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PROPER $n$-HOMOTOPY EQUIVALENCES OF
LOCALLY COMPACT POLYHEDRA

By

Kazuhiro KAWAMURA

Abstract. We prove the following theorem which is a locally
compact analogue of results of $S$ . Ferry and the author.

Theorem. Let $f:X\rightarrow Y$ be a proper map between finite
dimensional locally compact polyhedra $X$ and Y. Suppose that
(1) $\pi_{j}(f):\pi_{j}(X)\rightarrow\pi_{l}(Y)$ is an isomorphism for each $i\leq n$ ,

(2) $f$ induces a surjection between the ends of $X$ and $Y$ , and
(3) $f$ induces an isomorphism between the i-th homotopy groups

of ends of $X$ and $Y$ for each $i\leq n$ .
Then there exist a locally compact polyhedron $Z$ and proper
$UV^{ll}$ -maps $\alpha:Z\rightarrow X$ and $\beta:Z\rightarrow Y$ such that
(4) $\dim Z\leq 2\max(\dim X,n)+3$ ,

(5) $ f\circ\alpha$ and $\beta$ is properly n-homotopic, and
(6) $\alpha$ has at most countably many non-contractible fibre all of

which have the homotopy type of $S^{l\ddagger+1}$

1. Introduction.

The purpose of this note is to prove the following result which is a locally
compact analogue of [ $F_{2}$ , Proposition 1.7] and $[K]$ .

MAIN THEOREM. Let $f:X\rightarrow Y$ be a proper map between finite dimensional
locally compact polyhedra $X$ and Y. Suppose that

(1) $\pi_{l}(f):\pi_{i}(X)\rightarrow\pi_{j}(Y)$ is an isomorphism for each $i\leq n$ ,

(2) $f$ induces a surjection between the ends of $X$ and $Y$, and
(3) $f$ induces an isomorphism between the i-th homotopy groups of ends of $X$

and $Y$for each $i\leq n$ .
Then there exist a locally compact polyhedron $Z$ and proper $UV^{l1}$ maps

$\alpha:Z\rightarrow X$ and $\beta:Z\rightarrow Y$ such that
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(4) $\dim Z\leq 2\max(dimX,n)+3$ ,

(5) $ f\circ\alpha$ and $\beta$ is properly n-homotopic, and
(6) $\alpha$ has at most countably many non-contractible fibre all of which have

the homotopy type of $S^{lI+1}$

A continuous map $f:X\rightarrow Y$ is said to be proper if it is closed and $f^{-1}(K)$ is
compact for any compact subset $K$ of $Y$ . We do not assume that $f$ is a surjection.
A proper map $f:X\rightarrow Y$ is said to induce an epimorphism between the i-th
homotopy groups of the ends if, for each compact subset $K$ of $Y$ , there is a
compact subset $L$ of $Y$ containing $K$ such that for each map $\beta:S^{j}\rightarrow Y-L$ , there
exists a map $\alpha:S^{i}\rightarrow X-f^{-1}(K)$ such that $ f\circ\alpha\simeq\beta$ in $Y-K$ . The map $f$ is said
to induce a monomorphism between i-th homotopy groups of the ends if for each
compact subset $K$ of $Y$ , there exists another compact subset $L$ of $Y$ containing $K$

such that, if a map $\alpha:S^{j}\rightarrow X-f^{-1}(L)$ satisfies that $f\circ\alpha\simeq O$ in $Y-L$ , then we
have that $\alpha\simeq 0$ in $X-f^{-1}(K)$ (see $[B$ , Chap. 6]). Two maps $f,g:X\rightarrow Y$

between locally compact separable metric spaces are said to be properly n-
homotopic if, for each map proper $\alpha:K\rightarrow X$ of a locally compact separable
metric space $K$ with $dimK\leq n,$ $ f\circ\alpha$ is properly homotopic to $ g\circ\alpha$ .

