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A QUADRIC REPRESENTATION OF
PSEUDO-RIEMANNIAN PRODUCT IMMERSIONS

By

Angel FERR\’ANDEZ, Pascual LUCAS and Miguel A. MERO\~NO

Abstract. In this paper we introduce a quadric representation $\varphi$

of the product of two pseudo-Riemannian isometric immersions. We
characterize the product of submanifolds whose quadric represen-
tation satisfies $ffl_{\varphi}=W_{\varphi}$ , for a real constant $\lambda$ , where $H_{\varphi}$ is the
mean curvature vector field of $\varphi$ . As for hypersurfaces, we prove
that the only ones satisfying that equation are minimal products as
well as products of a minimal hypersurface and another one which
has constant mean and constant scalar curvatures with an appropriate
relation between them. In particular, the family of these surfaces
consists of $H^{2}$ (-l)and $S^{1}(2/3)\times H^{1}(-2)$ in $S_{1}^{3}(1)$ and $S_{1}^{2}(1),H_{1}^{1}(-2/$

$3)\times S^{1}(2),$ $S_{1}^{1}(2)\times H^{1}(-2/3)$ and a B-scroll over a null Frenet curve
with torsion $\pm\sqrt{2}$ in $H_{1}^{3}(-1)$ .

0. Introduction

Let $R_{t}^{m+1}$ be the pseudo-Euclidean space endowed with the standard inner
product of index $t$ given by $\langle a,b\rangle=a^{l}Gb$ , where $G=diag[-1,\cdots,-1,1,\cdots,1]$ stands

$\overline{f}\mp_{m-t1}$

for the matrix of the metric with respect to the usual rectangular coordinates. Let
us now denote by $\overline{M}_{\mu}^{m}(k)$ a pseudo-Riemannian manifold of dimension $m$ , index
$\mu$ and constant curvature $k$ and SA$(m+1,t)$ the set of selfadjoint endomorphisms
of $R_{t}^{m+1}$ equipped with the metric $g(A, B)=(k/2)trace(AB)$ . Let $ f:\overline{M}_{\mu}^{m}(k)\rightarrow$

$SA(m+1,t)$ be the map defined by $f(p)=pp^{l}G$ . Then given an isometric
immersion $x:M[\rightarrow\overline{M}_{\mu}^{m}(k)$ the map $\varphi:M\oint\rightarrow SA(m+1,t)$ defined by $\varphi=f\circ\chi$ is
also an isometric immersion which will be called the quadric representation of
$M/$ . Then in [16] we have classified pseudo-Riemannian surfaces whose quadric
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representation satisfies a characteristic differential equation involving the
Laplacian. Since that Laplacian equation yields isoparametric surfaces, we
showed that family is made up by pseudo-Riemannian standard products and
totally geodesic surfaces. We were able to distinguish the products
$H^{1}(2k)\times H^{1}(2k)\subset H_{1}^{3}(k),k<0,and$ $S_{1}^{1}(2k)\times S_{1}^{1}(2k)\subset S_{1}^{3}(k),k>0$ , as the only
minimal not totally geodesic surfaces into $H_{1}^{3}(k)$ and $S_{1}^{3}(k)$ , respectively, whose
quadric representation satisfies that Laplacian equation. Then we extended the
characterization of the Clifford torus given by Barros and Garay ([4], [5]).

As standard products play a chief role in that classification problem, we are
going to find a quadric representation for pseudo-Riemannian product sub-
manifolds into indefinite space forms.

Let $S_{\mu}^{m}(k)(k>0)$ and $H^{n,}(k)(k<0)$ be the pseudo-Euclidean hypersurfaces
of constant curvature $k$ given by

$S_{\mu}^{\prime\prime \mathfrak{l}}(k)=\{x\in R_{\mu^{n+}}^{l}|$ : $\langle x,x$ } $=\frac{1}{k}\}$

and

$H_{V}^{ll}(k)=\{x\in R_{1+}^{ll+_{1}1}$ : $\langle x,x\rangle=\frac{1}{k}\}$ ,

respectively. We will refer them as the hyperquadrics of constant curvature $k$ .
We consider a map $f$ from the pseudo-Riemannian product $\overline{M}_{\mu}^{m}(k)\times\overline{N}_{v}^{n}(k)$ of two
hyperquadrics of constant curvature $k$ into the space of real $(m+1)\times(n+1)$

matrices $\mathfrak{M}$ which is an isometric immersion. General properties of this map are
obtained, for instance, $f$ is an isometric immersion of l-type (in the sense of
B.Y. Chen) and the associated eigenvalue is $k(m+n)$ (see Section 1).

Let us recall Chen’s definition of type (see [7]). Let $M_{c}^{j}$ be a pseudo-
Riemannian submanifold of $R^{m+1}$ and $\Delta$ the Laplacian on $M_{\iota}^{j}$ . Then $M_{c}^{j}$ is said
to be of finite type if the position vector $X$ of $M/$ in $R^{m+1}$ has the following form

$X=X_{0}+\sum_{i=1}^{r}X_{j}$ , $\Delta X_{j}=\lambda_{j}X_{j}$ ,

where $X_{0}$ is a constant map and $\lambda_{j}$ is an eigenvalue of $\Delta$ . If all eigenvalues are
mutually different $M!$ is said to be of r-type. If $M!$ is of r-type and one of the $\lambda_{j}$

is zero, $M!$ will be said of null r-type. $M_{\iota}^{j}$ is said to be of infinite type if it is not
of finite type.

Given isometric immersions $x:M;\rightarrow\overline{M}_{\mu}^{m}(k)$ and $y;N_{d}^{\prime}\rightarrow\overline{N}_{1^{\prime}}^{n}(k)$ , we define
a new isometric immersion $\varphi:M!\times N_{d}^{\ell}\rightarrow \mathfrak{M}$ by $\varphi=f(x,y)$ . Throughout this
paper the immersion $\varphi$ will be called the quadric representation of the product
immersion $(x, y)$ .
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In a series of early papers ([2], [3], [14], [15]) we have pointed out

substantial differences between definite and indefinite Riemannian submanifolds
with regard to the spectral behaviour of the mean curvature vector field. We have

shown indeed many examples of submanifolds into indefinite space forms without

counterparts into definite space forms. The key point concerns to the

diagonalizability of the shape operator. Now, in dealing with $\varphi$ , we state the
following problem:

Could you determine the shape of $M_{c}^{j}$ and $N_{d}^{\ell}$ into the corresponding
hyperquadrics via the quadric representation of the product $M_{c}^{j}\times N_{d}^{\ell}$ ?

In trying to solve this question, we will study the spectral behaviour of the
mean curvature vector field $H_{\varphi}$ of $\varphi$ . Actually we wish to know what kind of
geometric information about $M_{c}^{j}$ and $N_{d}^{\ell}$ could arise from the Laplacian equation
$M_{\varphi}=W_{\varphi}$ . We guess this condition will play a chief role in solving that problem,
because we already know the characterization of hypersurfaces satisfying that
equation into indefinite space forms (see [14], [15]). As for the Chen-type of a
submanifold, it is well known that a equation like $\Delta H=\lambda H$ allows to reach only
up to submanifolds of 2-type with a zero eigenvalue (the so called null 2-type)

(see [2]). However, for our quadric representation $\varphi$ , the corresponding equation
$M_{\varphi}=\lambda H_{\varphi}$ yields 2-type immersions (see Theorem 5).

Some interesting consequences can be mentioned. Let $(x,y)$ be a pseudo-
Riemannian product of hypersurfaces. Then $ffl_{\varphi}=\lambda H_{\varphi}$ if and only if one of them

is minimal and the other one has constant mean and constant scalar curvature with
an appropriate relation between them. However the case $\lambda=0$ deserves a special
attention. In fact, from the Beltrami equation $\Delta x=-nH$ , we get $\Delta^{2}x=-n\Delta H$ , so
that the mean curvature vector field is harmonic, that is, $\Delta H=0$ if and only if
$A\mathfrak{r}^{2}=0$ . Then B.Y. Chen called such submanifolds biharmonic submanifolds
and stated the following conjecture [8]: The only biharmonic submanifolds in
Euclidean spaces are the minimal ones. In early papers [3, 14, 15] we have found
that, among others, the flat totally umbilic hypersurfaces are counterexamples to

that conjecture into indefinite ambient spaces. However, the products of two flat
totally umbilic hypersurfaces via the quadric representation are not biharmonic.
In fact, we have shown that those products are the only ones satisfying the
equation $\mathfrak{M}_{\varphi}=C,$ $C$ being a nonzero constant vector in the normal bundle.
Finally, by using the quadric representation of a pseudo-Riemannian product, we
are able to give a new non-existence result: There is no $pseudo- Riemannia1^{1}$

product of surfaces with biharmonic quadric representation.
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1. General properties of a product immersion

Let $\overline{M}_{\mu}^{m}(k)$ and $\overline{N}_{\iota}^{ll}(k)$ be two hyperquadrics of non-zero constant curvature
$k$ standardly embedded in $R_{l}^{m+1}$ and $R_{\backslash }^{\prime l+1}$ respectively. We can define an
immersion $f$ from the pseudo-Riemannian product $\overline{M}_{u}^{m}(k)\times\overline{N}^{n}’(k)$ into the space
of real $(m+1)\times(n+])$ matrices $\mathfrak{M}$ by

