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Abstract. In this paper, we introduce the weakly k-rapid points,
for $ 1\leqq k<\omega$ , and the rapid points of topological spaces. They ex-
tend the concept of rapid ultrafilter. It is evident from the defini-
tion that every weak P-point is a rapid point and a weakly k-rapid
point for $ 1\leqq k<\omega$ . We show: (a) there is a space containing a
rapid, non-weak-P-point $\in\Rightarrow$ there is a rapid ultrafilter on $\omega$ ; and (b)

there is a space containing a weakly k-rapid, non-weak-P-point, for
some $ 1\leqq k<\omega\Leftrightarrow$ there is a Q-point in $\beta(\omega)\backslash \omega\Leftrightarrow$ for every $ 1\leqq k<\omega$ ,

there is a space which is weakly $(k+1)$-rapid and is not weakly

k-rapid. Assuming the existence of a Q-point in $\beta(\omega)\backslash \omega$ , we give

an example of a zero-dimensional homogeneous space without weak
P-points such that all its points are rapid. Finally, the concept of
Id-fan tightness is introduced as a generalization of countable strong

fan tightness.
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1. Preliminaries.

By a space we mean a completely regular Hausdorff space, $i$ . $e$ . Tychonoff

space. If $X$ is a space and $x\in X$ , then $\mathfrak{R}(x)$ denotes the set of all neighborhoods

of $x$ . The closure of $A$ in $X$ is denoted by $C1_{x}(A)$ or Cl $(A)$ . For a set $X$ , the
set of all finite subsets of $X$ is denoted by $[X]<\omega$ and if $ 1\leqq m<\omega$ , then $[X]\leqq m$

$=\{A\subseteqq X:|A|\leqq m\}$ . The Stone-\v{C}ech compactification $\beta(\omega)$ of the natural num-
bers $\omega$ with the discrete topology can be viewed as the set of all ultrafilters
on $\omega$ , and the remainder $\omega^{*}=\beta(\omega)\backslash \omega$ consists of all free ultrafilters on $\omega$ . For
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$p\in\omega^{*},$ $\xi(p)$ stands for the subspace $\{p\}\cup\omega$ of $\beta(\omega)$ . All functions $ f\in\omega\omega$ con-
sidered throughout this paper assume only positive values.

G. Mokobodski [Mo] introduced the following class of ultrafilters to respond
to a problem in measure theory.

1.1. DEFINITION. $p\in\omega^{*}$ is rapid if

V $h\in\omega\omega\exists A\in p\forall n<\omega(|A\cap h(n)|\leqq n)$ .

Other two kinds of interesting ultrafilters on $\omega$ are:

1.2. DEFINITION. Let $p\in\omega^{*}$ . Then
(1) $p$ is a Q-point if for every partition $\{B_{n} : n<\omega\}$ of $\omega$ in finite subsets,

there is $A\in p$ such that $|A\cap B_{n}|\leqq 1$ for every $ n<\omega$ ;
(2) $p$ is semiselective if $A_{n}\in p$ for $ n<\omega$ , then there is $a_{n}\in A_{n}$ for each

$ n<\omega$ such that $\{a_{n} : n<\omega\}\in p$ .

In [CV], the authors say that $p\in\omega^{*}$ is a Q-point if $\forall\{B_{n} : n<\omega\}\subseteqq[\omega]<\omega\exists A$

$\in p\forall n<\omega(|A\cap B_{n}|\leqq 1)$ . But, this definition is wrong since none $p\in\omega^{*}$ satisfies
such a condition; indeed, if $p\in\omega^{*}$ and $B_{n}=n$ for $ n<\omega$ , then there is not $A\in p$

such that $|A\cap B_{n}|\leqq 1$ for each $ n<\omega$ .
We know that every semiselective ultrafilter is rapid and every Q-point is

rapid. The inclusions among these sorts of ultrafilters on $\omega$ are proper: It is
shown in [M] that if there is a rapid ultrafilter, then there is also a rapid
ultrafilter which is neither P-point and nor Q-point; (Kunen [K]) $MA\rightarrow\exists p\in\omega^{*}$

( $p$ is semilective and not Q-point); and Lafflamme [L] proved that $CON(ZFC)$
$\rightarrow CON$( $ZFC+\exists p\in\omega^{*}$ ( $p$ is Q-point and not semiselective)). The existence of
these ultrafilters is independent from the axioms of $ZFC$ . In fact, Mokobodki
[Mo] proved that $CH$ implies the existence of rapid ultrafilters on $\omega$ ; Miller
[M] established that $CON(ZFC)\rightarrow CON$($ZFC+there$ are no rapid ultrafilters);

Mathias [Ma] and Taylor [1’] showed that if there is a dominant family of
functions in $\omega\omega$ of cardinality $\omega_{1}$ , then there exists a Q-point in $\omega^{*}$ (for another
sufficient condition see [CV]); and the existence of semiselective ultrafilters
under MA ( $\sigma$-centered) is shown in [Bo].

In the next theorem, we give four conditions which are equivalent to the
rapidness of ultrafilters on $\omega$ : clauses (4) and (5) motivated the notions of rapid
points and weakly k-rapid points, for $ 1\leqq k<\omega$ , wnich will be studied in sec-
tion 2.

1.3. THEOREM. For $p\in\omega^{*}$ , the following are equivalent:
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(1) $p$ is rapid.
(2) For every sequence $(B_{n})_{n<\omega}$ of finite subsets of $\omega$ ,

$\exists A\in p\forall n<\omega(|A\cap B_{n}|\leqq n)$ .

(3) There is $ h\in^{\omega}\omega$ such that for every sequence $(B_{n})_{n<\omega}$ of finite subsets of
$\omega,$ $\exists A\in p\forall n<\omega(|A\cap B_{n}|\leqq h(n))$ .

(4) For every finite-to-one function $ f\in\omega\omega$ and every sequence $(B_{n})_{n<\omega}$ of
finite subsets of $\omega,$ $\exists A\in p\forall n<\omega(|A\cap B_{n}|\leqq f(n))$ .

(5) For every finite-to-one function $ f\in\omega\omega$ and given $ B_{n}\in[\omega]<\omega$ for $ n<\omega$ ,

such that $ B_{n}\cap B_{m}=\emptyset$ whenever $ n<m<\omega$ ,

$\exists A\in p\forall n<\omega(|A\cap B_{n}|\leqq f(n))$ .