It is known that there is a strong similarity between Menger $(or\mu^{A}-)$ manifold
theory and Hilbert cube (or Q-) manifold theory. In $\mu^{\Lambda}$ -manifold theory, the
proper $(k-1)$ -homotopy theory plays the role similar to the usual homotopy theory
in Q-manifold theory. In particular, the topological types of Q-manifolds are
determined by their simple homotopy types, whereas the topological types of $\mu^{k}-$

manifolds are determined by their proper $(k-1)$ -homotopy types. The above
theorem provides an underlying reason for this correspondence.

For the proof of Main Theorem, we need locally compact analogues of results
in [ $B$ , Appendix] and $[F_{\succ 4}]$ . Once we obtain these analogues, the proof proceeds
as in [K]. Throughout this paper, the reader is assumed to be familiar with the
paper [ $B$ , Appendix], $[F_{3- 4}]$ and $[K]$ .

The possibility of obtaining the locally compact analogue as above was first
asked in a discussion with $A$ . Chigogidze. The author would like to express his
sincere thanks to Professor $A$ . Chigogidze for helpful discussion on this problem.
The author would also like to express his thanks to the referee for helpful
comments to make this paper readable.

2. Preliminaries.
Throughout this paper, spaces are assumed to be separable and metrizable.
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DEFINIT10N 2.1. For a proper map $f:X\rightarrow Y$ between locally compact

separable metric spaces, $M(f)$ denotes the mapping cylinder of $f$. The standard
$CE$ retraction is denoted by $c(f):M(f)\rightarrow Y$ .

(1) The map $f$ is said to be n-connected if $\pi_{j}(M(f), X)=0$ for each $i\leq n$ .
(2) The map $f$ is said to be n-connected at infinity if it induces an

isomorphism between the i-th homotopy groups of ends for each $i\leq n-1$ and an
epimorphism for $i=n$ .

A pair of space $(P, Q)$ is said to be n-connected at infinity if, for each

compact subset $E$ of $P$ , there exists a compact subset $F$ of $P$ containing $E$ such

that;

For each $i\leq n$ , each map $\alpha:(D^{j},\partial D^{j})\rightarrow(P-F,Q-F)$ is homotopic to a map
$\beta:D^{l}\rightarrow Q-E$ in $P-E$ rel $\partial D^{i}$ .

$PROPOSlT10N2.2$ . Let $f:X\rightarrow Y$ be a proper map which is n-connected at

infinity. Then $(M(f),X)$ is n-connected at infinity.

PROOF. For a given compact subset $E$ of $M(f)$ , let $E^{\prime}=c(f)(E)$ and take a
compact subset $C$ of $Y$ containing $E^{\prime}$ which satisfies the monomorphism condition

at infinity with respect to $E^{\prime}$ and for each $i\leq n-1$ . Next take a compact subset $D$

of $Y$ containing $C$ which satisfies the epimorphism condition at infinity with

respect to $C$ and for each $i\leq n$ . Let $F=c(f)^{-1}(D)\supset E$ . Since $c(f)$ is a proper
map, $F$ is compact and a standard argument shows that $F$ is the desired compact

set.

LEMMA 2.3. Let $f:X\rightarrow Y$ be a proper cellular map between $CW$

complexes which induces a surjection between ends of $X$ and Y. There exist a
$CW$ complex $M^{*}$ and a proper CE map $c:M(f)\rightarrow M^{*}$ such that $ M^{*(0)}\subset$

$X\subset M^{*}$ and $c|X=id$ .

PROOF. Since $f$ induces a surjection between ends of $X$ and $Y$ , we have

that:
For each compact subset $K$ of $Y$ and for any unbounded component $N$ of
$Y-K$ , we have that $ f^{-1}(N)\neq\phi$ .

