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ON THE NEUMANN PROBLEM FOR SOME LINEAR
HYPERBOLIC-PARABOLIC COUPLED SYSTEMS
WITH COEFFICIENTS IN SOBOLEV SPACES

By

Wakako DAN

Abstract. We prove a unique existence theorem of classical solu-
tions to some Neumann problem of linear hyperbolic-parabolic coupled
systems with coefficients in Sobolev spaces and energy estimates
are also obtained. This paper gives a preparation for solving some
nonlinear hyperbolic-parabolic coupled system with Neumann bound-
ary condition.

§ 0. Introduction.

Let 2 be a domain in an n-dimensional Euclidean space, its boundary I°

being a C* and compact hypersurface. Let x=(x,, ---, x,) and ¢ denote a point
of R™ and a time, respectively. For differentiations we use the symbols 0;=
d/ot and 0;=0/0x; (=1, .-, n). In this paper, we consider the following
problem :

Au(O)[#] =031 5 (1) —0:(AH®)8,4 u(t)) — AR (#)0:0: 1 1 (t)

— ARE D=7 u() in (0, HX 2,
Ap)[#] = AR)0. 1 p(t) —0:(A¥ ()01 p(1)) — AE ()01 p(t)

AE 1(£)3:0,1 n(t) — AR 2(£)9:0. 7 ()= f p(t) in (0, T)X2,
(N)  { Ba®O[i]=v: AH()d;1 u(t)+ BEE )i p(t)+ By ()08 u(t)

=Zu(t) on (0, T)X T,
Bp®)[1] =v; AE)0;1 p(t) + BRu()0: i u(t)
+Bbu(t)0: @)+ B @)l p(t)=2p(t) on (0, T)X T,
Ug(O)=tg,,, 0:Up(0)=ip,, Up(Q)=1Up, in £.
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Here and hereafter T is a positive constant and #=(iy, ip) is a real vector-

valued function: %y ="*(um, -, Uamy), Up='(Upi, -, Upmp) (‘M means the
transposed of M). y,(x) ¢G=1, ---, n) are real valued functions in CH(R") such
that v(x)=(,(x), .-, va.(x)) represents the unit outer normal to " at x=/[.

The functions are assumed to be real-valued. The sub and superscrips 7, J
take all values from 1 to n. The sub or superscripts 7 and ; (resp. k) refer
to all integers from 1 to »n (resp. from 0 to n+1). Below, I will always refer
to a closed interval containing [0, T'] strictly, say I=[—z, T+7] (z>0). And
K will always refer to the fixed integer =[n/2]+2, which represents the order
of regularity of solutions and coefficients of operators Ag(t) and Bel) (E=
H, P). We assume that

(A.1) Y =AY, x), AR =AY, x) and BY4(t)=BY%(t, x) are myXmy ma-
trices, APF*1()=AF2'(t, x) and BEP(@)=BEE (¢, x) are myXmp matrices,
AR = AJt, x), AY(@) = AHE, x), AP = AP*'(t, x) and B"“(t):
B3a*'(t, x) and BA*'(t)=B2*!(t, x) are mpXmp matrices, and A¥y({t)=
A¥y(t, x), Bin(t)=Bju({#, x) and Biy(t)=Bju(t, x) are mpX my matrices.
A¥ and AP are decomposed as follows: A =AY ..+ A% s and Af=

2.+ Aps where Afy., Af.€ B=(IXQ) and Alys, ApscYE-1YI; Q).
kreYk-vuxr.- 1), Here E, Le{H, P} and subscripts HH and PP
mean H and P, respectively.

BX(G) denotes the set of bounded functions in CX(G) whose derivatives up to
K are also everywhere bounded in G. For any interval J and Hilbert space X,
L>(J;X) and Lip(J;X) denote the set of all X-valued functions which are
measurable and bounded everywhere in J and Lipschitz continuous in J in the
sense of the strong topoloy of X, respectively. Put H7(G) denotes the usual
Sobolev space over G or order r<R with norm [-|, ¢.

Xur(J; 6= éﬁcw s HTHG)) 5

2473 G)=CHJ s HTHGHN N\ CHJ 3 HE MG
Yor(J; G=L=~(J; H'(G);
Yir(, O={u@eX () ; G)dube L= ; H*"(G))
NLip(J ; H¥*"I-Y(G)) for 07501}
for /=0 integer, reR.

For any function space S, we denote a product space SX :-- XS by also S.
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Put {|l|..o=]-l. and |-]o=]-l. (,) denotes the usual inner product of L*{)=
H°(2). We assume that

(A.2p) 'AY=A} (E=H, P), 'Aj=AR, ‘Ap=Ap, 'By=Bjy;
(A.3; 5 there exist positive constants d,, 0, and 9, such that
(AF @0tz 0,r) =0, Ueli—0ol s> (E=H, P),
Ap(t, x)=0:15,

for any tel, x€ and #zcH¥S), where I'np is the identity matrix
of mpXmp;

(A4)) B‘},-—%uiA}}’;O for any (¢, x)esIXI'.

When we solve a Neumann problem of quasilinear hyperbolic parabolic coupled
systems, the present problem appears in the linearized problem, so that we
shall prove a unique existence theorem of solutions to (N) and energy inequalities.
The equations (N) contain a model of a linear thermoelastic equation as a
physical example. In proving the existence, our argument is parallel to Shibata
[2]. This paper is organized as follows. In §1, we state our basic notation,
define the compatibility condition and state main results. In §2, we explain
the method of getting the first energy inequality briefly. §3 is devoted to the
proof of the existence theorem for some elliptic boundary value systems. In
§4, we derive the energy inequalities of higher order. In §5, we prove an
existence theorem of solutions to (N).

§1. Notation and main results.

First, we shall explain our notations. Let L and M be integers =0.
Dr3*u=(0j0su, j+la| <L+M, jSL);
DLo"i=(0{o3u, j+|a|=L+M, j<L).