PROOF. The equivalences (1) $\not\in\Rightarrow(2)$ and (2) $\Leftrightarrow(3)$ are shown in [M], and the
implications (1) $\Rightarrow(5),$ (4) $\Rightarrow(3)$ are evident.

(1) $\Rightarrow(4)$ . Let $ f\in\omega\omega$ be finite-to-one. Without loss of generality, we may

assume that $B_{n}\subseteqq B_{n+1}$ for each $ n<\omega$ . Define $ h\in^{\omega}\omega$ so that $h(m)=\max f^{-1}(m)$

if $ f^{-1}(m)\neq\emptyset$ , for $ m<\omega$ , and put $D_{m}=B_{h(m)}$ for $ m<\omega$ . By assumption, there
is $A\in p$ such that $|A\cap D_{m}|=|A\cap B_{h(m)}|\leqq m$ for all $ m<\omega$ . If $f(n)=m$ for $ n<\omega$ ,

then we have that $n\in f^{-1}(m)$ and $|A\cap B_{n}|\leqq|A\cap B_{h(m)}|\leqq m=f(n)$ , as desired.
(5) $\Rightarrow(3)$ . Let $ f\in\omega\omega$ be finite-to-one and define $ h:\omega\rightarrow\omega$ by $h(n)=\Sigma_{i=0}^{n}f(i)$

for each $ n<\omega$ . We shall verify that $h$ satisfies our conditions. In fact, let
$(B_{n})_{n<\omega}$ be a sequence of finite subsets of $\omega$ . For $ n<\omega$ , set $A_{n}=B_{n}\backslash \bigcup_{J<n}B_{j}$ .
By hypothesis, there is $A\in p$ such that $|A\cap A_{n}|\leqq f(n)$ for all $ n<\omega$ . Since
$B_{n}\subseteqq\bigcup_{j\leq n}A_{j}$ for each $ n<\omega$ , we have that $|A\cap B_{n}|\leqq\Sigma_{i\approx 0}^{n}f(i)=h(n)$ for each
$ n<\omega$ .

We remark that if a function $h$ satisfies the condition of (3), then $h$ must

be finite-to-one. If not, then there is $ m<\omega$ such that $h^{-1}(m)=\{m_{j} ; j<\omega\}$ , where
$m_{j}<m_{J+1}$ for $ j<\omega$ , but there is not $A\in p$ such that $|A\cap m_{j}|\leqq h(m_{j})=m$ for every
$ j<\omega$ .

Our work in section 3 is based on the following definition.

1.4. DEFINITION. Let $X$ be a space. Then
(1) $[Ar_{1}]X$ has countable tightness if for each $x\in X$ and $A\subseteqq X$ such that

$x\in C1(A)$ there is a countable subset $B$ of $A$ such that $x\in C1(B)$ ;
(2) $[Ar_{2}]X$ has countable fan tightness if for every $x\in X$ and every sequence

$(A_{n})_{n<\omega}$ of subsets of $X$ such that $x\in\bigcap_{n<\omega}$ Cl $(A_{n})$ , there exists $ F_{n}\in[A_{n}]<\omega$

such that $x\in C1(\bigcup_{n<\omega}F_{n})$ ;
(3) [S] $X$ has countable strong fan tightness if for every $x\in X$ and every
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sequence $(A_{n})_{n<\omega}$ of subsets of $X$ such that $x\in\bigcap_{n<\omega}$ Cl $(A_{n})$ , there exists $x_{n}\in A_{n}$

such that $x\in C1(\{x_{n} : n<\omega\})$ .

A natural generalization of countable strong fan tightness is investigated
in section 3.

2. Rapid points and weakly k-rapid points.

Clauses (4) and (5) of Theorem 1.3 suggest the following definition.

2.1. DEFINITION. Let $ f\in\omega\omega$ and $X$ a space.
(1) A point $x\in X$ is called f-rapid if for every sequence $(B_{n})_{n<\omega}$ of finite

subsets of $X\backslash \{x\},$ $\exists V\in \mathfrak{N}(x)\forall n<\omega(|V\cap B_{n}|\leqq f(n))$ . $X$ is said to be f-rapid if
all points of $X$ are $f$-rapid.

(2) A point $x\in X$ is called weakly f-rapid if for every sequence $(B_{n})_{n<\omega}$ of
finite subsets of $X\backslash \{x\}$ such that $ B_{n}\cap B_{m}=\emptyset$ whenever $n<m<\omega,$ $\exists V\in\Re(x)\forall n$

$<\omega(|V\cap B_{n}|\leqq f(n))$ . $X$ is said to be weakly f-rapid if all points of $X$ are
weakly $f$-rapid.

If $f$ is the identity function from $\omega$ to $\omega$ , then we simply say rapid (resp.

weakly rapid) instead of $f$-rapid (resp. weakly $f$-rapid). The meaning of k-rapid
and weakly k-rapid should be clear, for $ 1\leqq k<\omega$ . It is evident that $p\in\omega^{*}$ is a
Q-point iff it is weakly k-rapid in $\xi(p)$ for some $ 1\leqq k<\omega$ .

Observe from Theorem 1.3 that $p\in\omega^{*}$ is a rapid ultrafilter iff $p$ is $f$-rapid
in $\xi(p)$ for each finite-to-one function $ f\in\omega\omega$ iff $p$ is weakly $f$-rapid in $\xi(p)$ for
each finite-to-one function $ f\in\omega\omega$ . The next lemma shows that we cannot with-
dram the finite-to-one condition.

2.2. LEMMA. $\Gamma$or $p\in\omega^{*}$ and $ f\in\omega\omega$ , the following are equivalent.
(1) $p$ is f-rapid in $\xi(p)$ .
(2) $f$ is finite-to-one and $p$ is a rapid ultrafilter.
(3) $f$ is finite-to-one and $p$ is weakly f-rapid in $\xi(p)$ .

PROOF. The implications (2) $\Rightarrow(3)$ and (3) $\Rightarrow(1)$ are direct consequences of
Theorem 1.3.