$f$ : $\overline{M}_{\mu}^{m}(k)\times\overline{N}_{\nu}^{n}(k)\rightarrow \mathfrak{M}$

$(p,q)\rightarrow p\otimes q$

where $\otimes:R_{l}^{\prime\prime\prime+1}\times R_{\backslash }^{\prime\iota+1}\rightarrow \mathfrak{M}$ is given by $u\otimes\nu=G_{1}uv^{\prime}G_{2},G_{1}$ and $G_{2}$ standing for the
matrices of the standard metrics on $R^{\prime n+1}$ and $R_{\backslash }^{ll+1}$ , respectively. We abbreviate

$\overline{M}_{\mu}^{\prime\prime 1}(k)$ and $\overline{N}_{1}^{l1}(k)$ as $\overline{M}_{\mu}^{m}$ and $\overline{N}_{I}^{\prime}’$ .
To study general properties of $f$, we proceed as follows. Given

$(p,q)\in\overline{M}_{\mu}^{m}\times\overline{N}^{n}$ and $(X_{\rho}, Y_{q})\in T_{(\rho,q)}(\overline{M}_{\mu}^{m}\times\overline{N}^{n})$ , there are curves $\alpha:I\subset R\rightarrow\overline{M}_{\mu}^{m}$

and $\beta:J\subset R\rightarrow\overline{N}^{n}$ such that $a(O)=p,\alpha^{\prime}(O)=X_{\rho},\beta(O)=q$ and $\beta^{\prime}(0)=Y_{q}$ . To
compute the differential of $f$ we have

$df_{t\rho.q)}(X,,, X_{q})=\frac{d}{dt}|_{l=()}f(\alpha(r),\beta(r))=\frac{d}{dr}|_{=t)}\alpha(t)\otimes\beta(r)$

$=\frac{d}{dt}|_{l=0}\alpha(t)\otimes\beta(0)+\alpha(0)\otimes\frac{d}{dt}|_{l=0}\beta(t)$

$=X_{\rho}\otimes q+p\otimes Y_{q}$

Therefore, for short, we write down

$df(X, Y)=X\otimes q+p\otimes Y$ .

Let $\tilde{\nabla}$ be the usual flat connection on $\mathfrak{M}$ . Let (V, $W$ ) be a vector field on
$\overline{M}_{\mu}^{m}\times\overline{N}^{n}$ and take a point $(p,q)\in\overline{M}_{\mu}^{m}\times\overline{N}^{n}$ , a tangent vector $(X_{p}, Y_{q})$ and curves
$\alpha(t)$ and $\beta(r)$ as before. Then for the covariant derivative we have

$\tilde{\nabla}_{df(\chi.\gamma,)}df(V,W)=\frac{d}{dt}|_{=0}df_{(\alpha t\prime).\beta(f))}(V_{\alpha(l)},W_{\beta t)})$

$=\frac{d}{dt}|_{l=0}(V(\alpha(t))\otimes\beta(t)+\alpha(r)\otimes W(\alpha(r)))$

$=\frac{d}{dt}|_{t=0}V(\alpha(t))\otimes\beta(0)+V(\alpha(0))\otimes\frac{d}{dt}|_{t=0}\beta(t)$

$+\frac{d}{dt}|_{\iota=0}a(t)\otimes W(\beta(0))+\alpha(0)\otimes\frac{d}{dt}|_{t=0}W(\beta(t))$

$=\overline{\nabla}_{\chi_{\rho}}^{1}V\otimes q+V_{\rho}\otimes Y_{q}+X_{\rho}\otimes W_{q}+p\otimes\overline{\nabla}_{Yq}^{2}W$ ,
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where $\overline{\nabla}^{1}$ and $\overline{\nabla}^{2}$ are the usual flat connections on $R_{l}^{m+}$ and $R_{t}^{n+1}$ , respectively.

By using now the Gauss equation

$\overline{\nabla}_{\chi_{p}}^{1}V=\nabla_{\chi_{\rho}}^{1}V-k\langle X_{p}, V_{p}\rangle p$ ,

$\overline{\nabla}_{Yq}^{2}W=\nabla_{Yq}^{2}W-k\{Y_{q}, W_{q}\}q$ ,

$\nabla^{1}$ and $\nabla^{2}$ being the Levi-Civita connections on $\overline{M}_{\mu}^{m}$ and $\overline{N}^{n}$

’
, respectively, we

have

$\tilde{\nabla}_{df(X_{p},Y_{q})}df(V, W)=df(\nabla_{X}^{1}V,\nabla_{Y}^{2}W)+V\otimes Y+X\otimes W$

(1.1)
$-k\{\langle X, V\rangle+\langle Y, W\rangle\}f$ ,

where, as usually, $\langle,\rangle$ denotes the metric.
Let $\tilde{g}$ be the metric in $\mathfrak{M}$ defined by $\tilde{g}(A, B)=k$ tr $(G_{1}AG_{2}B^{t})$ , for $A,$ $B\in \mathfrak{M}$ ,

then $f$ becomes an isometric immersion. Notice that $\mathfrak{M}$ , endowed with $\tilde{g}$ , is
isometric to a pseudo-Euclidean space of index $t(n+1-s)+s(m+1-t)$ or $(m+1)$

$(n+1)-s(m+1)-t(n+1)+2st$ , provided that $k>0$ or $k<0$ , respectively. Then it
is easy to see that

$\tilde{g}(X\otimes V, Y\otimes W)=k\langle X, Y\rangle\langle V, W\rangle$ . (1.2)

Now, a straightforward computation from (1.1) allows us to obtain the second
fundamental form $\tilde{\sigma}$ of $f$

$\tilde{\sigma}((X, Y),(V, W))=V\otimes Y+X\otimes W-k\{\langle X, V\rangle+\langle Y, W\rangle\}f$ . (1.3)

We are going to get the mean curvature vector field $H_{f}$ of $f$. To do that, let
$\{E_{1},\ldots, E_{m}\}$ and $\{F_{1},\ldots, F_{n}\}$ be local orthonormal frames of $\overline{M}_{\mu}^{m}$ and $\overline{N}_{\nu}^{n}$ ,

respectively. Then $\{(E_{1},0),\ldots,(E_{m},0),(0, F_{1}),\ldots,(0, F_{n})\}$ is a local orthonormal
frame of $\overline{M}_{\mu}^{m}\times\overline{N}_{v}^{n}$ . From (1.3) we find

$\tilde{\sigma}((E_{j},0),(E_{j},0))=-k\epsilon_{j}f$ ,

$\tilde{\sigma}((0, F_{j}),(0,F_{j}))=-k\eta_{j}f$ ,

where $\epsilon_{i}=\langle E_{i},E_{i}$ } and $\eta_{j}=\langle F_{j},$ $F_{j}$ }. Therefore

$H_{f}=\frac{1}{m+n}(i=\sum_{1}^{m}\epsilon_{j}\tilde{\sigma}((E_{j},0),(E_{i},0))+\sum_{j=1}^{n}\eta_{j}\tilde{\sigma}((0, F_{j}),(0, F_{j})))$ (1.4)

$=-kf$ .

From here and the Beltrami equation $\Delta f=-(m+n)H_{f}$ we obtain the following
interesting result.
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PROPOSITION 1. The isometric immersion $f:\overline{M}_{\mu}^{\prime}\times\overline{N}_{\iota}^{\prime 1}\rightarrow\backslash j$) $l$ is of l-type
with associafed eigenvalue $k(m+n)$ , that is, $\Delta f=k(m+n)f$ .

As a consequence of pseudo-Riemannian version of Takahashi’s theorem ([7]

and [20]) we have the following.

COROLLARY 2. The isometric immersion $f$ is minimal in the hyperquadric of
$\mathfrak{M}$ given by $\{A\in \mathfrak{M};\tilde{g}(A,A)=k^{-1}\}$ .

2. The quadric representation

Let $x:M\int\rightarrow\overline{M}_{\mu}^{m}\subset R^{m+1}$ and $y:N_{d}^{\prime}\rightarrow\overline{N}_{\iota^{\prime}}^{n}\subset R_{\backslash }^{n+1}$ be two isometric
immersions and let $\varphi:M\int\times N_{d}^{\prime}\rightarrow \mathfrak{M}$ be the isometric immersion defined by
$\varphi(p,q)=f(x(p),y(q))$ . From now on, $\varphi$ will be called the quadric representation

of the pseudo-Riemannian product immersion $(x,y)$ .
We are going to get properties of $x$ and $y$ coming from those of $\varphi$ . To do that,

let H. and $H_{v}$ be the mean curvature vector fields of $x$ and $y$ , respectively. Let
$\overline{H}_{X}$ and $\overline{H}_{v}$ be the mean curvature vector fields in the corresponding pseudo-
Euclidean ambient spaces. Since the hyperquadrics are totally umbilic we have

$\overline{H}_{X}=H_{X}-k\mathfrak{r}$ , $\overline{H}_{t}=H,$ $-ky$ .

Let $\sigma_{X}$ and $\sigma_{\}}$ be the second fundamental forms associated to $x$ and $y$ ,

respectively. Then the second fundamental form of $\varphi$ can be written as
$\sigma_{\varphi}=df(\sigma_{X},\sigma\rangle)+\tilde{\sigma}$ .

