}(\delta_{jk}\delta_{il}-\delta_{jl}\delta_{lk})$

$-\frac{1}{6}(T_{jk}\delta_{il}-T_{jl}\delta_{ik}-Tu\delta_{jl}+T_{il}\delta_{jk})$

$-\frac{1}{6}\{(\sum_{s}\Gamma_{sj}\Gamma_{sk}-\frac{|\Gamma|^{2}}{2}\delta_{jk})\delta_{il}-(\sum_{s}\Gamma_{sj}\Gamma_{sl}-\frac{|\Gamma|^{2}}{2}\delta_{jl})\delta_{lk}$

$-(\sum_{s}\Gamma_{si}\Gamma_{sk}-\frac{|\Gamma|^{2}}{2}\delta_{ik})\delta_{jl}+(\sum_{s}\Gamma_{si}\Gamma_{sl}-\frac{|\Gamma|^{2}}{2}\delta_{il})\delta_{jk}\}$ ,

(20) $\mathscr{V}_{0ijk}=\frac{1}{2}\nabla_{i}\Gamma_{jk}$ ,

(21) $\theta^{r}0i0j=\frac{1}{3}T_{ij}+\frac{5}{12}(\sum_{s}\Gamma_{si}\Gamma_{sj}-\frac{|\Gamma|^{2}}{2}\delta_{ij})$ .

\S .3. Complex Structure and Curvature of $(M, h)$

We use the same notation as that in \S . 2. Suppose that $(P, g)$ is conformally
flat. It then follows from (21) that $(M, h)$ is Einstein if and only if $\Gamma$ satisfies the
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following equation:

(22) $\sum_{s}\Gamma_{si}\Gamma_{sj}-\frac{|\Gamma|^{2}}{2}\delta_{ij}=0$ .

In general, a 2-form $\omega$ on $M$ satisfies $\sum\omega_{si}\omega_{sj}-(|\omega|^{2}/2)\cdot\delta_{ij}=0$ if and only if $\omega$

is either self-dual or anti-self-dual. Therefore, if $\Gamma$ is self-dual, then $(M, h)$ is
Einstein. We can define an almost complex stmcture $J$ on $M$ by

(23) $\Gamma(X, Y)=\frac{|\Gamma|}{\sqrt{2}}h(JX, Y)$ , $X,$ $Y\in T_{p}M,p\in M$ .

From (20), both $\Gamma$ and $h$ are parallel with respect to $\nabla$ , and so is $J$. Then,
$(M, h, J)$ is a K\"ahler manifold.

PROPOSITION 3.1. Let $\gamma$ be a non-flat connection on $P$ with self-dual curvature
$\Gamma$ . If $(P, g)$ is conformally flat, then $(M, h, J)$ is self-dual, Einstein and Kahler.

$PR\infty F$ . It suffices to show that $(M, h)$ is self-dual. By Proposition 2.1, the
following equation holds:

(24) $W_{ijkl}=\frac{1}{4}(2\Gamma_{ij}\Gamma_{kl}+\Gamma_{ik}\Gamma_{jl}-\Gamma_{il}\Gamma_{jk})+\frac{1}{8}|\Gamma|^{2}(\delta_{jk}\delta_{il}-\delta_{jl}\delta_{ik})$ .

In order to calculate the anti-self-dual part $W^{-}$ of the Weyl conformal
curvature of $(M, h)$ , we take the following basis on $\wedge^{2}T^{*}M$ :

(25) $\theta^{1}\wedge\theta^{2}\pm\theta^{3}\wedge\theta^{4}$ , $\theta^{1}\wedge\theta^{3}\pm\theta^{4}\wedge\theta^{2}$ , $\theta^{1}\wedge\theta^{4}\pm\theta^{2}\wedge\theta^{3}$ .