For any integer /=0 and o<(0, 1), put B*(G)= & BYG)||Vlw, 140.6< o},
where
[V]|w,1.6= 2 Sup la"‘v(x)l;

la|sl xe@

B |03v(x)—0%v()|
;v,m,lwﬁ_;v;w,z,aﬁﬁlf&%a |x—y[7

We write ” '”oo,l,+a',G: | ) |°°,l+o,Q, l * loo,l+a'.1——— l * 1oo,l+a,IxQ and <'>ao,l+o‘,I:l 'loo.l+o,1x1"-
We define the norm of Y Z:(J; G), s€R, as follows:
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[Vlo.s.0.c=sup lv@®)s. ¢ ;

teJ

oY v(@®)—at’ +8-N -1
vl s.0.6=1ulo Lss. G+Z sup 0f v®) =08 v(S)llz+s-n-1.6
N=o t,ses |[t—s]|

for L=>1.

If v@)eX&*(J; G), then

L
IUIL.S.J,GZ 2Jsup “afv(t)”L+s—k,G .

k=0 teJ

Hence we also use |-|.;.vs.¢ as the norm of X2*(J; G). Inthe same way, we
use |lz-1s41,0.6F+10F " |1 so1,0.¢ as the morm of Z%*(J;G). Put |ulp,,=
#1500 and <D s s=|v|L.s.s.r. We denote the norm of H"(I") by |-|..r=
() and {-»e=(-). <,> denotes the inner product of L*[I")=H°I'). But,
when n=1, {-), stands for the absolute value |-| for any r=R. Let us use
the same notations to denote various norms of vector or matrix valued func-
tions. For the operators Ag(t) and Bg() (E=H, P), we use the following
notation :

[(Ae@Oport. el =5 ( 3 53 1OFARLO o, -1+ 10EABO 1)

l=0 E,L=H,P 1,

[Aet)| Be®p-r.pls = { = (10t ARs®ll -

l=0 E.L=H,P

+40BEL R+ s-1-172) T 0t ARpsO R -1} -
Let M.(K), Ms(K) and M(1+p, J) be constants such that
S D ABelew k. 1 | AP lw k. 1 SMo(K) ;

E,L=H.P i.k

E Z(IAELSIK 1,1, I+<BEL>K 1,1/2, 1)+|APSIK 1,1, 1<MS(K),

E,.L=H,P i

Z 2 ('A ‘oo 1+p, J+<BEL>oo 14, J)+IAP100 1+, 1<<ﬂ4(1+[l, ])

E.L=H.,P i

for p=[0, 1). C=C(---) denotes various constants depending essentially on the
quantities appearing in the bracket. Let us define the first energy norm
E(, iu(s)) for the operators Ag() and Bg() (E=H, P) by

Bs, #)=l0, n®1*+ 12 nO1 30+ 1220 e ;
B(s, Z)=10n®I*+ [Ea®l3 0 +Tp0O 3
+{ (D@2 nde+ 2@t

where
13 w3 sy =(AH($)05U 11 (), stk 1r(£))+ 0ol % 1(1)]);
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12 p O] oy =(ApS)dp(D), Upl)).
For the space of solutions, we put
EX(]; Q= {incX™(J ; Q)|0F Dy L] ; HVXI)}
XlupeZt 0] ; D)ot tups L*(J ; H' ()} .

As the norm of EZ(J; 2), we put
@l = D5 ()1 1p(0) 2+ | (D () 2 I (5) s
IO = D42 u(®l*+ 88~ 0]+ D>t
+ (@ D () 2t 10 Tpls)Dds  for L2,

Now, we shall explain the compatibility condition which # o, #n;, #po, fE and
gz (E=H, P) should satisfy in order that solutions to (N) exist. For a moment,
we assume that a solution Uu=(éi g4, ip) to (N) exists and that

(1.2) ue EX[0, T); 2 for 2 LK.
Put
(1.3) Ugy=0:450) (O=MZL), Upy=0{up0) (O=M=ZL-1),

which are represented in terms of initial data, right members fH, fp and their
derivatives. In fact, for 0SM<L -2,

v M - ; .
aane= 3 (7} ) 10:@E A9k 11 1)+t AR o -
+0% Al p(0)08 pag -} +01 f 1(0) ;
apMH:Ag(orl[ 2( z ) 10.GLAH O3, pac-0)+ DL AKO e
+0t Ay (000,07 sy -1 +0E AR (0008 srar 41 -1}
M M >
+ 2 (7)) AR} +0ET O]
=1

Since #zeXX([0, T); Q), upsZ ([0, T); 2),
(1.4) igyEHMQ) 0=M<=L);

UpysHEM(Q) OEMZL-2), ipr.<L¥Q).
Moreover, we see that

agl(UiA};(t)ajﬁH‘f‘B?{?l(t)ﬁP‘i“Bg{(f)atizH)eCo([O, T); H'(£2));
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o (v AF (D058 p+ BR (). i+ BEu()0: n+ BE' ) p(1) = CX[0, T) ; H(D)),

for 0SM<L—2, which follows from [1.2), A and A¥=X¥-2'(I; 2) and B%¥,
B}, By and BigesXX-2Y%([; ["). In view of the trace theorem to the bound-
ary, the boundary condition in (N) requires that

(1.5) Y (Wi A )00 u+ Bye )i p+ By (t)0:4 1) | 1=o=04 g 1(0) on [,
0¥ (viAE(t)0 i p+ B u(®)0. i p+ Bhu()0:t i
+ B3 ()i pt)]1=o=0¥2p0) on [

for 0SM<L—2. Such conditions are also represented in terms of initial data,
right members fE, gz (E=H, P) and their derivatives. When holds, we
say that #y,, Un,, fE and gz (E=H, P) satisfy the compatibility condition of
order L—2 to (N). For the sake of simplicity, by D*(J) let us denote the set
of all systems (%o, Uy, Upo, f”, fp, Zu, 8p) of data for (N) satisfying the con-
ditions:

(1.6a) ipyeH-M(Q) 0sSM<L,
Ury€H"M(Q) 0SM<L—2, ip,,€L¥Q),
FrEXE]; @),  gzeX U] ) (E=H, P);
(1.6b) o fee LXJ; L*Q),  dF'gzsL(J; LX) (E=H. P);

(1.6¢) Uto, U, fipo, f2 and gz (E=H, P) satisfy the compatibility
condition of order L—2 to (N),

where J is a time interval containing 0 and contained in I. We shall state our
main results.