Our first goal is to characterize the product immersions $(x,y)$ whose quadric
representation $\varphi$ is of l-type. Bearing in mind the above relation among the
second fundamental forms, we have

tr $(\sigma_{\varphi})=df$(tr $(\sigma_{X}),$ $O$ ) $-kj\varphi+df$( $O$ , tr $(\sigma_{v})$ ) $-k\ell\varphi$

$=df$( $tr(\sigma_{X})$ , tr $(\sigma_{v})$ ) $-k(j+\ell)\varphi$ .

Then by letting $H_{\varphi}$ the mean curvature vector field associated to $\varphi$ we obtain

$(j+\ell)H_{\varphi}=df(jH_{X},\ell H_{v})-k(j+P)\varphi$ . (2.1)

PROPOSITION 3. The quadric representation $\varphi$ of a pseudo-Riemannian
product immersion $(x,y)$ is of l-type if and only if $x$ and $y$ are minimal
immersions. Moreover, the associated eigenvalue is given by $k(j+\ell)$ .
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PROOF. First, if $x$ and $y$ are minimal, from (2.1) and the Beltrami equation
$\Delta\varphi=-(j+P)H_{\varphi}$ we easily deduce that $\Delta\varphi=k(j+P)\varphi$ .

Assume now that $\varphi$ satisfies the equation
$\Delta\varphi=\lambda(\varphi-\varphi_{0})$ , $\lambda\in R$ ,

where $\varphi_{0}\in \mathfrak{M}$ is a constant matrix. By using again Beltrami equation and (2.1)

we find

$\lambda\varphi_{0}=df(jH_{X}, PH_{v})+\{\lambda-k(j+\ell)\}\varphi$ . (2.2)

Now, let $V\in X(M_{c}^{j})$ , take covariant derivative in (2.2) and use (1.1) to obtain

$ 0=\tilde{\nabla}_{df(V,0)}df(jH_{X}, \ell H_{v})+\{\lambda-k(j+\ell)\}\tilde{\nabla}_{df(V,0)}\varphi$ (2.3)

$=df(j\nabla_{V}^{1}H_{X}, 0)+\ell V\otimes H_{y}+\{\lambda-k(j+P)\}V\otimes y$

$=j\nabla_{V}^{1}H_{X}\otimes y+\ell V\otimes H_{y}+\{\lambda-k(j+P)\}V\otimes y$ .

Since this can be viewed as an endomorphism on $R_{1}^{n+1}$ , we apply it to $y$ to get
$0=k^{-1}jG_{1}(\nabla^{1}{}_{V}H_{X})+k^{-1}\{\lambda-k(j+P)\}G_{1}V$ and then

$\nabla_{V}^{1}H_{X}=\frac{k(j+l)-\lambda}{j}V$ ,

because $G_{1}$ is invertible. Bringing this to (2.3) we deduce that $PV\otimes H_{y}=0$ ,

which implies that $H_{v}=0$ . A similar reasoning, by taking in (2.2) covariant
derivative with respect to a vector field $W\in \mathfrak{X}(N_{d}^{\ell})$ , leads to $H_{X}=0$ and the
proof finishes.

From now on, we will pay attention to the equation

$M_{\varphi}=\lambda H_{\varphi}$ , $\lambda\in R$ . (2.4)

Let $(p,q)$ be a point in $M!\times N_{d}^{(}$ and choose local orthonormal frames
$\{E_{1},\ldots, E_{j}\}$ and $\{F_{1},\ldots, F_{l}\}$ on $M$] and $N_{d}^{1}$ , respectively, such that $\nabla_{E\alpha}^{X}E_{a}(p)=0$ ,

for all $\alpha=1,\ldots,j$ , and $\nabla_{F_{\beta}}^{v},$ $F_{\beta}(q)=0$ , for all $\beta=1,\ldots,l$ , where $\nabla^{X}$ and $\nabla^{v}$ are the
Levi-Civita connections on $ M\oint$ and $N_{d}^{\prime}$ , respectively. From (2.1) we easily get

$(j+\ell)H_{\varphi}=j\overline{H}_{X}\otimes y+p_{X}\otimes\overline{H}_{v}$ .

Taking covariant derivative here we obtain at $(p,q)$

$\tilde{\nabla}_{df(E_{\alpha},0)}\tilde{\nabla}_{df(E_{\alpha},0)}(j+\ell)=jy\overline{\nabla}_{E_{\alpha}}^{I}\otimes\overline{H}_{v}$

$=j\overline{\nabla}_{E_{\alpha}}^{1}\overline{\nabla}_{E_{\alpha}}^{1}\overline{H}$. $\otimes y+l\overline{\sigma}_{\chi}(E_{\alpha},E_{\alpha})\otimes\overline{H}_{v}$

and
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$\tilde{\nabla}_{d/|().P_{\beta})}\tilde{\nabla}_{c//|().f_{\beta})}(j+\ell)H_{\varphi}=j)$

where $\overline{\sigma}_{r}$ and $\overline{\sigma}_{1}$ are the second fundamental forms of $ M\int$ and $N_{d}^{\prime}$ in $R_{l}^{\prime n+}|$ and
$R_{\backslash }^{\prime 1+}|$ respectively. Therefore we have

$(j+P)M_{\varphi}=j\Delta\overline{H}_{X}\otimes y+\ell x\otimes\Delta\overline{H}_{\backslash }-2j\ell\overline{H}_{X}\otimes H.$ (2.5)

By assuming that $M_{\varphi}=m_{\varphi}$ , we obtain from (2.5) that

$j\Delta\overline{H},$ $\otimes y+Px\otimes\Delta\overline{H}_{1}-2jP\overline{H}_{r}\otimes\overline{H}_{1}=\lambda(j\overline{H}_{\iota}\otimes y+\ell x\otimes\overline{H}_{1})$ , (2.6)

which we apply to $y$ to get

$jk^{-1}G_{1}\Delta\overline{H}_{X}+\ell\langle\Delta\overline{H}_{v},y\rangle G_{1}x-2j\ell\{\overline{H}\}y\rangle G_{1}H$. $=\lambda jk^{-1}G_{1}H$. $+\lambda\ell\langle\overline{H}_{v},y$ } $G_{1}x$ .

As \langle $\overline{H}_{v},y$ } $=-1$ and $G_{1}$ is invertible, the above equation writes as
$jk^{-1}\Delta\overline{H}_{X}+j(2\ell-\lambda k^{-1})\overline{H}_{X}+\ell(\lambda+\{\Delta\overline{H}_{v},y\})x=0$ . (2.7)

A similar reasoning by applying to $x^{t}$ leads to

$\ell k^{-1}\Delta\overline{H}_{\iota}+P(2j-\lambda k^{-1})\overline{H}_{\iota}+j(\lambda+\{\Delta\overline{H}_{X},x\rangle)y=0$ . (2.8)

By multiplying now the above equation by $y$ we find

$k^{-1}(j\langle\Delta\overline{H}_{X},x\rangle+\ell\langle\Delta\overline{H}, ,y\rangle)+\lambda k^{-1}(\ell+j)-2\ell j=0$ . (2.9)

From (2.9), the following useful lemma can be easily obtained.

LEMMA 4. If the quadric representation $\varphi$ of a pseudo-Riemannian product
immersion $(x, y)$ satisfies the equation $M_{\varphi}=m_{\varphi}$ , then the functions $c_{X}=$

$\{\Delta\overline{H}_{X},x\}$ and $c_{\backslash }=\langle\Delta\overline{H}$

)
$y$ } are both constant and related by (2.9).

Now next theorem can be proved.

THEOREM 5. Let $\varphi:M!\times N_{d}^{\ell}\rightarrow \mathfrak{M}$ be the quadric representation of a
pseudo-Riemannian product $(x,y)$ , where $x:M!\rightarrow\overline{M}_{\mu}^{m}$ and $y:N_{d}^{\prime}\rightarrow N_{\nu}^{n}$ are
isometric immersions. Then $\Delta H_{\varphi}=\lambda H_{\varphi}$ for nonzero constant real number $\lambda$ if
and only if one of the following statements holds:

(1) Both $x$ and $y$ are minimal and $\lambda=k(j+\ell)$ ;
(2) $x$ is minimal and $y$ is of l-type with associa $te$ eigenvalue $-kj$ or 2-type

with associated eigenvalues $\lambda-kj$ and-kj, that is, $y=y_{1}+y_{2}(y_{1},y_{2}\neq 0)$ such that
$\Delta y_{1}=-kjy_{1}$ and $\Delta y_{2}=(\lambda-kj)y_{2}$ ;

(3) $y$ is minimal and $x$ is of l-type with associate eigenvalue $-kP$ or 2-type
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with associated eigenvalues $\lambda-k\ell$ and $-k\ell$ , that is, $x=x_{1}+x_{2}(x_{1},x_{2}\neq 0)$ such
that $A\mathfrak{r}_{1}=-kPx_{1}$ and $\Delta \mathfrak{r}_{2}=(\lambda-kP)x_{2}$ .

PROOF. If $H_{X}=0$ and $H_{v}=0$ then we have $\mathfrak{M}_{\varphi}=-k^{2}(j+P)x\otimes y$ and
$H_{\varphi}=-kx\otimes y$ . Therefore we get $\mathfrak{M}_{\varphi}=m_{\varphi}$ , with $\lambda=k(j+P)$ .