(1) $\Rightarrow(2)$ . According to Theorem 1.3, it is enough to prove that $f$ is finite-
to-one. In fact, assume that there is $ m<\omega$ such that $f^{-1}(m)=\{m_{j} : j<\omega\}$ , where
$m_{j}<m_{j+1}$ for $ j<\omega$ . Define $B_{n}=\{]<\omega:j\leqq n\}$ for each $ n<\omega$ . Then there is
$A\in p$ such that $|A\cap B_{n}|\leqq f(n)$ for each $ n<\omega$ . In particular, $|A\cap B_{m_{k}}|\leqq f(m_{k})$

$=\prime n$ for every $ k<\omega$ . Since $A$ is infinite, there must be $ k<\omega$ such that $|A\cap B_{m_{k}}|$
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$>7n$ , which is a contradiction.

2.3. LEMMA. If $ f:\omega\rightarrow\omega$ is not $\vee linite$-to-one, then $p\in\omega^{*}is$ a $Q$ -point iff $p$ is
weakly f-rapid in $\xi(p)$ .

PROOF. Only the sufficiency requires proof. Let $\{B_{n} : n<\omega\}\subseteqq[\omega]<\omega$ be a
partition of $\omega$ and let $ m<\omega$ such that $f^{-1}(m)=\{m_{j} : j<\omega\}$ , where $m_{j}<m_{J+1}$ , for
$ j<\omega$ . Define $\{A_{k} : k<\omega\}$ by $A_{m_{j}}=\bigcup_{m_{j^{\leq n<m}j+1}}B_{n}$ , for each $ j<\omega$ , and $ A_{k}=\emptyset$

otherwise. By assumption, there is $A\in p$ such that $|A\cap A_{k}|\leqq f(k)$ for all $ k<\omega$ .
Hence, if $m_{j}\leqq n<m_{1+1}$ , for some $ j<\omega$ , then $|A\cap B_{n}|\leqq|A\cap A_{m_{j}}|\leqq f(m_{j})=m$ .
We may write $A=\bigcup_{1\leq m}A_{i}$ so that $|A_{i}\cap B_{n}|\leqq 1$ for each $i\leqq m$ and each $ n<\omega$ .
Since $A\in p$ , there is $i\leqq m$ such that $A_{i}\in p$ and then $|A_{i}\cap B_{n}|\leqq 1$ for every
$ n<\omega$ . Therefore, $p$ is a Q-point.

We omit the proof of the next theorem since it is completely similar to that
of Theorem 1.3.

2.4. THEOREM. For a finite-to-one function $ f\in\omega\omega$ and $x\in X$ , the following
are equivalent.

(1) $x$ is rapid in $X$ .
(2) $x$ is f-rapid in $X$ .
(3) $x$ is weakly f-rapid in $X$ .

The relationship between weakly k-rapid points, for $ 1\leqq k<\omega$ , and rapid
points is established in the next corollary.

2.5. COROLLARY. For $ 1\leqq k<\omega$ , every $ weakl\gamma$ k-rapid point is rapid.

PROOF. Let $ 1\leqq k<\omega$ and $x\in X$ . Suppose that $x$ is weakly k-rapid in $X$ .
Let $(B_{n})_{n<\omega}$ be a sequence of finite subsets of $X\backslash \{x\}$ . For $ n<\omega$, set $A_{n}=$

$B_{n}\backslash \bigcup_{j<n}B_{j}$ . By assumption, there is $V\in \mathfrak{R}(x)$ such that $|V\cap A_{n}|\leqq k$ for each
$ n<\omega$ . Hence, $|V\cap B_{n}|\leqq\Sigma_{j\leqq n}|V\cap A_{j}|\leqq(n+1)k$ , since $B_{n}\subseteqq\bigcup_{j\leq n}A_{j}$ , for each
$ n<\omega$ . Thus, $x$ is $f$-rapid, where $f(n)=(n+1)k$ for every $ n<\omega$ . The conclu-
sion now follows from 2.4.

Next, we shall show that if $ f\in\omega\omega$ is not finite-to-one, then there is $ k<\omega$

such that weak $f$-rapidness agrees with weak k-rapidness. It will be shown in
2.11 that for every $ 1\leqq k<\omega$ there is a space which is weakly $(k+1)$-rapid and
is not weakly k-rapid.

2.6. THEOREM. Let $ f\in\omega\omega$ be non-finite-to-one and $X$ a space. If $k=$
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$\min$ { $m<\omega:f^{-1}(m)$ is infinite}, then $x\in X$ is weakly k-rapid iff it is weakly f-
rapid.

PROOF. First, assume that $x\in X$ is weakly k-rapid. Let $(B_{n})_{n<\omega}$ be a
sequence in $[X\backslash \{x\}]^{<\omega}$ such that $ B_{i}\cap B_{j}=\emptyset$ whenever $ i<j<\omega$ . Choose $ r<\omega$

such that $f^{-1}(m)\subseteqq r$ for each $m<k$ . Then, we may find $V\in \mathfrak{N}(x)$ such that
$|V\cap B_{n}|\leqq k$ , for each $ n<\omega$ , and $ V\cap B_{n}=\emptyset$ for every $n<r$ . Hence, if $f(n)<k$ ,

then $|V\cap B_{n}|=0\leqq f(n)$ . Thus, $|V\cap B_{n}|\leqq f(n)$ for all $ n<\omega$ .
Now suppose that $x\in X$ is weakly $f$-rapid and let $(B_{n})_{n<\omega}$ be a sequence in

$[X\backslash \{x\}]^{<\omega}$ such that $ B_{i}\cap B_{j}=\emptyset$ whenever $ i<j<\omega$ . Enumerate $f^{-1}(k)$ by
$\{k_{n} : n<\omega\}$ , where $k_{n}<k_{n+1}$ for $ n<\omega$ . For every $ n<\omega$ , set $D_{k_{n}}=B_{n}$ and $ D_{m}=\emptyset$

otherwise. Then, there is $V\in \mathfrak{R}(x)$ such that $|V\cap D_{m}|\leqq f(m)$ for each $ m<\omega$ .
Hence, $|V\cap B_{n}|=|V\cap D_{k_{n}}|\leqq f(k_{n})=k$ for $ n<\omega$ . This shows that $x$ is weakly

k-rapid.