THEOREM 1.1. Assume that (A.1)-(A.4) are valid. Let L be an integers
[2, K1. Then, for a given system (iipo, %m, tips, f£, &5 p-mp)< DLE[0, T)) of
data for (N). (N) admits a unique solution i="(iiy, ip)c EX([0, T); Q).

THEOREM 1.2. Assume that (A.1)-(A.4) are valid. Let L be an integer
€[2, K] and i=(iy, ip)s EX[0, T); ). Let p be a small number (0, [n/2]
+1—n/2) for n=2, and 0 for n=1. Put fet)=Ae®[#¢)] and gx(t)=Bt)[#%()]
(E=H, P). Assume that

(1.7 ok fre LX[0, T); L¥2)), or'ges LX[0, T); HY¥I")) (E=H, P).
Then, there exist constants

Cl:Cl(Ty 50) 51) 62’ I_'y ‘m(l_*—#) I)) and CL:CL(T, 60) 51y 621_" M°°<K); MS(K))
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for L=2 such that the following two inequalities are valid for any t<[0, T):

(1.82) z®IE= C1e>* {la O3+ 2 (1 F 218 0c0. <8 B8, 112, 00,01

E=H.pP
+.3 1 10,7 5) "+ (@ega(s Nt ds} ;

(1.8b) Nz®lz<CAlzOMz+ %‘;H( IPfEl E-z.or0.037<8E>E-2,1/2.10.00)

+ 3 1 00F 7o) P +(@F Za(s)ds)  for L23;

(1.9 E(t, oF'u@)<eC1t {E(0, 0~ 11(0)+ RE()} .

Here and hereafter,

REO=C.{'{ 3 (105 Fo(o)*+(0F @s(tis)

A1 D=8 p(s) |24 108~ T p(s) | 24 | D=2 p(5)3
+ 1020 p(s) |3+ (DO L u(s)) 21t ds for L=2.

§2. The first energy inequality.

The purpose of this section is to prove the following theorem.

THEOREM 2.1. Assume that (A.l;), (A.2;), (A.3:5 and (A.4;) are valid.
Let p be a small number (0, 1) for n=2 and 0 for n=1. Let i=(ipn, Up)E

E*[0, T); ). Then, there exists a constant C depending only on T, 8,, 0, 0., I’
and M(1+pu, I') such that the following two estimates are valid for t&[0, T):

2.1)  E@ a@)=C{E®O, @(0) + .2 S:(”JZE(S)[Z_Z(S)]“2+<<—@E(s)[ﬁ(s>]>>%/2)d3} ;

=H,P
(2.2) E@, u@)=e’"{EQ, 2(0)+R'®)},

where
RO=C{{_ 3 (1761 +(@x)n)+ 1) [+(D () ursh ds
The following theorem was already obtained in [1].
THEOREM 2.2. Let I'=[—1t/2, T+7/2]. In stead of (A.l;), we assume that

(A.1}) A (t, x), A, x)€B~I'X2), B, x)e8~I'xI).

In addition, (A.2;'), (A.3;:.5) and (A4;:) are valid. Let p be a small number
(0, 1) for n=2, and 0 for n=1. Then, there exists a constant C=C(T, 0, 01,
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Oy, M +p, 1), I, ¢) such that (2.1) and are valid for any i=y, Up)E
EX[0, T); Q) and t<[0, T).

Using and the following lemma concerning an approximation
of the coefficients of the operators Ag(t) and Bg(t) (E=H, P), we can prove

in the same way as in [[2] p. 295-p. 296].
LEMMA 2.3. Assume that (A.l;), (A.2;), (A.3;.;5) and (A.4;) are valid. Then,
there exists a number X,>0 and sequences of matrices:
{AffLmst, {AReot CB=(I'X Q) {Abiset, {Abst CC=(I; H*(2)),
{BttcC=(I"; HXI)), where I'=[t/2, T+7/2] and o<=(0, %),
having the following properties:

(a.1) }’in(;l | AfLeos— Ao o, k-1, 11 =0, }}in(} | Affrse— Ars| k2.1, 1 =0,

lin}lA?’ma—A?’w]w,K-Ll':O, lil’g\lA?:,gg—A?)le_z_l_I.::O ;
g [

(a.2) lim <Biro— Bl k-2.112.1-=0;
(b.1) L2 A e le k1 [ Abs ok 1 S CM(K)
E'LZM | A¥rsel k111 + | Apsal k21,1, 1 SCMs(K) ;
(b.2) E%}k (BErok-112.1=CMs(K);
(b.3) E,:Zlq.k(lAll;"kLoloo.Hp.I’+<B%Lo>oo.l+,u,1’)+ | Abolwo, 14p. 10

SCHl4p, I) for any o<=(0, 2,).

(¢) there exists a sequence {k(o)} of positive numbers which tends to zero as
0—0 and has the following property: if we put

Ao, x)=Al=o(t, x)+ Al so(t, x)—&(O)i(X) Iy, ,

then AR.(t, x) and By, x) satisfy (A.4;.) for any o=(0, 2,);
(@ if we put
AFSt, x)=Alust, x)+ A¥s,(t, x) (E=H, P),

then there exist constants 0;, 07 and 0; depending only on 0, 0, 0;, Mu(K)
and Ms(K), and independent of o such that AY,(t, x) and AR(t, x) satisfy
(A.3;:.5) for any (0, X,);
(e) AY, AY, A, and BY, satisfy the (A.2;.) for any o=(0, 2,) and i, j=1,
, M.
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PrROOF. On the coefficients of the boundary operators, using the local
coordinate systems, we reduce the approximation process to the half-space case
(x,>0), and then we mollify the coefficients by means of the usual Friedrichs
method with respect to (¢, x’), x’=(x,, -+, x,_1). Since the coefficients of Agx(t)
and Ap(t) are defined on IX 2, we extend them to /X R™ by well-known Lions’
method, and then we mollify them with respect to (¢, x). In this manner, we
obtain the required approximations. For details, see the proof of

in[2]. m

§ 3. Elliptic boundary value problem.