Using this, we can take an increasing sequence $K_{1}\subset K_{2}\subset\cdots\subset\bigcup_{i=1}^{\infty}K_{j}=Y$

of compact subsets of $Y$ satisfying the following condition.
(1) For each vertex $v\in c\ell(K_{i+1}-K_{j})$ , there exists an arc $J_{v}$ in $c\ell(K_{i+1}-K_{i-1})$

joining $v$ with a vertex $f(X_{1},)$ , where $X_{t}$ is a vertex of $X$ .



474 Kazuhiro KAWAMURA

Recall that the $CW$ complex structure of $MU$) consists of the cells of $X$ and
$Y$ and { $e\times I|e$ is a cell of $X$ }. Thus $M(f)^{(())}=X^{1())}\cup Y^{(())}$ Then J. $\cup\{X_{I}\}\times I$

defines an arc connecting $v$ with $X_{\mathfrak{l}}$ in $M(f)$ . Consider the union $J$ of these arcs.
By the condition (1), we can choose a countable collection $\{T_{i}\}$ of compact trees
such that $\bigcup_{i=1}^{\infty}T_{i}\subset J$ and

(2) $\{T_{i}\}$ is a discrete collection and $\bigcup_{i=1}^{\infty}T_{j}\supset Y^{(0)}$ .
Shrinking each $T_{j}$ into a point, we obtain a $CW$ complex $M^{*}$ and a proper $CE$

map $c:M(f)\rightarrow M^{*}$ . From the construction, $M^{*}$ contains $X$ and $X$ contains all
vertices of $M^{*}$

This completes the proof.

The following is an analogue of Whitehead Cell Trading Lemma (See for
example, [Co, 7.3]) for locally compact $CW$ complexes. Recall that two compact
$CW$ complexes $X$ and $Y$ are simple homotopy equivalent if and only if there exist
a compact $CW$ complex $Z$ and $CE$ maps of $Z$ onto $X$ and $Z$ onto $Y$ ([Chap]).
Having this fact in mind, the proof is a simple modification of the one of [Co,
7.3].

PROPOSITION 2.4. Let $(K,L)$ be a pair of finite dimensional locally compact
$CW$ complexes with $dimK=N$ such that

(1) $(K,L)$ is r-connected and r-connected at infinity,
(2) $K=L\cup\cup j\infty_{-1}-e_{j^{r}}\cup\bigcup_{j=1}^{\infty}e_{j^{r+1}}\cup\cdots\bigcup_{j}^{\infty_{--1}}e_{j^{N}}$ .

Then there exists a $CW$ complex $Q$ containing $L$ such that
(3) $Q=L\cup\bigcup_{j=1}^{\infty}E_{j}^{r+1}\cup\bigcup_{j-}^{\infty_{- 1}}E_{j}^{r+2}\cup\cdots\bigcup_{j-}^{\infty_{-1}}E_{j}^{N}$ , and
(4) $K$ is proper CE equivalent to $Q$ relative to $L$ , that is, there exist a $CW$

complex $Z$ which contains $L$ and proper CE maps $\alpha:Z\rightarrow Q$ and $\beta:Z\rightarrow K$ such
that $\alpha|L=id$ and $\beta|L=id$ .

$0uTLINE$ OF PROOF. Let $J=[0,1]$ and let $I^{r}$ be the r-cell. The r-cell $I^{r}$ is
naturally regarded as the face $I^{r}\times 0$ of $I^{r+1}$ . Let $J^{r}=c1(\partial I^{r+1}-I^{r}\times 0)$ . One can
use the assumption (1) to obtain an increasing sequence $\phi=K_{0}\subset K_{1}\subset K_{2}\subset\cdots\subset$

$\bigcup_{j=1}^{\infty}K_{i}=K$ of compact subcomplexes of $K$ such that, for each $t\leq r$ ,

(5) each map $\alpha:(I^{\prime},\partial I^{\prime})\rightarrow(K_{l+1}-K_{j}, L-K_{j})$ is homotopic to a map $\beta$ :
$I^{\prime}\rightarrow L-K_{j-1}$ rel $\partial I^{t}$ in $K_{i+2}-K_{j- 1}$ , for each $i\geq 1$ .