The weakly $f$-rapid points, for $ f\in\omega\omega$ , satisfy the following property.

2.7. THEOREM. If $x\in X$ is a weakly f-rapid point for $ f\in\omega\omega$ , then no non-
trivial sequence converges to $x$ .

PROOF. Assume that $\{x_{n}\}_{n<\omega}$ is a non-trivial sequence converging to a
weakly $f$-rapid point $x$ of a space $X$ . We may assume that $x\neq x_{n}$ for all $ n<\omega$

and $x_{n}\neq x_{m}$ for $ n<m<\omega$ . Define, for each $n<\omega,$ $B_{n}=\{x_{m}$ ; $n+\Sigma_{i=0}^{n-1}f(i)\leqq m<$

$n+1+\Sigma_{i=0}^{n}f(i)\}$ . Notice that $|B_{n}|=f(n)+1$ for each $ n<\omega$ . By assumption
there exists $V\in \mathfrak{R}(x)$ such that $|V\cup B_{n}|\leqq f(n)$ for each $ n<\omega$ . So we may pick
$y_{n}\in(X\backslash V)\cap B_{n}$ for each $ n<\omega$ ; that is, $ B_{n}\backslash V\neq\emptyset$ for each $ n<\omega$ . This implies

that $(x_{n})_{n<\omega}$ does not converge to $x$ , which is a contradiction.
Observe from 2.7 that every non-isolated, weakly $f$-rapid point of a space

has uncountable character.
It is evident that every weak P-point is an $f$-rapid point for each $ f\in\omega\omega$ .

For the converse, we have the following two results. Firt, we state a definition.

2.8. DEFINITION (Bernstein [B]). Let $p\in\omega^{*}$ and $X$ a space. We say that
$x\in X$ is the p-limit of a sequence $(x_{n})_{n<\omega}$ , we write $x=p-\lim x_{n}$ , if for every
$V\in \mathfrak{N}(x),$ $\{n<\omega:x_{n}\in V\}\in p$ .

2.9. THEOREM. Let $ f\in\omega\omega$ . There is a space $X$ containing an f-rapid, non-
weak-P-point iff $f$ is finite-to-one and there is a rapid ultrafilter on $\omega$ .

PROOF. Necessity. Let $X$ be a space and $x\in X$ a $f$-rapid, non-weak-P-
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point. Then there exists $\{x_{j} : j<\omega\}\subseteqq X\backslash \{x\}$ such that $\chi\in C1_{X}\{x_{j} : j<\omega\}$ . It is
not hard to prove (see [GS, Lemma 2.2]) that there is $p\in\omega^{*}$ such that $x=$

$p-\lim x_{j}$ . We shall verify that $p$ is a rapid ultrafilter on $\omega$ . Indeed, let { $B_{n}$ :
$ n<\omega\}\subseteqq[\omega]<\omega$ and define $D_{n}=\{x_{j} ; j\in B_{n}\}$ for $ n<\omega$ . By assumption, we can
find $V\in\Re(x)$ such that $|V\cap D_{n}|\leqq f(n)$ for each $ n<\omega$ . Since $x=p-\lim x_{j},$ $A=$

$\{]<\omega:x_{j}\in V\}\in p$ . If $j\in A\cap B_{n}$ , then $x_{j}\in V\cap D_{n}$ . Thus, $A\in p$ and $|A\cap B_{n}|$

$\leqq f(n)$ for each $ n<\omega$ . The conclusion now follows from Lemma 2.2.
Sufficiency. If $p\in\omega^{*}$ is a rapid ultrafilter and $f$ is finite-to-one, by Lemma

2.2, then $p$ is an $f$-rapid, non-weak-P-point of $\xi(p)$ .
As an immediate consequence of the previous theorem we have:

2.10. COROLLARY. If $ f\in\omega\omega$ is not finite-to-one, then the concepts of weak
P-point and f-rapid point coincide.

We remark that if $M$ is a model of $ZFC$ in which there are not rapid
ultrafilters on $\omega$ (see [M]), then $M$: If $X$ is a space, then $x\in X$ is a weak
P-point iff $x$ is $f$-rapid in $X$ for every $ f\in\omega\omega$ .

2.11. THEOREM. The following statements are equivalent.
(1) There is a space $X$ containing a non-weak-P-poit, weakly k-rapid for

some $ 1\leqq k<\omega$ .
(2) There is a Q-point $p\in\omega^{*}$ .
(3) For every $ 1\leqq k<\omega$ , there is a space which is weakly $(k+1)$-rapid and is

not weakly-k-rapid.

PROOF. To prove (1) $\Rightarrow(2)$ we apply the same reasoning used in the proof
of Theorem 2.9 and Lemma 2.3, and (1) is the particular case of (3) when $k=1$ .

(2) $\Rightarrow(3)$ . Fix $ 1\leqq k<\omega$ and let $p\in\omega^{*}$ . We define a topology on $\Xi(p, k)=$

$\{p\}\cup\{(J, n):j\leqq k, n<\omega\}$ as follows: $\{(j, n)\}$ is open for all $j\leqq k$ and $ n<\omega$ .
$v\subseteqq--(p, k)$ is a neighborhood of $p$ if $p\in v$ and $\{n<\omega:(j, n)\in V\}\in p$ for each
$j\leqq k$ . Assume that $p$ is a Q-point. First, we show that $\Xi(p, k)$ is weakly
$(k+1)$-rapid. Let $(B_{m})_{m<\omega}$ be a sequence in $[\Xi(p, k)\backslash \{p\}]^{<\omega}$ . For each $j\leqq k$ ,

put $B_{j.m}=B_{m}\cap\{(\int, n):n<\omega\}$ . Since $p$ is a Q-point there is $A_{j}\in p$ such that
$|A_{j}\cap B_{j.m}|\leqq 1$ for $ m<\omega$ . Then $V=\{p\}\bigcup_{j\leqq k}\{(j, n):n\in A_{j}\}\in\Re(p)$ and it is evident
that $|V\cap B_{m}|\leqq k+1$ for each $ m<\omega$ . Thus, $--(p, k)$ is weakly k-rapid. Now,

define $B_{m}=\{(j, m):j\leqq k\}$ , for each $ m<\omega$ , and suppose that $E(p, k)$ is weakly-

k-rapid. So there is $w\in\Re(p)$ such that $|W\cap B_{m}|\leqq k$ for each $ m<\omega$ . Set $A_{j}=$