When we prove the further regularity of solutions to (N), it is a key the
existence theorem of the following problem:

0}10(0, ............ s 7—)HM+1<t)

(3.lm) 15}1M+2(t)—PHM(t)[ }"I‘ZIIM'I)HMO):;HM(Z‘)

in /X8,

Upo(t), -, Vpu(t)

51{0(t), """""" s 27HM+1(t)
ApB)Vpu(t)— Ppyu(t)

Upo (), =+, Upu(t)

+Apubpu®)=Feut) in JXR,

[Drzo(t), wevennreees s Dararar(®)]

Quu(®) =g uu(t) on /XTI,
\_i}PO (t)y Tty ﬁPM(t) .
(D 70(F), «ereeereeees s D@D

Qrx®) =gpu(t) on JXI,

[ Dpo (2), *++ Dpult) i
for 0M<N,, where JcI, N, is an integer [0, K—3], and

[Dpro(t), ~vovveeeeee s Darare ()] i
Pru(t) =PEuO0m), -+, Vawn®)]

[ Dpo (2), -, Dpu(t) i
+PEu®[0p@), -+, Dpu(®)];

(D a0(E), wvevvrmeenes , Paaar®]
Qen@®)| ) =QEuO0mo(®), -+, Vaysr(t)]
[ Dpo(2), -+, Upu(t) J
+Q5}J(t>[ijl"0(t); Tty ﬁPJI(t)]
(E=H, P);

PEu®[0no®), -, Dnya(t)]

= 5 (V)o@ AE O 9 0)+ B ABOD B 1s O]
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PLu®)[0po(t), -+, vpu(@)]= éo(A}j)[a'fAﬁ??l(t)aiﬁpM—k(f)] ;

PEuO[0wo@), -+, Oy (@)]

_ A M B, . Ao .
_kgo( 3 )[atAPH(t)aiavaJl—k(t)+a¢ApH(t)aiUHM+l_k(t)] ;

Pu®[0pe(t), -+, Vpy()]

|

w M . _
k@ﬁ ( b )[ai(a‘i/l;? )00 px— k() +0: AP )00 pa— s ()]
- ké (A};I )a’gA?’(t)ﬁPM+l—k(t) ;

B0, -+, Brres®1= 35 (3 )P AF O Briw-r0)
+0iBY )0 nasr-2(®)];

M

QhOTom), -, vpu)= 3 (1 NIABEHDdru-10)];

Bv®0mo(®), -+, Duyn(@®)]= éo(A:)[afB?’H(t)ﬁﬂM+l-—k(t)
+0tBhu(t)0:0ry- )] ;

QEu om0, -+, Dpu]= 3 (3 NI B AF WD, 5m (1)
+0t B (t)Dpu - (t)].

Vuny+1, DN +2, OPN 41, fuwn, Fru, Bun and gpyw (OSM=N,) are vectors of given
functions. dyo(t), -+, Oun,(t), Upo(t), -+, Upn,(f) are vectors of unknown func-
tions. We shall prove the following theorem.

THEOREM 3.1. Assume that (A.1)-(A.3) arevalid. Let N, and N, be integers
such that 0SSN, <K—3 and N\+2<N,<K. Then, there exist constants Ay, Apy
(0M<N,) having the following properties: Let t be any fixed time in J. If
fHM, ?PMEHNz_M_z(Q): Guwu, Epu s HY2 M3 %[y O<MZXN)), TJHN1+ZGHN2—N1_Z<'Q)
[=1, 2, Opy, . €HV2M17(Q), then (3.1) admits a unique system [d,, ---, Oy, €
HY2()X -+« X HY2= Y () (Gy=0nun, Dpu)) of a solution having the estimate
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Ny
(3.2) ME_O(”ﬁHM”Ng—M—i- 9pall wy-ar)

2
=C{ l§ 10nn sillwg-n, <t 10px sallvg-n -2

N - -
+ Mz_‘o(u Frnll wysta ) F ol wymsroe

B aud ny-s-s3i2t{EPudNg-a-s12)} s

where C=C(Ano, -+, Aun,, Aro, >+, Apn,, 01, 0o, M(K), Ms(K)). Furthermore, in
addition to what we have assumed, we assume that N,+3<N,<K. If fHM(t),
]?PM(t)EXI'NZ_M_S(]; D), 8uu®), BruO)S X Ve M P2(]; ') OSM=N,), Oy, ()
eXtNe-Nimt=1( - Q) [=1, 2, Upy, () Z Ve N7 (] 1 Q), then (3.1) admits a uni-
que system [Do(t), -+, Oy, @O)JEX" V21 ([; Q)X oo XXV N1m([ 2 ) of a solution
having the estimate :

Ny
3.3) M2=0} 1050 sl vy - 2+ 11050 () | 5y - 21— 2}

IA

e B T L R el P

g Z -
+ Mz_‘o<nazzfm<t>nNz_M_h_2+uag FostOllypston-s
+(OrE (VN y-r-n-s/2FCOFEPu@) ) ¥y-r-n-372)}
fo any te ] and k=0, 1,
where C=C(Ag,, -, 211N1, Apo, **°, Xle, 01, 0s, M(K), Ms(K)).