If $ M\int$ is minimal in $\overline{M}_{\mu}^{m}$ and $y=y_{1}+y_{2}(y_{1},y_{2}\neq 0)$ such that $\Delta y_{1}=-kjy_{1}$ and
$\Delta y_{2}=(\lambda-kj)y_{2}$ then

$\Delta^{2}y+(2kj-\lambda)\Delta y-kj(\lambda-kj)y=0$ ,

which is the same as (2.8). Then (2.5) implies that $M_{\varphi}=W_{\varphi}$ .
A similar reasoning applies if $N_{d}^{\ell}$ is minimal in $\overline{N}_{v}^{n}$ and $M!$ is of l-type with

associate eigenvalue $-kP$ or 2-type with associated eigenvalues $-kP$ and $\lambda-kl$ .
To prove the converse, bring (2.7) and (2.8) to $M_{\varphi}=M_{\varphi}$ . Bearing in mind

Lemma 4 and $jc_{X}+\ell c_{y}=2kj\ell-\lambda(j+\ell)$ we obtain $H_{X}\otimes H_{y}=0$ . This equation
yields $H_{X}=0$ or $H_{y}=0$ or both simultaneously. Now if, for instance,
$H_{X}\neq 0$ then $\Delta\overline{H}_{v}=-k^{2}p_{y}$ and $c_{V}=-kP$ . Therefore, (2.7) can be rewritten as

$\Delta^{2}x+(2k\ell-\lambda)\Delta\kappa-kP(\lambda-k\ell)x=0$ .

Let $p(t)$ be the polynomial $p(t)=t^{2}+(2kP-\lambda)t-kP(\lambda-k\ell)$ , whose discriminant
is $\lambda^{2}\neq 0$ . Then $p(\Delta)x=0$ and using [11, Proposition 4.3] we have $x$ is of finite
type less than or equal to two. If $x$ is of l-type, then it is totally umbilical and so
with associated eigenvalue $-k\ell$ . If $x$ is of 2-type, then the associated eigenvalues
are the roots of $p(t)$ , that is, $\lambda-k\ell$ and $-k\ell$ . That completes of proof.

Now we are going to analyze when the quadric representation is biharmonic,

that is, $ffl_{\varphi}=0$ . Then we also have that $H_{X}=0$ or $H_{v}=0$ , but not
simultaneously according to Theorem 5. Suppose $N_{d}^{1}$ is minimal in $\overline{N}_{v}^{n}$ , then
$p(\Delta)x=0$ where $p(t)=(t+kP)^{2}$ Hence $x$ should be, according to [11,

Proposition 4.2], of infinite type or of l-type with associated eigenvalue $-kP$ . But
Theorem 5 implies that $x$ should be of infinite type. So the following result has
been shown.

PROPOSITION 6. Let $\varphi:M!\times N_{d}^{(}\rightarrow \mathfrak{M}$ be the quadric representation of a
pseudo-Riemannian product $(x,y)$ , where $x:M\oint\rightarrow\overline{M}_{\mu}^{m}$ and $y:N_{d}^{\ell}\rightarrow\overline{N}_{v}^{n}$ are
isometric immersions. Then $\varphi$ is biharmonic if and only if one of the following
statements holds:

(1) $x$ is minimal and $y$ is of infinite type with $\Delta^{2}y+2kj\Delta y+k^{2}j^{2}y=0$ ;
(2) $y$ is minimal and $x$ is of infinite type with $\Delta^{2}x+2k\ell\Delta x+k^{2}P^{2}x=0$ .
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3. The quadric representation of a product of hypersurfaces

This section is devoted to prove the following major result.

THEOREM 7. Let $x:M^{\prime\prime\prime- 1}\rightarrow\overline{M}_{\mu^{n}}^{\prime}$ and $y:N_{d}^{ll-1}\rightarrow\overline{N}_{1}^{\prime l}$ be hypersurfaces. The
quadric representation $\varphi$ of the pseudo-Riemannian product $(x,y)$ satisfies the
equation $W_{\varphi}=W_{\varphi},$ $\lambda\in R$ , if and only if one of the following $sta$tements holds:

(1) Both $x$ and $y$ are minimal and $\lambda=k(m+n-2)$ .
(2) $x$ is minimal and $y$ has nonzero constant mean curvature $\alpha_{\}}$ and constant

scalar curvature $T_{\}}$ such that

$\left\{\begin{array}{l}\tau_{v}=\frac{l}{m+n-2}\{(n-])^{2}(m+n-3)(k+\epsilon_{v}\alpha_{\iota}^{2})+k(m-l)^{2}\}\\\lambda=k(m+n-2)+\frac{(n-1)^{2}}{m+n-2}\epsilon_{v}\alpha_{Y}^{2}\end{array}\right.$

(3) $y$ is minimal and $x$ has nonzero constant mean curvature $\alpha_{X}$ and constant
scalar curvature $\tau_{X}$ such that

$\left\{\begin{array}{l}\tau_{X}=\frac{1}{m+n-2}\{(m-l)^{2}(m+n-3)(k+\epsilon_{X}a_{X}^{2})+k(n-1)^{2}\}\\\lambda=k(m+n-2)+\frac{(m-1)^{2}}{m+n-2}\epsilon_{X}\alpha_{\chi}^{2}\end{array}\right.$

PROOF. From [7, Lemma 3] we can easily compute the constants $c_{X}$ and $c_{v}$

given in Lemma 4 as
$c_{X}=-(m-1)(k+\epsilon_{X}\alpha_{X}^{2})$ , $c_{v}=-(n-1)(k+\epsilon_{v}\alpha_{v}^{2})$ , (3.1)

where $\epsilon_{X}$ and $\alpha_{X}$ (resp. $\epsilon_{v}$ and $\alpha_{Y}$ ) are the sign and mean curvature of $M_{c}^{m-1}$ in
$\overline{M}_{\mu}^{m}$ (resp. $N_{d}^{n-1}$ in $\overline{N}^{n}’$ ). It follows the constancy of the mean curvatures, and one
of them vanishes according to Theorem 5 and Proposition 6. Assume now that $a_{X}$

is a non vanishing constant, then from (2.7) we have

$(m-1)\Delta\overline{H}_{X}+k(m-1)(2(n-1)-\lambda k^{-1})\overline{H}_{X}+k(n-1)(\lambda-k(n-1))x=0$ .

By using again [7, Lemma 3] we get

tr $(S_{X}^{2})=\lambda-k(m-1)-2k(n-1)$ ,

where $S_{X}$ stands for the shape operator of $M^{m- 1}$ in $\overline{M}_{\mu}^{m}$ . Equating the x-
component we obtain

$0=-k(m-1)^{2}(k+\epsilon_{X}a_{X}^{2})-2k^{2}(m-1)(n-1)-k^{2}(n-1)^{2}+Ak(m+n-2)$ ,
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and then

$\lambda=k(m+n-2)+\frac{(m-1)^{2}}{m+n-2}\epsilon_{X}a_{X}^{2}$ .

Now the Gauss equation implies that

$\tau_{X}=(m-1)^{2}\langle\overline{H}.,\overline{H}_{X}\}-k(m-1)-tr(S_{X}^{2})$

$=(m-1)^{2}(k+\epsilon_{X}a_{X}^{2})+2k(n-1)-\lambda$ ,

and so $\tau_{X}$ is also constant. Moreover, by substituting $\lambda$ in the above equation we
deduce

$(m+n-2)\tau_{\mathfrak{r}}=(m-1)^{2}(m+n-3)(k+\epsilon_{r}\alpha_{r}^{2})+k(n-1)^{2}$ .

The same computation works if we assume that $\alpha_{v}$ is a nonzero constant.
To prove the converse, it suffices to consider case (2) or (3). Let us assume

that $y:N_{d}^{n-1}\rightarrow\overline{N}_{v}^{n}(k)$ is minimal and $x:M_{c}^{m-1}\rightarrow\overline{M}_{\mu}^{m}(k)$ has nonzero constant
mean curvature $\alpha_{X}$ and constant scalar curvature $\tau_{\mathfrak{r}}$ such that

$\left\{\begin{array}{l}\tau_{X}=\frac{1}{m+n-2}\{(m-1)^{2}(m+n-3)(k+\epsilon_{X}\alpha_{X}^{2})+k(n-1)^{2}\}\\\lambda=k(m+n-2)+\frac{(m-1)^{2}}{m+n-2}\epsilon_{X}a_{X}^{2}\end{array}\right.$

By using [7, Lemma 3] we deduce

$\Delta\overline{H}_{X}=(tr(S_{X}^{2})+k(m-1))H_{X}-k(m-1)(\epsilon_{X}a_{X}^{2}+k)x$ .

From the Gauss equation jointly with the formulae for $\lambda$ and $\tau_{X}$ we get

$k(m-1)(\epsilon_{\chi}\alpha_{x}^{2}+k)=\frac{k}{m-1}((m+n-2)\lambda-k(n-1)^{2}-2k(m-1)(n-1))$

tr $(S_{X}^{2})+k(m-1)=\lambda-2k(n-1)$ .