$\{n<\omega:(J, n)\in W\}$ for $j\leqq k$ . We have that $A=\bigcap_{j\leq k}A_{j}\in p$ . If $m\in A$ , then
$(], m)\in W\cap B_{m}$ for each $j\leqq k$ and so $|W\cap B_{m}|=k+1$ , which is a contradiction.
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For $ 1\leqq k<\omega$ , it is not hard to show that if $X_{i}$ is a weakly k-rapid (resp.

rapid) space with more than two points, for $i\in I$ , and $I$ is infinite, then $\Pi_{i\in I}X_{i}$

has no weakly k-rapid (resp. rapid) points. For finite products, we have that
$(p, p)$ is not weakly $(k+1)$-rapid in $-\cdot-(p, k)x_{-}^{-}(p, k)$ , and if $\chi$ is rapid in $X$

and $y$ is rapid in $Y$ , then $(x, y)$ is rapid in $X\times Y$ .
Next, we give an example, assuming the existence of a rapid ultrafilter on

$\omega$ , of a rapid homogeneous space without weak P-points.

2.12. EXAMPLE. In [AF], the authors defined the homogeneous zero-dimen-
sional space $S_{\omega}$ . In a similar way, for every $p\in\omega^{*}$ , we may define the space
$S_{\omega}(p)$ by replacing convergence sequences by p-limits in the construction (for a
similar procedure see [G-F]). $S_{\omega}(p)$ is also a homogeneous, zero-dimensional
space without weak P-points. For $p\in\omega^{*}$ , set $S_{\omega}(p)=\{x\}\cup\{x_{n_{1},\cdot\cdot.n_{r}}$ : $ n_{j}<\omega$ for
$1\leqq j\leqq r<\omega\}$ . Then, we have that $x=p-\lim x_{n}$ and $x_{n_{1}.\cdots,n_{r}}=p-\lim x_{n_{1},\cdots,n_{r},n}$ ,

for every $n_{1},$
$\cdots$ , $ n_{r}<\omega$ . To describe a neighborhood of $x$ in $S_{\omega}(p)$ , we put

$S(A)=\{x_{n} ; n\in A\}$ and $S(x_{n_{1}\cdots,n_{r}}, A)=\{x_{n_{1}\ldots.,n_{r},n} ; n\in A\}$ for $x_{n_{1}.\cdots.n_{r}}\in S_{\omega}(p)$

and for $ A\subseteqq\omega$ . If $\{A\}\cup\bigcup_{i\leq r<\omega}$ { $A_{n_{1},\cdots,n_{r}}$ : $ n_{j}<\omega$ for $1\leqq j\leqq r$ } are elements of $p$ ,

then the set $\{x\}\cup S(A)\cup\bigcup_{1\leq r<\omega}(()_{n_{1}\in A}\bigcup_{n_{2}\in 4_{n_{1}}}t$ $\bigcup_{n_{f}\in A_{n_{1}.n_{r-1}}}\ldots,S(x_{n_{1}\ldots..n_{r}}$ ,

$A_{n_{1}\ldots..n_{r}}))$ is a basic neighborhood of $x$ in $S_{\omega}(p)$ . It is shown in the proof of
2.11 $((2)\Rightarrow(3))$ , the condition of Q-point is not essential, that the space $\Xi(p, k)$

is not weakly k-rapid for each $ 1\leqq k<\omega$ and for each $p\in\omega^{*}$ . Since $\Xi(p, k)$ is
homeomorphic to the subspace $\{x\}\cup\{x_{j,n} ; j\leqq k, n<\omega\}$ of $S_{\omega}(p)$ for each $ 1\leqq k<\omega$ ,

$S_{\omega}(p)$ is not weakly k-rapid for $all1\leqq k<\omega$ . Now suppose that $p$ is a rapid

ultrafilter on $\omega$ . We shall show that $S_{\omega}(p)$ is a rapid space. It is enough to
prove that $x$ is a rapid point of $S_{\omega}(p)$ . In fact, let $(B_{m})_{m<\omega}$ be a sequence of
finite subsets of $S_{\omega}(p)\backslash \{x\}$ and let $\sigma:\omega\rightarrow\bigcup_{1\leq r<l\prime J}$ { $(n_{1},$ $\cdots$ , $ n_{r}):n_{j}<\omega$ for $1\leqq j\leqq r$ }

be a bijection. Since $p$ is a rapid ultrafilter, we may find $A\in p$ such that
$|B_{m}\cap S(A)|\leqq m$ for each $ m<\omega$ . By induction, for each $x_{n_{1}.\cdots.n_{r}}\in S_{\omega}(p)$ we de-

fine $A_{n_{1}.\cdots.n_{r}}\in p$ such that
(1) $|B_{m}\cap S(x_{n_{1}.\cdots.n_{r}}, A_{n_{1},\cdots n_{r}})|\leqq m$ for each $ m<\omega$ ; and
(2) $ B_{m}\cap S(x_{n_{1}.\cdot\cdot n_{r}}, A_{n_{1}.\cdots.n_{r}})=\emptyset$ for every $m\leqq\sigma^{-1}((n_{1}, \cdots , n_{r}))$ .

Define

$V=\{x\}\cup S(A)\cup\bigcup_{1\leq r<\omega}(\bigcup_{n_{1}\in A}\bigcup_{n_{2}\in A_{n_{1}}}\cdots\bigcup_{n_{r}\in A_{n_{1},n_{r-1}}}\ldots.S(x_{n_{1}\ldots..n_{r}}, A_{n_{1^{\prime}}\cdots.n_{r}}))$ .