PROOF. By induction on N,, we shall prove the first assertion. Assume
that N;=0. Let N be an integer =[2, N,]. We consider the following equa-

tions:
(3.4) { _ai(Ay(t)ajﬁHO‘f‘ZHof’Ho:Fﬂo in 2,
' Vi A8 5 10=C 10 on I

If FroeHY-*Q) and Gu,=HY~¥*I"), by Theorem 3.6 in we see that there
exists a Ax,>0 depending only on d,, d,, M.(K), Ms(K) and independent of t<J
such that for any A=4y,, (3.4) admits a unique solution ¥y, H¥(£) and

(3.5) 19 sl S C I F sroll w-2+4G o) w_ssa} »

where C=C(4,, 0;, 0o, M.(K), Ms(K)). Assume that op, belongs to H¥(f).
Since ¥y, HY2"1(Q), applying (Ap.1) and (Ap.3) in with a=K—1, B=r=
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N—2 or a=K, 8=y=N—1, we have

IARs®0:0mll v o S CHARsOllx -1l w13

I AF#®)0:0poll v o S CIIAHES Ol k-1l Opoll 5 -1 5
(BEp)0po) n-s2 = C{BHEE OV -112l0poll v -1 ;
(Bu®UmYn-32 S CLBEOY k1720l v -

Therefore, Let #5%=05%@p,) be a solution to with Fo=A¥Z#)d:9p, and
G no=—BYEt)ip, 0Hi=0%3x,) a solution to with F o= AR)0:94, and
G no=—B%)0 1, and 95o=0%0(f ro, S0, ¥uz) @ solution to with Fro=7 uo
—by, and Grpo=Fn.. In each case, Fu, and Gy, belong to H¥-%£) and
HY-%*(["), respectively. Since the equations are linear, the uniqueness of solu-
tions implies that ##{ and 9%% are linear maps from H¥ () to H¥(f2). More-
over, they satisfy the following inequalities:

006G adll v =Cllomliv-1, [055@p)llw <CllOpoll n-1,

|850llw S CULF noll v s H(& o) w—sra+ [Frall w—2) -
Here C=C(Ax,, 0., 0,, M(K), Ms(K)). Using these solutions, we consider the
following equation:
—0:(AE(1)05p0) — AR (1)0:0,055(0.pe) — AR *1()0:0ps+ ApsDpo
56 = F po— ARO0p1+ A(1)0:0,0 0+ 0HE@n)) + ARy (D39, In L,
vi A ()0 ,0ps+ B i n(1)0;05%5(0po) + BE* ()0 py
l =8po— Bhut)0:(0f0+ 040 1)) — Bpndu, on [,

where ¥p, is regarded as a vector of unknown functions. Employing the same
arguments as above, by Theorem 3.6 in [2] we see that there exists a Ap,>0
depending only on 9d,, d,., M.(K), Ms(K) and independent of t<J such that
for any A=4p,, (3.6) admits a unique solution vp,=H?¥2(2). Let us denote a
solution to (3.6) with fE(,:gEO::O (E=H, P), vn,=0 (i.e. 9f,=0) and 9p,=0 by
VB =08} (0). And let us denote a solution to (3.6) with ©5,=0 by #5,=
950(f 1o, B o, [ Po, Bpo, Ums, Upy). They satisfy the following inequalities :

1552 a) v = Cllomsll wor ;
1950(F 110, B 10, Froy Bror Drra, De)lIN
S CAIF moll w21 F poll w2+ (& moY w512+ (B oY v _s12
10l 3ot 1D rall w s}
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where C=C(Ag,, Apy, 01, 0o, M(K), Ms(K)). Put
ﬁHOZﬁgfl)—}'ﬁ]P{OO"}‘

R?Ié(i}Hl) :1751111) +7711;°0(17§01) ’

L
foR

0>

R;!(]:R;{O(flio’ gﬂo» fPo, ﬁPo, Z)HZ’ ﬁpﬂ———ﬁHO‘f‘?}roow}r’o),
II!01<17H1):51}{01) R;’O(f”ﬂ; fPO) g![(): gPO’ ﬁHZ} ﬁPl):ﬁ;’O ’
77P0:R1€01+R1T>0 )
then p, satisfies the equations (3.6), and
3.7 IREollv+IIRpollxn=C “I,?Ho”N—z"*"”fPo”N—z‘I"«gHo»N—alz
+{8ro)v-sr2FVmall w2+ 9Pl v -2},
| RENN+HIRE N ¥ ZCllomliv-s.
3.8 1P moll ¥ +1Tpol v EC {10l w2+ P ill w1+ prl v -2
11 F ol w2t 1 F poll w—e+ (B oD w-sro (B podw-ss2} -
Moreover, Rk, and R3, satisfy (3.1, with ¥4,=0. R¥} and RE} satisfy (3.1,)
with Fre=8r,=0 (E=H, P) and Dga=0p,=0, Dz, and p, satisfy (3.1,).

Assume that 1<N,<K-—3 and that the first assertion is valid for smaller
values of N,;. Let N be a integer such that N;+1<N=ZN,. Then it follows
from induction assumption that for any fryeHY 2%Q), gzycsHY M-3%]),
Iun, €EH YD), dgy, . €HY V1Y) and Upy,cHY~V1(Q) there exist constants
Ago, ***, Agn,-1>>0 independent of fEM, Zex, Ven, and ¥py ., such that the equa-
tions (3.1) admit a solution vy, dpysHY¥(), where M=0, ---, N,—1 and
E=H, P. And also by induction assumption we known that holds by
replacing N; with N;—1. Let us denote a solution to (3.1y) (M=0, ---, N,—1)
with fEMngM:O (M::O, ey, Nl'—‘l, E:H, P), ﬁHN1+1:0 and Z)p]vl:O by Rgﬁ}l
=REN'(Wun,) and RE)'=RE{1(Way,). And also let us denote a solution to
(301M) (M=O, tty N1—'l> With Z)HNI::‘O by

-
Ruu=Rau@uy i1, Vpyn,, fEN, 8EM, E=H. P, M=1.«~-,N1—1);
R;M:RIT’M('BHNl+1; 17PN1, ,?EM, gEM, E=H, P, M=1.~~-.N1-1)-

Each REY(6nw,) (E=H, P) is a linear map from HY ") to HY-M(), and
satisfy the following estimates:
Nq—

1
(3.10) > (I REF @an I w-u+ | REF @un Nw-w) SCll0nx llv-n,;
M=0
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-1

(3.11) 5 IREsl s+ I Rl —se)