The last three equations lead to

$\Delta^{2}x+(2k(n-1)-\lambda)\Delta\kappa-k(n-1)(\lambda-k(n-1))x=0$ ,

and reasoning as in Theorem 5 we obtain $ffl_{\varphi}=m_{\varphi}$ .
The above theorem contains the characterization of products of hypersurfaces

whose quadric representation is biharmonic $(\lambda=0)$ . In the following result we
extend the harmonicity condition and study the equation $ffl_{\varphi}=C$ , where $C$ is a
constant vector in the normal bundle. First of all, we will show a class of
hypersurfaces whose products satisfy the asked equation with $C\neq 0$ . The
classification of totally umbilic hypersurfaces $x:M_{c}^{m-1}\rightarrow\overline{M}_{\mu}^{m}(k)$ is given in [18,
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Theorem 1.4], and we know that such a hypersurface is an open piece of either a
pseudo-sphere $S^{\prime\prime\iota-1}(1/r^{2})$ , or a pseudo-hyperbolic space $H^{l;\mathfrak{l}-1}(-1/r^{2})$ or $R_{C}^{m-1}$

according to \langle H., $\overline{H}_{t}\rangle$ is positive, negative or zero, respectively. In the last case,

the isometric immersion $x:R_{(}^{\prime n- 1}\rightarrow\overline{M}_{\mu}^{m}(k)\subset R^{m+1}$ is given by $x=f-x_{0},x_{0}$ being
a fixed vector in $R_{l}^{m+1}$ and $f:R^{m- 1}\rightarrow R_{l}^{m+1}$ the function defined by
$f(u_{1},\cdots,u_{m-1})=(q(u),u_{1},\cdots,u_{n-|},,q(u))$ , where $q(u)=a\langle u,u\rangle+\langle u, \nu\rangle+c$ , where $a$

and $c$ are constant real numbers, especially $a\neq 0$ and $v$ is a vector in $R^{m+1}$ . We
will refer this example as a flat totally umbilic hypersurface. It is not difficult to
see that $\Delta r=-2a(m-1)(1,0,\cdots,0,1)$ and so $\Delta\overline{H}_{X}=0$ . Therefore, if
$x:M^{m-1}\rightarrow\overline{M}_{\mu}^{m}(k)$ and $y:N_{d}^{n-1}\rightarrow\overline{N}^{n}(k)$ are two flat totally umbilic
hypersurfaces, there exist two non-zero constants $a$ and $b$ such that $ M_{\varphi}=R\Lambda,\Lambda$

being the following nonzero matrix in $\mathfrak{M}$ :

$\left\{\begin{array}{lllll}1 & 0 & & & 0 -l\\0 & 0 & & 0 & 0\\| & | & \ddots & | & |\\0 & 0 & & 0 & 0\\-l & 0 & & 0 & l\end{array}\right\}$ ,

where $R=-8ab(m-1)(n-1)/(m+n-2)$ .

THEOREM 8. Let $x:M_{c}^{\prime n-1}\rightarrow\overline{M}_{\mu}^{m}$ and $y:N_{d}^{ll-1}\rightarrow\overline{N}^{n}$ be hypersurfaces. The
quadric representation $\varphi$ of the pseudo-Riemannian product $(x,y)$ satisfies the
equation $W_{\varphi}=C,$ $C$ being a constant vector in the normal bundle, if and only if
one of the following statements holds:

(1) $x$ is minimal and $y$ has nonzero constant mean curvature $\alpha_{v}$ and constant
scalar curvature $\tau_{v}$ such that

$\left\{\begin{array}{l}\tau_{v}=k(m-1)(5-2n-m),\\\alpha_{v}^{2}=-\epsilon_{v}k\frac{(m+n-2)^{2}}{(n-1)^{2}},\epsilon_{v}k<0,\end{array}\right.$

and $C=0$ .
(2) $y$ is minimal and $x$ has nonzero constant mean curvature $\alpha_{X}$ and constant

scalar curvature $\tau_{X}$ such that

$\left\{\begin{array}{l}\tau_{X}=k(n-1)(5-2m-n),\\a_{J}^{2}=-\epsilon_{X}k\frac{(m+n-2)^{2}}{(m-l)^{2}},\epsilon_{X}k<0,\end{array}\right.$

and $C=0$ .
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(3) Both $x$ and $y$ are flat totally umbilic hypersurfaces and $ C=R\Lambda$ , for any
$R\neq 0$ , where $\Lambda$ is the matrix given in the above.

PROOF. The sufficiency is a consequence of Theorem 7 and example
exhibited before this theorem.

By using (2.5), $W_{\varphi}=C$ can be rewritten as
$(m+n-2)C=(m-1)\Delta\overline{H}_{X}\otimes y+(n-1)x\otimes\Delta\overline{H}_{Y}-2(m-1)(n-1)\overline{H}_{\chi}\otimes\overline{H}_{v}$ . (3.2)

Then apply (3.2) to $y$ and $W\in \mathfrak{X}(N_{d}^{n-1})$ to obtain

$(m+n-2)Cy=k^{-1}(m-1)G_{1}\Delta\overline{H}_{X}+(n-1)\{\Delta\overline{H}_{v},y\}G_{1}x$ (3.3)

$+2(m-1)(n-1)G_{1}$H.,

$(m+n-2)CW=(n-1)\{\Delta\overline{H}_{Y}, W\}G_{1}x$ . (3.4)

From here, as $\tilde{g}(C,x\otimes W)=0$ , we deduce that $\Delta\overline{H}_{v}$ is normal to $N_{d}^{n-1}$

Therefore, from (3.4), we get $G_{1}Cy=A,$ $A$ being a constant. Then (3.3) writes
as follows

$(m-1)\Delta\overline{H}_{x}=k(m+n-2)A-k(n-1)c_{v}x-2k(m-1)(n-1)\overline{H}_{X}$ , (3.5)

where $c_{y}$ is the function on $N_{d}^{n-1}$ given in Lemma 4, from which we get $c_{y}$ is
constant.

A similar reasoning with $x^{t}$ and $V\in \mathfrak{X}(M_{c}^{m-1})$ , leads $\Delta\overline{H}_{X}$ to be normal to
$M_{c}^{m-1}$ and then

$(n-1)\Delta\overline{H}_{v}=k(m+n-2)B-k(m-1)c_{X}y-2k(m-1)(n-1)\overline{H}_{y}$ (3.6)

where $B=G_{2}C^{l}x$ and $c_{X}$ is constant.
From the above equations the following relation between $c_{X}$ and $c_{v}$ can be

easily obtained

$(m+n-2)\langle A,x\rangle=k^{-1}(m-1)c_{X}+k^{-1}(n-1)c_{y}-2(m-1)(n-1)=(m+n-2)\langle B,y\rangle$ .

From here, jointly with (3.5) and (3.6), we can rewrite (3.2) as follows

$C=k(A\otimes y+x\otimes B)-k^{2}\langle A,x\rangle x\otimes y-2\frac{(m-1)(n-1)}{m+n-2}H_{X}\otimes H_{v}$ . (3.7)

Taking the covariant derivative along $x\otimes W$ here we deduce that

$0=kA\otimes W-k^{2}\langle A,x\rangle_{X}\otimes W-2\frac{(m-1)(n-1)}{m+n-2}H_{X}\otimes\overline{\nabla}_{W}^{2}H_{\}}$ . (3.8)

If $H_{X}=0$ , an easy argument from (3.7) and the above equation yields $C=0$ , then
from Theorem 7 we get (1). If $H_{v}=0$ , then as above we obtain (2). So we can
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assume that $H_{r}\neq 0$ and $H,$ $\neq 0$ .
Let $\xi$ be a vector field normal to $M_{(}^{\prime n- 1}$ in $\overline{M}_{\mu}^{m}$ such that $\{\xi, H_{r}\}\neq 0$ . From

(3.8) we have $\{\xi, H_{r}\}\overline{\nabla}_{w}^{2}H$ . $=k(m+n-2)/(2(m-1)(n-1))\langle A,\xi$ } $W$ , and so

$\langle\xi, H_{X}\}\Delta H_{\iota}=-k\frac{m+n-2}{2(m-1)}\{A,\xi\rangle\overline{H},$ . (3.9)

Now, multiplying the above equation by $y$ we get $k(m+n-2)/(2(m-1))\langle \mathcal{A},\xi\rangle=$

$\langle\xi,H_{X}\rangle(c_{v}+k(n-1)),$ $(3.9)$ brings us
$\Delta\overline{H}_{\backslash }=-c_{\backslash }H.$ (3.10)

A similar reasoning yields to

$\Delta\overline{H}_{X}=-c_{X}\overline{H}_{X}$ . (3.11)

By combining these two equations with (3.5) and (3.6) we deduce

$(c_{X}-2k(n-1))\Delta r+k(n-1)_{C_{\rangle}}x-k(m+n-2)A=0$ ,

$(c_{v}-2k(m-1))\Delta y+k(m-1)c_{X}y-k(m+n-2)B=0$ .

If $c_{\vee}=2k(m-1)$ , then $c_{X}=0$ and $B=0$ . Therefore we obtain that $\Delta\overline{H}_{X}=$

$k(m-1)\overline{H}_{X}$ , which is a contradiction. Assume now that $c_{X}\neq 2k(n-1)$ and
$c_{v}\neq 2k(m-1)$ , then $x$ and $y$ satisfy $\Delta x=ax+b$ and $\Delta y=cy+d$ , where
$a,c\in R,b\in R_{f}^{m+1}$ and $d\in R_{s}^{n+1}$ are constant. From (3.10) and (3.11) we easily get
$a=-c_{X}$ and $c=-c_{v}$ .