For every $ m<\omega$ , let $z(m)=|V\cap B_{m}|$ . Fix an arbitrary $ m<\omega$ and put $V\cap B_{m}=$

$\{x_{n_{1}^{s}.\cdots.n^{s_{r_{s}}}} : 1\leqq s\leqq z(m)\}$ . Then $x_{n_{1}^{s},\cdots.n^{s_{r_{S}}}}\in S(x_{n_{1}^{s},\cdots.n_{r_{\epsilon}-1}^{S}}, A_{n_{1}^{l},\cdots,n^{s_{r_{s}}}})\cap B_{m}$ for each
$1\leqq s\leqq z(m)$ . From (1) and (2) it follows that $\sigma^{-1}((n_{1}^{s}, \cdots, n_{r_{S}-1}^{s}))<m$ , for each
$1\leqq s\leqq z(m)$ , and $|\{1\leqq t\leqq z(m):(n_{1}^{\epsilon}, \cdots, n_{r_{s}- 1}^{s})=(n_{1}^{t}, \cdots , n_{r_{l}-1}^{t}), n_{r_{S}}^{s}\neq n_{r_{l}}^{t}\}|\leqq m$ , for
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each $1\leqq s\leqq z(m)$ . So $z(m)\leqq m^{2}$ . Thus, $|V\cap B_{m}|\leqq m^{2}$ for every $ m<\omega$ . Theorem
2.4 implies that $x$ is rapid in $S_{\omega}(p)$ .

Finally, we state some problems.

2.13. QUESTION. Assume the existence of a Q-point $p\in\omega^{*}$ .
(1) Is there a compact weakly k-rapid (resp. rapid) space without weak P-

points, for each $ 1\leqq k<\omega$ ?
(2) It there a weakly k-rapid (resp. rapid) topological group without weak

P-points, for each $ 1\leqq k<\omega$ ?

(3) For every $ 1\leqq k<\omega$ , is there a weakly $(k+1)$-rapid homogeneous space
which is not weakly k-rapid?

3. On Id-fan tightness.

We begin with a definition that generalizes countable strong fan tightness
(1.4 (3)).

3.1. DEFINITION. Let $ h\in^{\omega}\omega$ . A space $X$ has h-fan tightness if for every
$x\in X$ and for every sequence $(A_{n})_{n<\omega}$ of subsets of $X$ such that $x\in\bigcap_{n<\omega}C1(A_{n})$ ,

there is $F_{n}\in[A_{n}]\leq h(n)$ for every $ n<\omega$ , such that $x\in C1(\bigcup_{n<\omega}F_{n})$ .

If $ h\in\omega\omega$ is the constant function of value $k$ for $ 1\leqq k<\omega$ , then k-fan tight-

ness stands for h-fan tightness. Henceforth, Id: $\omega\rightarrow\omega$ will denote the identity

map on $\omega$ . It is evident that countable strong fan tightness $\Leftrightarrow$ l-fan tightness
$\Rightarrow h$ -fan tightness for each $h\in\omega\omega\Rightarrow countable$ fan $tightness\Rightarrow countable$ tight-

ness. There is an easy example of a space with countable tightness which does
not have countable fan tightness. In fact, for $p\in\omega^{*}$ , we define a topology on
$--(p, \omega)=\{p\}\cup\omega\times\omega$ as follows: the singleton $\{(n, m)\}$ is open for every $(n, m)$

$\omega\times\omega$ , and $V\in\Re(p)$ provided that $p\in V$ and $\{m<\omega:(n, m)\in V\}\in p$ for each
$ n<\omega$ (see the proof 2.11). It is not hard to show that $--(p, \omega)$ has countable
tightness and does not have countable fan tightness for every $ h\in^{\omega}\omega$ . Example

3.7 has Id-fan tightness and does not have countable strong fan tightness, and
Example 3.8 has countable fan tightness and does not have h-fan tightness.

Next, we shall show that if $ h\in\omega\omega$ , then h-fan tightness coincides with
either l-fan tightness ( $=countable$ strong fan tightness) or Id-fan tightness,
First, we give some preliminary results.

3.2. LEMMA. Let $ h\in^{\omega}\omega$ and let $ f\in\omega\omega$ be non-bounded. Then every space
with h-fan tightness has f-fan tightness.
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PROOF. Let $X$ be a space with h-fan tightness, $x\in X$ and $(A_{n})_{n<\omega}$ a sequence
of subsets of $X$ such that $x\in\bigcap_{n<\omega}C1(A_{n})$ . Since $f$ is not bounded, we may
choose positive integers $ n_{0}<n_{1}<\cdots<n_{k}<\cdots$ such that $h(k)\leqq f(n_{k})$ for each
$ k<\omega$ . Define $B_{k}=A_{n_{k}}$ for each $ k<\omega$ . Then, for every $ k<\omega$ there is $ E_{k}\in$

$[B_{k}]\leq h(k)$ such that $x\in C1(\bigcup_{k<\omega}E_{k})$ . For $ n<\omega$ , put $F_{n}=E_{k}$ if $n=n_{k}$ and $ F_{n}=\emptyset$

otherwise. Thus, we have that $\bigcup_{n<\omega}F_{n}=\bigcup_{k<\omega}E_{k}$ and $F_{n_{k}}=E_{k}\in[A_{n_{k}}]^{h(k)\leq f(n_{k})}$

for each $ k<\omega$ . Therefore, $x\in\bigcup_{n<\omega}F_{n}$ and $F_{n}\in[A_{n}]\leq f(n)$ for all $ n<\omega$ .
The following two corollaries are direct consequences of 3.2.

3.3. COROLLARY. If $h,$ $ f\in\omega\omega$ are non-bounded, then the notions of h-fan
tightness and f-fan tightness are the same.

3.4. COROLLARY. If $ h\in^{\omega}\omega$ , then every space with h-fan tightness has Id-fan
tighness.

3.5. LEMMA. If $ h\in^{\omega}\omega$ is bounded then h-fan tightness agrees with countable
strong fan tightness.

PROOF. Assume that $ h\in\omega\omega$ is bounded by the integer $ k<\omega$ . Let $X$ be a
space with h-fan tightness, $x\in X$ and $(A_{n})_{n<\omega}$ a sequence of subsets of $X$ such
that $x\in\bigcap_{n<\omega}C1(A_{n})$ . By assumption, for each $ n<\omega$ there is $F_{n}\in[A_{n}]\leq k$ such
that $x\in C1(\bigcup_{n<\omega}F_{n})$ . We may suppose that $|F_{n}|=k$ for all $ n<\omega$ . Enumerate
each $F_{n}$ by $\{x_{1}^{n}, \cdots, x_{k}^{n}\}$ and set $B_{j}=\{x_{j}^{n} ; n<\omega\}$ for each $1\leqq j\leqq k$ . Since $ x\in$

$C1(\bigcup_{n<\omega}F_{n})=C1(B_{1}\cup\cdots\cup B_{k})=C1(B_{1})\cup\cdots\cup C1(B_{k})$ , there is $1\leqq j\leqq k$ such that
$x\in C1(B_{j})$ . Thus, $x_{j}^{n}\in A_{n}$ for each $ n<\omega$ and $x\in C1(\{x_{j}^{n} : n<\omega\})$ .