M=0

Nyi-1 -
{

2 2 (Ifenllv-s-2+CEEMd N -2-2s2)
E=H.P

M=0 E=

<C

ol v-w-1+10pn, I v-n -1}

Here, C=C(Ago, ***, AEN,-1, E=H.P, 01, 0y, M(K), Ms(K)). The general solutions
to (3.1y) (M=0, ---, N;—1) can be written as follows: dyy=REN'+ Ry, Vpu=
REY1+Rpy. Substituting duy, dpy (M=0, ---, N;—1) into the equations (3.1y)),
we have the equations for unkown opy,:

RESWDnuw), -, RERL_\(Oun)), Dun,, O )
3.12) - 1 ; N e +AunPun,=Fn,
REM(Duny), -+, REFL(Duny), O
[Rgév‘(f)mv,), o, REN1_..Dan)), Oun,. 0] c
=Up,
LRES @uny), -, RENA@an), O
where

. R;io; Tty R}}Nl—h 0, i).HNl+l
FH=fHN1—vHN,+z+PHN1 ;

r T »
PO, T, Rle—x, UpnN,

GH:‘QHN,—QHN,[

r "
Rio, =+, Rigny-1, 0, vHN1+1]
R}"O’ Y R;Nl—ly i}PNl

Here, opn, s €HY MY (D), Dy, (RQ)SHY-V17%(Q) are given, and especially we
assume that dpy,c HV2"V171(Q). First, we shall prove the existence of a weak
solution ¥4y, €H' () by the variational method.

Let us consider the following variational equation:

3.13) Vi(n, in)=Fu, dy)+<{Gn, #n>  for any iycH' @),
where
(3.143.) Vﬁi[ﬁH; ﬁ”]:‘BSl[t’ ﬁH: ﬁH]+C{{(t; ﬁH, ﬁH)+C£{(t; ﬁH; ﬁﬂ);

(3.14b) BY[t, vn, n)=(AH@)0s0x, 0:x)+A(Dn, in);

RES @n), -+, RENI.(0m), 0, O
3.14c)  C¥(, 9u, Gnw)=—(Pun, . » Un

RgONl(ﬁH)J Ty RPNII—I(O.H)) 0

—N.\((@: AF)0s0n, ix);
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Rg({vl(ﬁff)i Ty Rg%%—l({)f{)) O’ O
. , Up)
gONl(ﬁI‘I)’ Ty Rg}clll—l(vH)y 0

+NL(0:By)Yox, Uy .

(3.14d> C%I(t, '5;1, ﬁII>:<QHN1[

To estimate C, and C,, we use the following facts: Let L be an integer
[1, N,—N,]. If sz HES), then

RE (@n), -+, REN1-1(0m), O, O
(3.15a) 1@ AR)0:D || -1+ Prrw, L-1
REY1(@n), -+, REF L. (@), O
<Clloulz;

RES @n), -+, RENI-1(Bm), O, O
. L-1/2

RgoNl(ﬁH), ) RPN11—1(5H>; 0
=Cloxlz.

(3.15b) <<(atB?{(t))ﬁH>>L-—1/2+<<QHN1|:

Here and hereafter, we use the same letter C to denote various constants de-
pending on Ago, -+, dgn,-1, (E=H, P), 8, 8,, Mo(K) and Ms(K). In fact, since
N+1<N,+L<K, by with N=N,+L we know that

-1

Ny
(3.16) 2 (IRE @) v e -u+HIREF @) s r-m) SCllom] 1. .

M=0

Hence, letting 1<k<N,, applying (Ap.1)-(Ap.3) in and using [(3.16), we
have (3.15). Noting that |B¥[9y, 4u]| <C|oullZxul, by (3.15) with L=1, we
have

3.17) |\ VEDn, dagl| SCloglli ], for all 9y, UgsHY(2).
By Schwartz’s inequality and (3.15), we have for any £>0:
(3.182) | Y, Om, 9) | =Clonl ol Zeldnli+C@IDx*;
(3.18b) |CE@t, On, 90)| SCllOall (Dudselltali+C(e)vxl* .

Noting that |B¥[t, du, 9n]|=6,|0xl2 for A>0, and taking ¢>0 so small, we see
that there exists a A{>>0 depending only on Ag, -, Aen,-1 (E=H, P), ), d,,
M (K) and Mg(K) such that

Oo , -
(3.19) |Vilon, orll= —2‘1 (E2°2 ks

for any 9y H' () and A>2§’. From ([3.17) and [3.19), we see that V¥ is a
coercive bilinear from on HY2)X H*(2) for A>4}’>. On the right-hand side, we
have the estimate:

(3.20) VFallng-ny-2 G udng-n,-32=C A .
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Here and hereafter, we put

2
A= Noanvill vg-vyery e I vy-n -1
=1

+E S (Fenlaymest B npstoare)

M=0 E=H.P
R e [ TSI ¢ Jooviy SU

In fact, from (Ap.1)-(Ap.3) in and with N=N, we have [3.20). In
particular, since N,—N,—2=0, applying the Lax and Milgram theorem to [3.13),
we see that there exists a unique 7y satisfying provided that 1>2§’.
Furthermore, combining [3.19), [3.20) and [3.13) with # =0y, we see that [y
<CA. Employing the same argument as in a proof of Theorem 3.8 in [2], we
see that there exists a A;y,>max(2f), d,) depending only on 4, d,, M(K),
Ms(K), 2go, -+, Aen,-1, (E=H, P) such that for any A=4nw,, 1Palln,-n,=CA
and dpeHY>"%¥(Q). For any dpy,cHY 2 17Y(Q), A=Auy,, this is a solution
Py, to (3.12). Summing up, we see that the equations (3.1y) M=0, ---, N;—1
and (3.12) can be solved when gy, EHY2"M17Y(Q) (I=1, 2), DpN,, VPN 1 E
HY2=N1-1((Q), fEMeHNZ“”"z(.Q), GeysHYNe "-312(["y (M=0, ---, N,—1, E=H, P),
Fun,€HY>V¥1-2(Q) and §uy,€HY2"¥1=¥*%I"), and that

(3.21) 3 (Wonnl vy 15sll vy s) 19w, g SCA

Hence, we denote a solution to (3.1y) (M=0, ---, N;—1) and (3.12) with dpy,=
5}1N1+2:O’ fE.’ll:O, gEMzO (M:O, Tty Nl_l, E————H, P) and fHlegﬂleo by
SEM=SE¥(9py,) and SEN1=SE}(¥py,) (M=0, ---, N;—1). And we denote a

solution to (3.1y) (M=0, ---, N;—1) and (3.12) with #py,=0 by

- -
[ A o F 4 3 = = .
SEu=Sku@un,+1,1=1.2, fEM, BEM, E=11.P, M=0... N1, [ HN,, BHN);
r r A Z = Z =
SEu=SEu@nN +1, 11,2, fEmM, BEM, E=H. P, M=0,... N|-1, szvl, Bun,).