Then $W^{-}$ is expressed as

(26) $W^{-}=(W_{1312}^{1212}-W_{1412}-W-WW_{1334}^{1234}W_{1434}$ $W_{1413}-W_{1313}^{1213}-W-W_{1342}^{1242}WW_{1442}$ $W_{1214}-W_{1314}-W_{1414}-W_{1223}W_{1323}W_{1423}$

From (24) and the self-duality of $\Gamma$ , we have

$W_{1212}-W_{1234}=\frac{3}{4}\Gamma_{12}^{2}-\frac{1}{8}|\Gamma|^{2}-\frac{1}{4}(2\Gamma_{12}\Gamma_{34}+\Gamma_{13}\Gamma_{24}-\Gamma_{14}\Gamma_{23})$

$=\frac{3}{4}\Gamma_{12}^{2}-\frac{1}{8}|\Gamma|^{2}-\frac{3}{4}\Gamma_{12}^{2}+\frac{1}{4}(\Gamma_{12}^{2}+\Gamma_{13}^{2}+\Gamma_{14}^{2})$

$=0$ ,
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$W_{1213}-W_{1242}=\frac{3}{4}\Gamma_{12}\Gamma_{13}-\frac{3}{4}\Gamma_{12}\Gamma_{42}$

$=0$ ,

and so on. Consequently, $(M, h)$ is self-dual. Q.E.D.

\S .4. Proof of Main Theorem

Let $\gamma$ be a non-flat connection on $P$ with self-dual curvature form F. Assume
that $(P,g)$ is conformally flat. By Proposition 3.1, the $J$ defined by (23) is a
complex stmcture on $M$, and the base space $(M, h,J)$ is self-dual, Einstein and
K\"ahler.

First, we assert that $(M, h,J)$ is of constant holomorphic sectional curvature.
Take arbitrary unit vectors $e_{1},$ $e_{3}\in T_{p}M,$ $p\in M$ such that $e_{3}$ is perpendicular to
$e_{1}$ and $Je_{1}$ . Put $e_{2}=Je_{1}$ and $e_{4}=Je_{3}$ . From (23), $\Gamma_{12}$ and $\Gamma_{34}$ are $|\Gamma|/\sqrt{2}$, and the
others are zero. From (24), we have

(27) $W_{1212}=\frac{3}{4}\Gamma_{12}^{2}-\frac{1}{8}|\Gamma|^{2}=\frac{1}{4}|\Gamma|^{2}$ ,

(28) $W_{1313}=-\frac{1}{8}|\Gamma|^{2}$ .

On the other hand, by the definition of the Weyl conformal curvature, we have

(29) $W_{1212}=R_{1212}-\frac{\sigma}{12}$ ,

(30) $W_{1313}=R_{1313}-\frac{\sigma}{12}$ ,

because $(M, h)$ is Einstein. From (27), (28), (29) and (30), we have

(31) $R_{1212}=\frac{1}{4}|\Gamma|^{2}+\frac{\sigma}{12}$ ,

(32) $R_{1313}=-\frac{1}{8}|\Gamma|^{2}+\frac{\sigma}{12}$ .

Since $\Gamma$ is parallel and $(M,h)$ is Einstein, the right hand side of (31) is constant.
Hence, $(M, h, J)$ is of constant holomorphic sectional curvature.

Moreover, the holomorphic sectional curvature of $(M,h)$ is positive. Indeed,
since the ratio of the holomorphic sectional curvature to the anti-holomorphic
sectional curvature is four ([4]), we have

(33) $\sigma=3|\Gamma|^{2}>0$ if $\gamma$ is non-flat,
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by (31) and (32). It then follows that the holomorphic sectional curvature of
$(M, h)$ is positive.

The above implies that the base space $(M, h, J)$ is locally biholomorphic to
some domain $D$ of $CP^{2}$ . It is easy to see that $(M, (1/24)\sigma h)$ is isometric to $D$

with the Fubini-Study metric $h_{FS}$ . Note that the sectional curvature $K_{\alpha\beta\alpha\beta}$ of
$(P, g)$ is

(34) $K_{1212}=R_{1212}-\frac{3}{8}|\Gamma|^{2}=\frac{\sigma}{24}$ ,

(35) $K_{1313}=R_{1313}=\frac{\sigma}{24}$ ,

(36) $K_{0101}=\frac{|\Gamma|^{2}}{8}=\frac{\sigma}{24}$ ,

and so on. Therefore, we conclude that $(P, g)$ is a space of positive constant
curvature $(1/24)\sigma$ .
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