Using the condition (5), Proposition can be proved in the same way as the one
in [Co, 7.3]. Take any r-cell $ej\subset K$ and let $\varphi_{j^{r}}$ : $I_{j}^{r}\rightarrow K-K_{j}$ be the characteristic
map of $e_{j^{r}}$ such that $\varphi_{j^{r}}(\partial I_{j}^{r})\subset K^{(r- 1)}\subset L$ (the r-cell is indexed as $ I\int$ ). When
$e_{j^{r}}\subset K_{j+1}-K_{l}$ , the condition (5) guarantees that there exists a map $F_{j}$ :
$I\int^{+1}\rightarrow K_{i+1}^{(r+1)}-K_{j- 1}$ such that
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$F_{j}|I_{j}^{r}\times 0=\varphi_{j}^{r},$ $F_{j}(I\int\times 1)\subset L-K_{j-1}$ ,
(6)

$F_{j}|\partial I_{j}^{r}\times t=\varphi_{j}^{r}|\partial I_{j}^{r}$ for each $t$ , and $F_{j}(\partial I_{j}^{r+1})\subset K^{(r)}$ .

Let $P=K\cup\bigcup_{F},$ $I\int^{+2}$ , then one can define a proper $CE$ map $\varphi:P\rightarrow K$ induced by

the natural collapse $I_{j}^{r+2}\rightarrow I\int^{+1}\times 0$ .

Let $\psi:K\oplus\oplus_{j}I_{j}^{r+2}\rightarrow P$ be the quotient map and let $E_{j}^{r+1}=\psi(J_{j}^{r+1})$ . Define $P_{0}$

by

$P_{0}=L\cup\bigcup_{j}e_{j^{r}}\cup E_{j}^{r+1}$

It is easy to construct a $CE$ retraction $g:P_{0}\rightarrow L$ . Let $Q=P\bigcup_{g}L$ . The condition

(6) guarantees that the collection of $(r+])$ -cells involved in the above construction
is locally finite, so the same proof as the one of [Co, 1.9] works to produce a
locally compact $CW$ complex $Z_{1}$ which admits proper $CE$ maps onto both of $P$

and $Q$ . Then $Z_{1}$ admits a proper $CE$ map onto $K$ as well.
Since $\dim$ $ K<\infty$ , repeating the above process finitely many times, one

obtains the desired complex $Z$ and proper $CE$ maps. This completes the outline of
the proof of Proposition.

3. Proof of Main Theorem.

For any $PL$ n-manifold $M^{ll}$ , for any $l\geq 1$ and for any $k$ with $2k+3\leq n$ , there

exists a proper $UV^{k}$ map $f:M\rightarrow M\times D^{\prime}$ such that $proj\circ f$ is properly homotopic

to $id_{M}$ , where proj: $M\times D^{(}\rightarrow M$ is the projection ([Ce], $[F_{3}]$ ). The same proof
as $[F_{3}]$ then can be adapted to prove the following result with a minor change.

PROPOSITION 3.1. (cf. $[B$ , Appendix] and $[F_{3}$ , Theorem 2]). Let $f:M^{ll}\rightarrow B$

be a proper map of a $PL$ n-manifold $M$ to a locally compact polyhedron $B$ .
Suppose that $f$ induces a surjection between ends of $M$ and $B$ and $f$ is $(k+l)-$

connected and $(k+l)$ -connected at infinity. If $2k+3\leq n$ , there exists a proper
$UV^{k}$ -map $g:M\rightarrow B$ which is properly homotopic to $f$.