From the above facts, we have

Ny-1

(3.22) MZ_70 ISEN N wy-u+ISEM N 5 y-a) +ISEMH wy-w, SClipw ll wg-ny-1 5
Ny-1

(3.23) = NSHmll wo-uH1SEul vy-a) HISEN, M ¥g-n,

IA

2 Ny-1 .
C{Z 0ansillvg-nymi+ 2 2 (Ifenllng-s-2t{8endNy-m-3/2)
l=1 M=0 E=H.P

+”,?HN1” No-Ny-2 KB N -3 Ng-Ny-s/2} .
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Using vxy and vpy (M=O0, ---, N;, M’=0, ---, N,—1), we consider the equations
for unknown Upy,:

S;’II(‘)/l(?‘}PNI)’ ..................... , Sill’%{(ﬁPNl), 0 i
3.2 — 1 N ¥ R 3 +/2PN10PN1:FP;
SEyW(vpy,), -+, SENI_1(Dpn,), Upn,
[Sglgl(gPNl), ........................ , SEX1(Bpn ), 0]
1 R . . =Gp,
Sf;évl(val), T SIP‘%}—-I(UPNJ: Vpy,
where

T T 7
Sho, weeereeerenes » SHNy, van}
b

S};Ov Ty Sl’l;Nl—l, O
. Slo, eeerrereceeres , Sy Dun o
Gp=gpy, —Qrn,

S;’O’ Ty S;’Nl—'ly 0

We consider the following variational equation:

(3.25) VE2(op, ﬁp]:(Fp, Up)+<{Gp, Upy for any HpeHY(Q),

where

(3'26a) Vf[i)P, izP]:Bf(t, UP: izP)+C}1:(t: ﬁP} iZP)+C2(ty ijP: ﬂ’P);

(3.26b) BE(, vp, ip)=(AYt)00p, 0:lip)— (AL (1)0:0p, Up)+A(Dp, Up);

(3.26c) CX4(t, vp, Uip)=N,((0:A®))Vp, iip)
SENI(§p), woveenrerneneinens , SEN1@p), 0

+(Ppy, ) . , Up);
Sgévl(vP)y Tty Sg%}_-—l(vl’)) 0
‘ . SENI(p), wrerererererreneenens , SEN(Gp), 0 .

(3.26d) CE(, vp, Up)=<Qpx, . , Upy;
SEY(wp), -, SER1L(0p), O

Let L be an integer [2, N,—N,]. From (Ap.1)-(Ap.3) in [2], we have
SEN1(fip), rerverereeeeennnnn. , SEN@p), 0

(3.27)  [(0: Apt)0p| L-1+Pry, ) ) L1
ngl)vl(vl’)) Tty S;%i-l(vl’)’ O

=C'|dpllL-1;
S§1X1(5P)’ ..................... , S};%{(ﬁp),

Sgtl)vl(ﬁp)) H) Sg%}—l(ﬁP)’ 0

0
<<QPN1[ }»L_uéc’ilﬁpllm,

provided that op=H*"'(Q). Here and hereafter, C’ means various constants
depending on /2}10, ey, Z”Nl’ Zpo, ey /zPNl—l, Mm(K), Ms(K), 51 and 50. By (3.27)
with L=2, we have
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(3.28) \Vilve, upll =C'[Vpllilliipl, .

From the fact that B{[dp, vp]=0,/2||0pl|} for any A>A4$’ and Schwartz’s in-
equality, there exists A =4§’ such 3hat

(3.29) VZlvp, ﬁpjg%llﬁpllf for any vpesH' () and A>AP2.

Combining and implies that V¥ is a coercive bilinear from on H'(£2)
X HY Q) for 2>A®. Using (Ap.1)-(Ap.3) in and (3.23), we have:

(3.30) N IR e N oly/

where

2
A= 121 1Dan vill vg-ny-1F10pn a1l vg-ny -2

Ny R
+ 2 2 Ufenllvg-s-2tC8eudNng-2-3:2)-
M=o E<H.P

Applying the Lax and Milgram theorem to [3.25), we see that there exists a
unique ?p satisfying provided that A>4{?, and ||9p[|,=<C’A’. Furthermore,
we see that there exists a A=A such that spHY>" V() and [|9p] yp-v, =
C’A’ for any A=2§’. If we put Apy,=4§’, then dp=0vpy, is a solution to (3.24).
Therefore the system [0go, -+, Dun,, Upo, -, Upy,] is a solution to (3.1), so that
we have the first assertion of theorem. The second assertion can be proved
by employing the same argument as in the proof of Theorem 3.8 in [2]. This

completes the proof of the theorem. m

To prove the existence theorem in E*[0, T); £2), we meet the following

problem:

(3.31) —8:(AH)01 ) — AFF )0 dip+Antipg=f u in 2,
—8.(AH(1)d1 p)— Ay (10,0, g — AP+ ()0, T p+Aplip=Fp  in 2,
viAH®)0;i n+ BEF@)ip=Zn on [,
vi AY(0)0,1p+ Bhu(t)d, i y+ B ()i p=5p on I,

for fixed teJcI. Existence and estimate of (3.31) follows from
with N,;=0 and dy4,=04,=0, ¥p,=0. Namely we have the following theorem.