From (3.2)

$(m+n-2)C=(m-1)\Delta\overline{H}_{X}\otimes y+(n-1)x\otimes\Delta\overline{H}\}-2(m-1)(n-1)\overline{H}_{X}\otimes\overline{H}_{v}$

$=-(m-1)c_{X}\overline{H}$. $\otimes y-(n-1)c_{\backslash }x\otimes\overline{H}_{\backslash }-2(m-1)(n-1)\overline{H}_{X}\otimes\overline{H}_{v}$

$=c_{X}\Delta x\otimes y+c_{v}x\otimes\Delta y-2\Delta \mathfrak{r}\otimes\Delta y$

$=(ac_{X}+CC_{\}^{-2ac)x}}\otimes y+(c_{X}-2c)b\otimes y+(c, -2a)x\otimes d-2b\otimes d$ .

Take the covariant derivative of $C$

$0=(m+n-2)\tilde{\nabla}_{x\otimes W}C=(ac_{X}+cc_{v}-2ac)x\otimes W+(c_{X}-2c)b\otimes W$ ,

then we get

$(c_{X}-2c)b=-(a+2c)b=0$ . (3.12)

Similarly

$(c_{v}-2a)d=-(2a+c)d=0$ . (3.13)

So
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$(m+n-2)C=-2b\otimes d$ .

Since $H_{X}\neq 0$ and $H_{v}\neq 0,$ $C\neq 0$ and hence $b\neq 0$ and $d\neq 0$ . From (3.12) and
(3.13), $a=0$ and $c=0$ . Therefore the mean curvature vector fields of $M_{c}^{m-1}$ and
$N_{d}^{n-1}$ in the corresponding pseudo-Euclidean spaces are constant.

On the other hand, by using the Beltrami equation we find $\langle\Delta\kappa,x\rangle=-(m-1)$

{ $\overline{H}_{X},x\rangle$ $=(m-1)and$ so $(m-1)=\langle b,x\rangle$ . This shows that $M_{c}^{m-1}$ is contained in a
hyperplane and therefore $M_{c}^{m-1}$ is totally umbilic in $\overline{M}_{\mu}^{m}(k)$ . The same is valid for
$N_{d}^{n-1}$ . Now from [18, Theorem 1.4] we know that $M_{c}^{m-1}$ is an open piece of a
pseudo-sphere $S_{c}^{m-1}(1/r^{2})$ , a pseudo-hyperbolic space $H_{c}^{m-1}(1/r^{2})$ or a flat totally
umbilic hypersurface, but only the latter has constant mean curvature vector field.
The same occurs for $N_{d}^{n-1}$ and so we get (3).

It is worth noticing that this theorem gives a characterization of the products
of two flat totally umbilic hypersurfaces as the only ones satisfying the equation
$W_{\varphi}=C$ , where $C\neq 0$ .

4. The quadric representation of a product of surfaces

We start this section by providing some examples of surfaces, in the De Sitter
space $S_{1}^{3}(1)$ and in the anti-De Sitter space $H_{1}^{3}(-1)$ , such that the quadric
representation of their product with a minimal surface satisfies the equation
$M_{\varphi}=m_{\varphi}$ .

EXAMPLE 9. Let $N_{d}^{2}$ be a minimal surface in $\overline{M}_{1}^{3}(k)$ . Let $M_{c}^{2}$ be a non flat
totally umbilic surface in $\overline{M}_{1}^{3}(k),k^{2}=1$ , such that $\epsilon k=-1,\epsilon$ being the sign of
$M^{2}in\overline{M}_{1}^{3}(k)$ . Then $M^{2}$ is an open piece of $ H_{1}^{2}(-1/r^{2})\subset H_{1}^{3}(-1),S_{1}^{2}(1/r^{2})\subset$

$H_{1}^{3}(-1),H^{2}(-1/r^{2})\subset S_{1}^{3}(1)$ , or $S^{2}(1/r^{2})\subset S_{1}^{3}(1)$ . Then $M_{\varphi}=\lambda H_{\varphi}$ if and only if
$M_{\iota}^{2}$ is an open piece of $H_{1}^{2}(-1)\subset H_{1}^{1}(-1),S^{2}(1)\subset S_{1}^{3}(1),S_{1}^{2}(1)\subset H_{1}^{3}(-1)$ or $H^{2}(-1)$

$\subset S_{1}^{3}(1)$ , where the constant $\lambda$ is given by-4, $4,$ $-2$ and 2, respectively.

EXAMPLE 10. The families of standard products in $\overline{M}_{1}^{3}(k)$ are given by
(i) $S^{1}(1/r^{2})\times S_{1}^{1}(1/(1-r^{2}))\subset S_{1}^{3}(1),$ $1-r^{2}>0$ ,

(ii) $H^{1}(-1/r^{2})\times H^{1}(-1/(-1+r^{2}))\subset H_{1}^{3}(-1),-1+r^{2}>0$ ,

(iii) $S^{1}(1/r^{2})\times H^{1}(1/(1-r^{2}))\subset S_{1}^{3}(1),$ $1-r^{2}<0$ ,

(iv) $S_{u}^{1}(1/r^{2})\times H_{1-ll}^{1}(-1/(1+r^{2}))\subset H_{1}^{3}(-1)$ .

Unless $r^{2}=1/2$ in the families (i) and (ii), those surfaces are of 2-type with
eigenvalues $\{1/r^{2},1/(1-r^{2})\},\{-1/r^{2},-1/(-1+r^{2})\},\{1/r^{2},1/(1-r^{2})\}$ and $\{1/r^{2},-1/$

$(1+r^{2})\}$ , respectively. Let $N_{d}^{2}$ be a minimal surface in $\overline{M}_{1}^{3}(k)$ and $M_{c}^{2}$ a standard
product. Then the quadric representation $\varphi$ satisfies the equation $W_{\varphi}=\lambda H_{\varphi}$ if
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and only if $M_{(}^{2}$ is $S^{1}(2)\times S_{1}^{1}(2)\subset S_{1}^{3}(1),$ $H^{1}(-2)\times H^{1}(-2)\subset H_{1}^{\urcorner}(-1),$ $S^{1}(2/3)\times H^{1}$

$(-2)\subset S_{1}^{3}(1),$ $S_{1}^{1}(2)\times H^{1}(-2/3)\subset H_{1}^{\tau}(-1)$ or $S^{1}(2)\times H_{1}^{1}(-2/3)\subset H_{1}^{7}(-1)$ , where the
constant $\lambda$ is given by $4,$ $-4,8/3,$ $-8/3and-8/3$ , respectively.

EXAMPLE 11. B-scroll over a null curve. Let $c(s)$ be a null curve in
$H_{1}^{\backslash }(-1)\subset R_{2}^{4}$ with an associated Cartan frame $\{A, B, C\}$ , i.e., $\{A, B, C\}$ is a
pseudo-orthonormal frame of vector fields along $c(s)$ ,

$\langle A,A\rangle=\langle B, B\rangle=0$ , $\langle A, B\rangle=-1$ ,

$\langle A, C\rangle=\langle B, C\rangle=0$ , $\langle C,C\rangle=1$ ,

satisfying $\dot{c}(s)=A(s)$ and $\dot{C}(s)=-aA(s)-\kappa(s)B(s)$ , where $a$ is a nonzero constant
and $\kappa(s)\neq 0$ for all $s$ . Then the map $x:(s,u)\rightarrow c(s)+uB(s)$ parametrizes a
Lorentzian surface $M_{1}^{2}$ in $H_{1}^{3}(-1)$ called a B-scroll. The B-scroll has non-
diagonalizable shape operator with minimal polynomial $q(t)=(t-a)^{2}$ and so it
has constant mean curvature $\alpha=a$ and constant Gauss curvature $G=a^{2}$

Therefore if $N_{d}^{2}$ is a minimal surface in $H_{1}^{3}(-1)$ and $\varphi$ is que quadric
representation of $M_{1}^{2}\times N_{d}^{2}$ , the equation $M_{\varphi}=\lambda H_{\varphi}$ holds if and only if $a^{2}=2$

and $\lambda=-2$ .

THEOREM 12. Let $M_{\iota}^{2}$ and $N_{d}^{2}$ be two surfaces in the De Sitter space
$S_{1}^{3}=\overline{M}_{1}^{3}(1)$ , and $\varphi:M_{C}^{2}\times N_{d}^{2}\rightarrow \mathfrak{M}\cong R_{6}^{16}$ the quadric representation of their
product. Then $\varphi$ satisfies the equation $M_{\varphi}=\lambda H_{\varphi}$ if and only if one of the
following statements holds:

(1) Both $M_{c}^{2}$ and $N_{d}^{2}$ are minimal in $S_{1}^{3}$ , where $\lambda=4$ ;
(2) One surface is minimal in $S_{1}^{3}$ and the other one is an open piece of the

totally umbilic surface $H^{2}(-1)$ , where $\lambda=2$ ;
(3) One surface is minimal in $S_{1}^{3}$ and the other one is an open piece of the

standard product surface $S^{1}(2/3)\times H^{1}(-2)$ , where $\lambda=8/3$ .