We turn now to the principal result of this section.

3.6. THEOREM. If $ h\in^{\omega}\omega$ , then h-fan tightness coincides with either l-fan
tightness or Id-fan tightness.

The next two examples show that Id-fan tightness is a new concept.

3.7. EXAMPLE. Let $ x\not\in\omega\times\omega$ . We consider the following topology on $X=$

$\{x\}\cup(\omega\backslash \{0\})\times\omega$ : the set $(\omega\backslash \{0\})X\omega$ has the discrete topology and a neighbor-
hood of $x$ consists of a finite intersection of the sets $V_{f}=\{x\}\cup\{(n, m)\in(\omega\backslash \{0\})$

$\times\omega:(n, m)\neq(n, f(n))\}$ for $ f\in\omega\omega$ . Notice that $X$ is a zero-dimensional space.
We shall verify that $X$ with this topology has Id-fan tightness and does not
have strong fan tightness. Indeed, for $ 1\leqq n<\omega$, we put $A_{n}=\{(n, m):m<\omega\}$ .
In order to show that $X$ has Id-fan tightness we note that $x\in C1(B)\backslash B$ , for
$B\subseteqq X$ , whenever for every $ 1\leqq n<\omega$ there is $ k_{n}<\omega$ such that $|B\cap A_{k_{n}}|>n$ .
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For each $ 1\leqq n<\omega$ , let $B_{n}\subseteqq X$ such that $x\in\bigcap_{1\exists n<\omega}$ Cl $(B_{n})$ and $x\not\in B_{n}$ , for each
$ n<\omega$ . Then for each $ 1\leqq n<\omega$ there is $ k_{n}<\omega$ such that $|B_{n}\cap A_{k_{n}}|>n$ . For
every $ 1\leqq n<\omega$ , choose $F_{n}\subseteqq B_{n}\cap A_{k_{n}}$ such that $|F_{n}|=n$ . Let $V=\bigcap_{j\leq s}V_{f_{j}}\in\Re(x)$ ,

where $ f_{j}\in\omega\omega$ for $ j\leqq s<\omega$ . Since $|F_{2_{S}}\cap\{(k_{2S}, f_{j}(k_{2i})):j\leqq s\}|\leqq s+1$ and $|F_{2S}|=2s$ ,

we obtain that $ F_{2\$}\cap V\neq\emptyset$ and hence $ V\cap\bigcup_{1\leq n<\omega}F_{n}\neq\emptyset$ . Thus, $x\in C1(\bigcup_{1\leq n<\omega}F_{n})$ .
Suppose that $X$ has countable strong fan tightness. Then for every $ 1\leqq n<\omega$

there is $ t_{n}<\omega$ such that $x\in C1(\{(n, t_{n}):1\leqq n<\omega\})$ . Let $ f\in\omega\omega$ be defined by $f(n)$

$=t_{n}$ for each $ 1\leqq n<\omega$ . Then $ V_{f}\cap\{(n, t_{n}):1\leqq n<\omega\}=\emptyset$ , which is a contra-
diction.

3.8. EXAMPLE. Let $ Y=\{y\}\cup(\omega\backslash \{0\})\times\omega$ , where $ y\not\in\omega\times\omega$ . We equip $(\omega\backslash \{0\})$

$\times\omega$ with the discrete topology and let $\Re(y)$ be the set of all finite intersections
of the sets $W_{S}$ , where $W_{S}=\{y\}\cup\{(n, m):m\not\in S_{n}, 1\leqq n<\omega\}$ and $S=(S_{n})_{1\leq n<\omega}$ is a
sequence of subsets of $\omega$ such that $|S_{n}|\leqq n$ for each $ 1\leqq n<\omega$ . We claim that
$Y$ is a zero-dimensional space which has countable fan tightness and does not
have Id-fan tightness. It is evident that $Y$ is zero-dimensional and does not
have Id-fan tightness. We claim that $Y$ does not have countable fan tightness.
First, observe that $y\in C1(B)\backslash B$ if and only if for every $ 1\leqq n<\omega$ there is $ k_{n}<\omega$

such that $|B\cap A_{n}|>nk_{n}$ , where $A_{n}=\{(n, m):m<\omega\}$ for $ 1\leqq n<\omega$ . Assume that
$y\in\bigcap_{1\leq n<\omega}$ Cl $(B_{n})$ and $y\not\in B_{n}$ for each $ 1\leqq n<\omega$ . Then, for each $ 1\leqq n<\omega$ there
is $ k_{n}<\omega$ such that $|B_{n}\cap A_{k_{n}}|>nk_{n}$ . For each $ 1\leqq n<\omega$ , choose $F_{n}\subseteqq B_{n}\cap A_{k_{n}}$

with $F_{n}|>nk_{n}$ . Let $W=\bigcap_{j\leq r}W_{s_{j}}\in \mathfrak{R}(y)$ , where $S_{j}=(S_{n}^{j})_{n<\omega}$ for $ j\leqq r<\omega$ . Since
$|F_{r}\cap\{(k_{r}, m);m\not\in S_{k_{r}}^{j}, j\leqq r\}|\leqq rk_{r}$ and $|F_{r}|>rk_{r}$ , we have that $ W\cap F_{r}\neq\emptyset$ and
hence $ W\cap(\bigcup_{1\leq n<\omega}F_{n})\neq\emptyset$ . Thus, $y\in C1(\bigcup_{1\leq n<\omega}F_{n})$ .

Certain ultrafilters on $\omega$ can be characterized in terms of countable fan
tightness and Id-fan tightness.