PROOF. Since $f$ induces a surjection between ends, by Lemma 2.3, there
exist a $CW$ complex $M^{*}$ and a proper $CE$ map $c;M(f)\rightarrow M^{*}$ such that $M^{*}$

contains $M,$ $M\supset(M^{*})^{(0)}$ , and $c|M=id$ . Clearly, $(M^{*},M)$ is $(k+1)$ -connected and
$(k+1)$ -connected at infinity. Applying Proposition 2.4 to $(M^{*},M)$ , there exists a
locally compact $CW$ complex $Q$ such that

(1) $Q$ is obtained from $M$ by attaching cells of dimension $\geq k+2$ , and
(2) there exist a locally compact $CW$ complex $Z$ containing $M$ and proper $CE$
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maps $u:Z\rightarrow M^{*}$ and $v:Z\rightarrow Q$ such that $u|M=id$ and $v|M=id$ .
Take the pullback $M^{**}$ of $u$ and $c$ and let $S:M^{**}\rightarrow M(f)$ and $t:M^{**}\rightarrow Z$

be the projections. Notice that both of $s$ and $t$ are proper $CE$ maps. Let
$\overline{Q}^{1j)}=Q^{(j)}\cup M$ $(k+2\leq j\leq\dim Q=\dim M^{*})$ . As in [ $F_{\urcorner}$ , Theorem 2], one can
construct a finite dimensional locally compact $CW$ complexes $L$ and a proper $CE$

map $a:L\rightarrow M$ and a $UV^{k}$ -map $b:L\rightarrow Q$ (use the induction on j) such that
$i_{M,Q}\circ a$ is properly homotopic to $b$ , where $i_{M.Q}$ is the inclusion $M\rightarrow Q$ .

Again take the pullback $J$ of $v\circ t;M^{*}\rightarrow Q$ and $b:L\rightarrow Q$ and let $d:J\rightarrow L$

and $e:J\rightarrow M^{**}$ be the projections. The map $d$ is a proper $CE$ map and $e$ is a
proper $UV^{k}$ -map. As in [ $F_{3}$ , Theorem 2], for sufficiently large $\ell$ , there exists a
proper $CE$ map $r:M\times D^{\ell}\rightarrow J$ such that $a\circ d\circ r$ is properly homotopic to the
projection proj: $M\times D^{\ell}\rightarrow M$ . Applying Cernavskii’s Theorem mentioned at the
beginning of this section, we can construct a proper $UV^{k}$ -map $q:M\rightarrow M\times D^{\ell}$

such that $proj\circ q$ is properly homotopic to id. Let $\varphi:M\rightarrow B$ be a $UV^{k}$ -map
defined by $\varphi=c(f)\circ s\circ e\circ r\circ q$ . Let $i:M\rightarrow M(f)$ be the inclusion, then we can
see that $i$ is properly homotopic to $s\circ e\circ r\circ q$ . Therefore, $f=c(f)\circ i$ is properly
homotopic to $\varphi$ .

This completes the proof.
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Let $f:X\rightarrow Y$ be a map between locally compact separable metric spaces
and let $\epsilon:Y\rightarrow(O, 1$ ] be a continuous function. The map $f$ is called an $AL^{\Lambda}(\epsilon)$ -map
if for any locally compact polyhedral pair $(P,Q)$ with $dimP\leq k$ and for any pair
of maps $\alpha_{0}$ : $Q\rightarrow X$ and $\alpha:P\rightarrow Y$ such that $\alpha|Q=f\circ\alpha_{1)}$ , there exists an exten-
sion $\overline{\alpha}:P\rightarrow X$ of $\alpha_{()}$ such that $d(f\circ\overline{\alpha}(x),\alpha(x))<\epsilon(\alpha(x))$ for each $x\in P$ .

The proof of [ $F_{4}$ , Theorem 8.1] directly generalizes to prove the following
result.

PROPOSITION 3.2. Let $B$ be a locally compact polyhedron. For each
continuous function $\epsilon:B\rightarrow(O, 1$ ], there exists a continuous function $\delta:B\rightarrow(O,1$ ]

such that

for each $k$ with $2k+3\leq n$ and for each $AL^{k+1}(\delta)$ map $f:M^{fl}\rightarrow B$ of a $PL$ n-

manifold $M$ to $B$ , there exists a proper $UV^{k}$ -map $\varphi:M\rightarrow B$ which is properly
$\mathcal{E}$ -homotopic to $f$.