THEOREM 13. Le $tM_{\mathfrak{c}}^{2}$ and $N_{d}^{2}$ be two surfaces in the anti-De Sitter space
$H_{1}^{3}=\overline{M}_{1}^{3}(-1)$ , and $\varphi:M^{2}\times N_{d}^{2}\rightarrow \mathfrak{M}\cong R_{8}^{16}$ the quadric representation of their
product. Then $\varphi$ satisfies the equation $W_{\varphi}=\lambda H_{\varphi}$ if and only if one of the
following statements holds:

(1) Both $M_{t}^{2}$ and $N_{d}^{2}$ are minimal in $H_{1}^{3}$ , where $\lambda=\triangleleft$ ;
(2) One surface is minimal in $H_{1}^{3}$ and the other one is an open piece of the

totally umbilic surface $S_{1}^{2}(1)$ , where $\lambda=-2,\cdot$

(3) One surface is minimal in $H_{1}^{3}$ and the other one is an open piece of the
standard product surface $H_{1}^{1}(-2/3)\times S^{1}(2)$ or $S_{1}^{1}(2)\times H^{1}(-2/3)$ , where $\lambda=-8/3$ ;

(4) One surface is minimal in $H_{1}^{3}$ and the other one is an open piece of a B-
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scroll over a null-Frenet curve with torsion $\pm\sqrt{2}$ , where $\lambda=-2$ .

PROOF $0F$ THEOREMS 12 AND 13. In view of Theorem 7, we can assume that
$M_{\iota}^{2}\times N_{d}^{2}$ is not minimal. Then either $M_{(}^{2}$ or $N_{d}^{2}$ has to be minimal, so we can
suppose $N_{d}^{2}$ is minimal. Therefore Theore $m7$ yields $M_{\iota}^{2}$ is an isoparametric
surface. Hence $M_{\iota}^{2}$ is totally umbilical, a B-scroll, a pseudo-Riemannian product
or a complex circle (see the Appendix for the complete description of

isoparametric surfaces in Lorentzian 3-space forms). From the above examples
we see that $M_{c}^{2}$ is an open piece of totally umbilic surfaces $S_{1}^{2}(1)\subset H_{1}^{3},H^{2}(-1)$

$\subset S_{1}^{3}$ or a B-scroll in $H_{1}^{3}$ with $a^{2}=2$ . As for product surfaces, we get $M_{\iota}^{2}$ is an
open piece of one the products given in this theorem. Finally, we are going to

show that the last case that $M_{c}^{2}$ is a complex circle can not be given. In fact,

since $\alpha_{X}$ and $\tau_{X}$ are related by $\tau_{X}=-4+3\epsilon_{X}a_{X}^{2}$ , which can be rewritten by using
the shape operator $S_{X}$ as

$($ tr $(S_{X}))^{2}-4$ tr $(S_{\lambda}^{2})+8\epsilon_{r}=0$ ,

a straightforward computation shows that a complex circle can not satisfy that
equation.

As a consequence of that theorems we obtain the following.

COROLLARY 14. There is no pseudo-Riemannian product of surfaces with
biharmonic quadric representation.

5. A few more examples

This section is devoted to show a few more examples of hypersurfaces such
that the quadric representation satisfies the equation $W_{\varphi}=W_{\varphi}$ .

EXAMPLE 15. Let $x:M_{c}^{m-1}\rightarrow\overline{M}_{\mu}^{m}(k)\subset R_{t}^{m-1}$ be a hypersurface whose shape
operator has a characteristic polynomial given by $q(t)=(t-a)^{m-1},a\in R$ , and let
$y:N_{d}^{n-1}\rightarrow\overline{N}_{\nu}^{n}(k)\subset R_{s}^{n-1}$ be a minimal hypersurface. Then by the Jordan normal
form we get tr $(S_{X})=(m-1)a$ and tr $(S_{X}^{2})=(m-1)a^{2}$ . Since the mean curvature
$\alpha_{X}=a$ and the scalar curvature $\tau_{X}=(m-1)(n-1)(k+\epsilon_{X}a^{2})$ , it follows from
Theorem 8 that $M_{\varphi}=\lambda H_{\varphi}$ if and only if $a^{2}=-\epsilon_{X}k(m+n-2)/(m-1),\epsilon_{X}k<0$ , and
in this case $\lambda=k(n-1)$ .

Let $M_{c}^{m-1}$ be non-flat totally umbilic in $\overline{M}_{\mu}^{m}(k)$ and $N_{d}^{n-1}$ minimal in $\overline{N}_{v}^{n}(k)$ .
Since $\epsilon_{X}k<0$ , we only have the following possibilities for $M_{\iota}^{m-1}$ and
$\overline{M}_{\mu}^{m}(k):H_{\mu}^{m-1}(-1/r^{2})\subset H_{\mu}^{m}(k),$ $S_{\mu}^{m-1}(1/r^{2})\subset H_{\mu}^{m}(k),H_{\mu-1}^{m-1}(-1/r^{2})\subset S_{\mu}^{m}(k),$ $S_{\mu-1}^{m-1}(1/$

$r)\subset S_{\mu}^{m}(k)$ . In all cases the shape operator is $S_{X}=aI$ , where $a^{2}$ is given
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by $(-1-kr^{2})/r^{2},$ $(1-kr^{2})/r^{2},$ $(1+kr^{2})/r^{2},$ $(-1+kr^{2})/r^{2}$ , respectively. Then $W_{\varphi}=$

$\lambda H_{\varphi}$ if and only if $M^{;n- 1}$ is $H_{\mu^{1I-1}}^{\prime}(k)\subset H_{\mu}^{;n}(k),$ $S_{\mu- 1}^{\prime\prime I-1}(k)\subset S_{\mu}^{m}(k),$ $S_{\mu}^{\prime\prime\prime- 1}(-k(n-1)/(m-$

$1))\subset H_{\mu}^{m}(k),$ $H_{\mu- 1}^{m- 1}(-k(n-1)/(m-1))\subset S_{\mu}^{m}(k)$ . Note that the two first ones are
minimal hypersurfaces, in fact, they are totally geodesic.

To find new examples, we recall the construction of some hypersurfaces we
have used in early papers.

Generalized umbilic hypersurface of degree 2 $[(3,19])$ . Let $ c:I\subset R\rightarrow$

$H_{1}^{m}(k)\subset R_{2}^{m+1}$ be a null curve with an associated pseudo-orthonormal frame $\{A,$ $B$,
$Z_{1},\cdots,Z_{m-3},$ $C$ } $alongc(s)$ such that $\dot{c}=A(s)$ and $\dot{C}=-aA(s)-\kappa(s)B(s),where\kappa(s)$

$\neq 0$ and $a$ is a nonzero constant. Then the map $x:I\times R\times R^{\prime\prime\prime- 3}\rightarrow H_{1}^{m}(k)\subset R_{2}^{m+1}$

defined by

$x(s,u,z)=(1+f(z))c(s)+uB(s)+\sum_{j-- 1}^{1n- 3}z_{j}Z_{j}(s)+(\frac{1}{a}+g(z))C(s)$ ,

where $f(z)$ and $g(z)$ are solutions of

$kg+af=-\frac{k}{a}$

$kg^{2}+f^{2}=k(\frac{1}{a}-|z|^{2})$ ,

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurface $M_{1}^{m-1}$ of
$H_{1}^{m}(k)$ . The mean curvature $\alpha$ is the nonzero constant $a$ and the minimal
polynomial of its shape operator is $q(t)=(t-a)^{2}$

Generalized umbilic hypersurface of degree 3 ([3, 19]). Let $ c:I\subset R\rightarrow$

$H_{1}^{m}(k)\subset R_{2}^{m+1}$ be a null curve with an associated pseudo-orthonormal frame
$\{A, B, Y,Z_{1},\cdots,Z_{m- 4}, C\}$ such that $\dot{c}=A(s)$ and $\dot{C}=-aA(s)+\kappa(s)Y(s)$ , with $\kappa(s)\neq 0$

and $a$ a nonzero constant. Then the map $x;I\times R\times R\times R^{m- 4}\rightarrow H_{1}^{m}(k)\subset R_{2}^{m+1}$

defined by

$x(s,u,y,z)=(1+f(z))c(s)+uB(s)+yY(s)+\sum_{j=1}^{m-4}z_{j}Z_{j}(s)+(\frac{1}{a}+g(z))C(s)$ ,

where $f(z)$ and $g(z)$ are solutions of

$kg+af=-\frac{k}{a}$

$kg^{2}+f^{2}=k(\frac{1}{a}-|z|^{2}-y^{2})$ ,

parametrizes, in a neighborhood of the origin, a Lorentzian hypersurface $M_{1}^{m-1}$ in
$H_{1}^{m}(k)$ . Then $M_{1}^{m-1}$ has constant mean curvature $\alpha=a\neq 0$ and the minimal
polynomial of its shape operator is given by $q(t)=(t-a)^{3}$
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Then by taking $M_{\iota}^{m-1}\subset\overline{M}_{\mu}^{m}$ as a generalized umbilic hypersurface of degree
two or three and $N_{d}^{n-1}$ minimal in $\overline{N}_{1}^{n}(k)$ , the quadric representation of the
product $M_{\mathfrak{c}}^{m-1}\times N_{d}^{n-1}$ satisfies $\mathfrak{M}_{\varphi}=\lambda H_{\varphi}$ if and only if $a^{2}=-(\epsilon_{X}k)(m+n-2)/(m$

$-1)$ .