3.9. THEOREM. An ultrafilter $p$ on $\omega$ is a P-point iff $\xi(p)$ has countable fan
tightness.

3.10. THEOREM. For $p\in\omega^{*}$ , the following statements are equivalent.
(1) $p$ is semiselective;

(2) $\xi(p)$ has countable strong fan tightness;
(3) $\xi(p)$ has Id-fan tightness;
(4) there is $ k\in^{\omega}\omega$ such that given $A_{n}\in p$ for $ n<\omega$ , there exists $F_{n}\in[A_{n}]\leq h(n)$

such that $\bigcup_{n<\omega}F_{n}\in p$ .

PROOF. The proofs of (1) $\Leftrightarrow(2),$ (2) $\Rightarrow(3)$ and (3) $\Rightarrow(4)$ are direct from the de-
finitions, and (4) $\Rightarrow(3)$ follows from 3.2. Only the implication (3) $\Rightarrow(1)$ requires
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proof. Assume that $\xi(p)$ has Id-fan tightness. Let $(A_{n})_{n<\omega}$ be a sequence of
elements of $p$ . Without loss of generality, we may suppose that $A_{n+1}\subseteqq A_{n}$ for
$ n<\omega$ . Define $B_{n}=A_{n(n+1)/2}$ for each $ n<\omega$ . By hypothesis, for each $ n<\omega$ there
is $F_{n}\in[B_{n}]\leq n$ such that $A=\bigcup_{n<\omega}F_{n}\in p$ . By adding integers if it necessary
and by induction, we may assume that $|F_{n}|=n$ , for each $ n<\omega$, and $ F_{n}\cap F_{m}=\emptyset$

whenever $ n<m<\omega$ . Enumerate successively the $F_{n}\prime s$ by $\{a_{j} : j<\omega\}$ . Then we
have that $A=\{a_{j} : j<\omega\}\in p$ . Fix $ 1<J<\omega$ and let $ 1\leqq n<\omega$ be such that $a_{j}\in F_{n}$ .
It then follows that $j\leqq n(n+1)/2$ and hence $a_{j}\in F_{n}\subseteqq A_{n(n+1)/2}\subseteqq A_{j}$ , as desired.

3.11. QUESTION. Is there a topological group $G$ such that $G$ has Id-fan
tightness (resp. countable fan tightness) and does not have countable strong fan
tightness (resp. Id-fan tightness)?

For a space $X$ we denote by $C.(X)$ the function space on $X$ with the topo-
logy of pointwise convergence. In the next theorem, we shall show that the
concepts of countable strong fan tightness and Id-fan tightness coincide on the
class of spaces of the form $C_{\pi}(X)$ . Recall that $X$ has property $C^{\prime\prime}$ if for every
sequence $(\mathcal{G}_{n})_{n<\omega}$ of open covers of $X$ there is $G_{n}\in \mathcal{G}_{n}$ , for each $ n<\omega$ , such that
$X=\bigcup_{n<\omega}G_{n}$ . The following lemma is needed.

3.12. LEMMA. For a space $X$ , the following are equivalent.
(1) $X$ has property $C^{\prime\prime}$ ;
(2) for every sequence $(\mathcal{G}_{n})_{n<\omega}$ of open covers of $X$ , for each $ n<\omega$ there is

$\mathcal{D}_{n}\in[\mathcal{G}_{n}]\leq n$ such that $X=\bigcup_{n<\omega}\cup \mathcal{D}_{n}$ ;
(3) there is $ h\in\omega\omega$ such that for every sequence $(\mathcal{G}_{n})_{n<\omega}$ of open covers of $X$

there is $\mathcal{D}_{n}\in[\mathcal{G}_{n}]\leq h(n)$ for each $ n<\omega$, for which $X=\bigcup_{n<\omega}\cup \mathcal{D}_{n}$ .

PROOF. Only (3) $\Rightarrow(1)$ requires proof. Let $ h\in^{\omega}\omega$ satisfy the conditions of
clause (3) and let $(\mathcal{G}_{n})_{n<\omega}$ be a sequence of open covers of $X$ . Without loss of
generality we may suppose that $h$ is strictly increasing. Put $\mathcal{H}_{0}=\mathcal{G}_{0}\wedge\cdots$

$\wedge \mathcal{G}_{h(0)-1}$ and for $ n<\omega$, we define $\mathcal{H}_{n}=\mathcal{G}_{h(n)}\wedge\cdots\wedge \mathcal{G}_{h(n+1)-1}$ , where $\mathcal{G}\wedge \mathcal{H}=$

{ $G\cap H:G\in \mathcal{G}$ and $H\in \mathcal{H}$ } for $\mathcal{G}$ and $\mathcal{H}$ covers of $X$ . Then for each $ n<\omega$ there

is $\mathcal{D}_{n}\in[\mathcal{H}_{n}]\leq h(n)$ such that $X=\bigcup_{n<\omega}\cup \mathcal{D}_{n}$ . We may assume that $\mathcal{D}_{0}=\{H_{j}$ : $j<$

$h(0)\}$ and $\mathcal{D}_{n}=\{H_{h(n)+j} : j<h(n+1)-h(n)\}$ for every $ 1\leqq n<\omega$ . Now, we have

that if $ n<\omega$ and $j<h(n+1)-h(n)$ (resp. if $j<h(O)$ ), then there is $G_{h(n)j}\in+$

$\mathcal{G}_{h(n)+j}$ (resp. $G_{j}\in \mathcal{G}_{j}$) such that $H_{h(n)+!}\subseteqq G_{h(n)j}+$ (resp. $H_{j}\subseteqq G_{j}$). It then follows
that $X=\bigcup_{m<\omega}G_{m}$ and $G_{m}\in \mathcal{G}_{m}$ for each $ m<\omega$ .

3.13. THEOREM. For a space $X$ , the following are equivalent.
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(1) $C_{\pi}(X)$ has countable strong fan tightness;
(2) each finite product of $X$ has property $C^{\prime\prime}$ ;
(3) $C_{\pi}(X)$ has Id-fan tightness.

PROOF. The equivalence (1)0(2) is shown in [S] and by a slight modifica-
tion of Sakai’s argument we can prove that $C_{\pi}(X)$ has Id-fan tightness iff each
finite product of $X$ satisfies the property of clause (2) of 3.12. Thus, (2)0(3)

follows from 3.12.
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