Using Proposition 3.1 and 3.2, the proof of Main Theorem proceeds in the
same way as in [K]. We briefly sketch the proof.

SKETCH $0F$ THE PROOF OF MAIN THEOREM. Let $f:X\rightarrow Y$ be a proper map
between finite dimensional locally compact polyhedra which induces surjection
between the ends, an isomorphism between the i-th homotopy groups and the i-th
homotopy groups of the ends for each $i\leq n$ .

Embed $X$ into an Euclidean space of high dimension and take a regular
neighbourhood $M$ . We may assume $t$ hat $M$ is a $PL$ manifold with $\dim M=$

$2\max(n,\dim X)+3$ which admits a proper CE retraction onto $X$ . In the sequel,
we assume that $X=M$ for simplicity. Notice that $f$ is n-connected and n-
connected at infinity. Apply Proposition 3.1 to replace $f$ by a $UV^{l1-1}$ -map which is
denoted by the same symbol $f$. Take a continuous function $\delta:Y\rightarrow(O, 1$ ] such that

(1) any $AL^{\prime\iota+1}(\delta)$ -map $g:L\rightarrow Y$ , where $L$ is a $PL$ manifold of $\dim\geq 2n+3$ ,

is properly homotopic to a $UV^{Jl}$ -map (Use Proposition 3.2 and the ANR property
of $Y$).

As in [K], we can attach at most countably many $(n+1)$ -cells to $M$ to obtain a
$PL$ manifold $\underline{M}$ and an extension $\underline{f}:\underline{M}\rightarrow Y$ which is an $AL^{ll+1}(\delta)$ -map. By the
choice of $\delta,(1)$ , there exists a $UV^{\prime\prime}$ -map $\varphi:M\rightarrow Y$ which is properly homotopic
to $\underline{f}$ .

Next we attach at most countably many $(n+2)$ -cells to $\underline{M}$ to obtain a $PL$

manifold $M^{*}$ which admits a proper $CE$ retraction $r:M^{*}\rightarrow M$ onto $M$ . Attach
$(n+2)$ cells to $Y$ using $\varphi$ to obtain a polyhedron $Y^{*}$ , so that $\varphi$ naturally extends to
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$\varphi^{*}:$ $M^{*}\rightarrow Y^{*}$ . Applying [ $F_{1}$ , Lemma 2.1], we can construct a proper $CE$ map
$c:Y^{\wedge}\rightarrow Y$ and a $UV^{ll}$ -map $u:Y^{\wedge}\rightarrow Y^{*}$ of a locally compact polyhedron $Y^{\wedge}$ such
that $i_{YY^{*}}\circ c$ is properly homotopic to $u$ and $u$ has at most countably many non-
contractible fibres all of which are homeomorphic to $S^{ll+1}(i_{YY^{*}}$ is the inclusion
$Y\rightarrow Y^{*})$ . Take the pullback $Z$ of $\varphi^{*}$ and $u$ and let $v:Z\rightarrow M^{*}$ and $w:Z\rightarrow Y^{*}$

be the projections. Then $Z,$ $\alpha=r\circ v$ and $\beta=c\circ w$ are the required maps.
This completes the proof.

Since proper $UV^{l1}$ -maps between $(n+1)$ -dimensional locally compact ANR’s
are proper n-homotopy equivalences ([Ch]), we have the following corollary.

COROLLARY. Let $f:M\rightarrow N$ be a proper map between at most $(n+1)-$

dimensional locally compact ANR’s. Then $f$ is a proper n-homotopy equivalence
if and only if $f$ is n-homotopic to a proper $UV^{\prime l}$ -map.
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