EXAMPLE 16. Let $N_{d}^{n-1}$ be minimal in $\overline{N}_{t^{\prime}}^{n}(k)$ and $ M_{c}^{m-1}=S_{u^{p}}(1/r^{2})\times$

$H_{c-u}^{m-p-1}(k/(1-kr^{2}))into$ $S_{c+1}^{m}(k),k>0$ and $1-kr^{2}<0$ , with $r^{2}=(m+n-p-2)/$

$k(n-1)$ . Then it is well known (see [7]) that $M_{c}^{m-1}$ is of 2-type with associated
eigenvalues $\lambda_{1}=p/r^{2}=kp(n-1)/(m+n-p-2)$ and $\lambda_{2}=k(m-p-1)/(1-kr^{2})=$

$-k(n-1)$ . It is easy to see that $\lambda_{1}=\lambda-k(n-1)$ , where $\lambda=k(n-1)(m+n-2)/$

$(m+n-p-2)$ . Therefore, by applying Theore$m5,$ $\mathfrak{M}_{\varphi}=m_{\varphi}$ .
Now, let $N_{d}^{n-1}$ be minimal in $\overline{N}_{v}^{n}(k)$ and $M_{c}^{m-1}=S_{u^{p}}(1/r^{2})\times H_{\leftarrow u}^{m-p-1}(k/(1-kr^{2}))$

$\subset H_{c}^{m}(k),$ $k<0$ and $1-kr^{2}>0$ , with $r^{2}=-p/k(n-1)$ . Then as $M_{c}^{m- 1}$ is of 2-type
with associated eigenvalues $\lambda_{1}=p/r^{2}=-k(n-1)$ and $\lambda_{2}=k(m-p-1)/(1-kr^{2})$ ,

it is easy to see that $\lambda_{2}=\lambda-k(n-1)$ , where $\lambda=k(n-1)(m+n-2)/(n+p-1)$ .
Therefore, by applying Theorem 5, $\mathfrak{M}_{\varphi}=m_{\varphi}$ .

Any other choices of radii $r$ produce examples of hypersurfaces $M_{c}^{m-1}$ with
both constant mean and scalar curvatures such that, for any minimal hypersurface
$N_{d}^{n-1}$ , the quadric representation does not satisfy the condition $ffl_{\varphi}=m_{\varphi}$ .

As for remaining products $M_{c}^{m-1}=S_{u}^{p}(1/r^{2})\times S_{\leftarrow u}^{m-p-1}(k/(1-kr^{2}))\subset S_{c}^{m}(k),$ $k$

$>0$ and $1-kr^{2}>0$ , and $M_{c}^{m-1}=H_{u^{p}}(-1/r^{2})\times H_{\mapsto u}^{m-p-1}(k/(1+kr^{2}))\subset H_{c+1}^{m}(k),$ $k<0$

and $1+kr^{2}>0$ , they are minimal when $r^{2}=p/k(m-1)$ and so the equation
$\mathfrak{M}_{\varphi}=\lambda H_{\varphi}$ holds. 0therwise, they are of 2-type with associate eigenvalues
$\{p/r^{2},k(m-p-1)/(1-kr^{2})\}$ and $\{-p/r^{2},k(m-p-1)/(1+kr^{2})\}$ , respectively.
Therefore there is no $r$ accomplishing Theorem 5. Indeed, in the former case both
eigenvalues are positive and, in order to apply Theorem 5, one of them should be
negative; in the latter, just the contrary occurs.

Note that in this example the minimal hypersurface $N_{d}^{n-1}$ in $\overline{N}_{\nu}^{n}(k)$ can be
$re$placed by a minimal submanifold $N_{d}^{\ell}$ and everything works fine. We must only
change $(n-1)$ by $p$ .

6. Appendix: Isoparametric surfaces in Lorentzian 3-space
forms

Let $\overline{M}_{1}^{3}(k)$ be a 3-space form of constant curvature $k\in R$ . A model for
$\overline{M}_{1}^{3}(k)$ is the Lorentz-Minkowski space $L^{3}$ if $k=0$ , the De Sitter space $S_{1}^{3}(k)$ if
$k>0$ and the anti De Sitter space $H_{1}^{3}(k)$ if $k<0$ . Let $M_{\$}^{2}$ be a (spacelike or
Lorentzian) surface in $\overline{M}_{1}^{3}(k)$ and denote by $S$ the Weingarten endomorphism
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associated to a unit normal vector field. If the minimal polynomial of the shape
operator is independent of each point of $M_{\iota}^{2},$ $M_{\backslash ^{\sim}}^{2}$ is said to be isoparametric. The
possibly complex roots of that polynomial are called the principal curvatures.

The selfadjoint endomorphism $S$ on a tangent space of $M_{\backslash }^{2}$ has a matrix of
exactly one of the following three types:

I. $S\sim(_{0}^{\lambda}$ $\mu 0$ II. $ S\sim(_{-1}\lambda$ $\lambda 0$ III. $S\sim(_{\mu}^{\lambda}$ $-\mu\lambda$

In types I and III, $S$ is relative to an orthonormal basis while in case II the basis
is pseudo-orthonormal, that is, a basis {X, $Y$ } such that \langle X, $X$) $=0=\langle Y, Y\rangle$ and
\langle X, $Y\rangle$ $=$ -l.Thus the classification of isoparametric surfaces in $\overline{M}_{1}^{3}(k)$ should be
done by distinguishing three cases, according to the canonical form of the shape
operator $S$ .

Type I: $S$ is diagonalizable. If $\lambda=\mu$ then $M_{\iota}^{2}$ is nothing but an open piece of
a totally umbilical surface. 0therwise, following K. Nomizu, [22], and N. Abe-
N. Koike-S. Yamaguchi, [1], we get that $M_{\iota}^{2}$ is an open piece of one of the
following products:

(i) $H^{1}(-1/r^{2})\times R,S_{1}^{1}(1/r^{2})\times R$ or $L\times S^{1}(1/r^{2})ifk=0$ .

(ii) $H^{1}(-1/r^{2})\times S^{1}(k/(1+kr^{2}))$ or $S_{1}^{1}(1/r^{2})\times S^{1}(k/(1-kr^{2}))$ , $1-kr^{2}>0$ ,

if $k>0$ .

(iii) $H_{1}^{1}(-1/r^{2})\times S^{1}(k/(1+kr^{2})),$ $1+kr^{2}<0,H^{1}(-1/r^{2})\times S_{1}^{1}(k/(1+kr^{2})),$ $1+kr^{2}$

$<0$ , or $H^{1}(-1/r^{2})\times H^{1}(k/(1+kr^{2}))$ , $1+kr^{2}>0$ , if $k<0$ .

Type II: $S$ has a double real eigenvalue. In this case, following L. Graves,

[17], and M. Magid, [19], if $k=0$ , and L.J. Alias-A. Ferr\’andez-P. Lucas, [2],

and M. Dajczer-K. Nomizu, [12], if $k\neq 0$ , we deduce that $M_{1}^{2}$ is locally an open
piece of a B-scroll. This surface has been described in Example 11.

Type III: $S$ has complex eigenvalues. Then from Codazzi’s equations we can
easily deduce that $X$ and $Y$ induce parallel vector fields on $M_{1}^{2}$ and therefore $M_{1}^{2}$

is a flat Lorentzian surface with parallel second fundamental form in the pseudo-
Euclidean space where $\overline{M}_{1}^{3}(k)$ is lying. Then by using [18, Theorem 1.15 and
1.17] we obtain $M_{1}^{2}$ is congruent to a complex circle in $H_{1}^{3}(k)$ . Let $a+bi$ be a
non-zero complex number such that $a^{2}-b^{2}=1/k$ . The following map
$x=(x^{1},x^{2},x^{3},x^{4}):R_{1}^{2}\rightarrow H_{1}^{3}(k)\subset R_{2}^{4}$ describes a Lorentzian surface:

$x^{1}(u_{1},u_{2})=b\cosh u_{2}\cos u_{1}-a\sinh u_{2}\sin u_{1}$ ,

$x^{2}(u_{1},u_{2})=a\sinh u_{2}\cos u_{1}+b\cosh u_{2}\sin u_{1}$ ,
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$x^{3}(u_{1},u_{2})=a\cosh u_{2}\cos u_{1}+b\sinh_{ll_{2}}\sin u_{1}$ ,

$x^{4}(u_{1},u_{2})=a\cosh u_{2}senu_{1}-b\sinh u_{2}\cos u_{1}$ ,

where $(u_{1},u_{2})$ is the usual coordinate system in $R_{1}^{2}$ with the Lorentz metric
$ds^{2}=-(du_{1})^{2}+(du_{2})^{2}$ and $R_{2}^{4}$ is equipped with the metric $ds^{2}=-(dx^{1})^{2}-(dx^{2})^{2}+$

$(dx^{3})^{2}+(dx^{4})^{2}$ . The shape operator $S$ is given by

$S=(_{\mu}^{\lambda}$ $-\mu\lambda$ $\lambda=\frac{2ab}{k(a^{2}+b^{2})}$ , $\mu=\frac{-1}{a^{2}+b^{2}}$ ,

with respect to the usual frame $t\&/\partial\ell_{1},\partial \mathfrak{r}/h_{2}$ }. This surface is called a
complex circle of radius $a+bi$ by Magid, [18].

Note added. We would like to point out that some time after this paper
was written we have met a series of papers by B.Y. Chen ([6], [9], [10]) where
a quadric representation for Riemannian product immersions is considered as a
tensor product immersions (see also [13], [21]).
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