THEOREM 3.2. Let L be an integer =[2, K. Assune that (A.1)-(A.3) are valid.
Then, there exists a A, depending only on 0,, 8o, I', M(K) and Ms(K) essentially
such that for any Ay, Ap=4, and given fEEHL'z(Q) and ggsHL 3% ") (E=H, P),
(3.31) admits a unique solntion i=(iiy, up)c H*(Q)X HX Q) for any t] and
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(3.32) liulli+ltplli= CL’~§H] P(llfaili_z+<<§zz>>2_3/z),

where C:C(al, 60, F, Moo, MS(K)>'

§4. The energy inequalities of higher order.

We shall prove [Theorem 1.2. Since we can prove the theorem in the same
way as in §4 of [2], we shall give an outline of the proof. Put 2<L<K.
We assume that #C>(J; HLX(Q)) where J=[0. T—e] and ¢ is any number
(0, T). First, let us consider the case that L=2. Differentiating (N) with
respect to ¢ and applying (2.1) to the resulting equations we have

@) B aam=CUEO, 2a0)+ 3 | (10:Fs6)1+@eZsNds

+C (1D () "+ 13:22(8) [P+ [ 2(5) [ s}

and [1.9). Here we have used (Ap.1)-(Ap.3) of [2]. Applying
to the equations (N) and using (Ap. 1)-(Ap. 3) of [2], we have
(4.2) 1@l +I1Ep@®) .= C {E___%’P(”flﬂ(t)”+<<§E(t)>>1/2)
+10% ()| +110:% a1+ 0: T p(D]}
where C=C(0,, d,, I, M, I)). Combining [(4.1) and [4.2), we have
(4.3) ”m(t)mggcl{”Ia(o)mg‘*‘E;LP(lfEl%.o.[o.t]+<gE>g.1/2,[o,t])

+,3 (0o s s+ @asds+ | o lkds).

Applying Gronwall’s inequality to [4.3), we have [I.8a). Using the mollifier
with respect ¢, we can remove the additional assumption: Z€C>=(J; HX(£)) in
the same way as in §4 of [2].

Let L be an integer =3. We may assume that #ZeC>(J; HX(2)), because
by using the mollifier with respect to ¢ we can remove this additional assump-
tion. Differentiating (N) L—1 times with respect to ¢ and applying (2.1) to the
resulting equations, we have

(4.4) E@, aFa@) < C.[E(O, 9F1i(0))

+ CLS {1 DX ()24 10F~ % p(s) 1|24 | D=~ 2iLp(s) 13} ds

+ 3 [ U85 751+ (@ 2a()2ds]
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and for any t= /. Here we have used (Ap.1)-(Ap.3) of [2]. To get the
estimate of higher derivatives with respect x, differentiating (N) / times with
respect to ¢t for 0<I/<L-—2, applying to the resulting equations
and using (Ap. 1)-(Ap. 3) of [2], we have

4.5) 104 (@)l 1+ |0k R} -t
<Ci{ 2 (10 e®)llpozer+(O: )Y 1oss2-1)
E=H.P

S PO P A MO P
D513k )| 419821 p(0) |+ DE-5i1 (0
for teJ, 0<I/<L—2. Note that Hﬁ(t)llzgIIﬁ(O)Hz—i-ZS:Ha,ii(s)llzds and the fact

4.6) MA+p, HNSEM(K)+Ms(K) for p=(0, [n/2]4+1—n/2) and n=2;
M1, DEML(K)+Ms(K) for n=1.

Combining and and noting (4.6), we have (1.8b) by Gronwall’s in-
equality. This completes the proof of [Theorem 1.2,

§5. An existence theorem of solution to (N).
In this section, we shall prove the following theorem:

THEOREM 5.1. Assume that (A.1)-(A.4) are valid. Then, for any system of
data:

(& 10, B g1, Upo, ]?E, 8, e-u.P)ED¥[0, T)),
(N) admits a unique solution =iy, ipyc E¥[0, T); 2).

Our proof is essentially the same as in Shibata of [2]. As a
main step of our proof of [Theorem 5.1, we shall prove the following lemma.

LEMMA 5.2. Let ¢ be any number (0, T) and put J=[0, T—e]. Assume
that (A.l)—(A4) are valid. Let (1—2}10, 1—2}11, ﬁpo, fE', §E, E=H.P)ED2(,,> such that 1-2111
eH¥Q). Then, there exists a unique i= (g, Up)s E*J ; ) satisfying the equa-
tions:

6.1 Ax®LE®]=Fua®), ALDOLAGOI=Ft) in X2,
B ]=2a®), BpMOLUW)]=Zpt) on JXTI

1711(0)=17110, acﬁu(o)zﬁm, 17?(0)':&1’0 in .
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Assuming that is valid, we can prove by using the
approximation of initial data in the same way as in [[2], p. 331-p. 332].

Proor oF LEMMA 5.2. Using the assumption: i, H*2), we shall reduce
to the problem with zero Cauchy data and fH(O)———O, fp(O):O on [I'. Put
Unt)=1go+tii gy, Uplt)=iipy, Ut)=(Uu(t), Us(t)), Fet)=1s®)—Ae@®)[U®)], Gx@®)
=grt)— Bs®)[U)], E=H, P. Then, (0,0, 0, Fg, Gg, z—u.p)=D*J). If 4@) is
a solution to the equations: '

AnOLIO)]=Fu®), AsOO®OI=Fpt) in JX&,
Br@Oe®I=Cu®), BeOIO)]I=GCpt) on JXI
vr(0)=0:01(0)=0, ¥(0)=0 in 2,

then #(t)=U@)+0(t) satisfies [5.1). From this observation, we shall prove the
existence of solutions to in the case that (0, 0, 0, fz, Bz z-u p)ED*J).
The uniqueness of solutions follows from [Theorem 2.1. Let A%({#) and B%(@)
(E=H, P) be operators having the coefficients defined in Lemma 2.3. Corre-
sponding to A%() and B%(t), we should approximate fE, gz (E=H, P) by smooth
functions in ¢, Employing the same argument as in [[2], p. 333], we construct
ft and g (E=H, P) such that

(5.2a) fLeCUAR; LARQ), d.fksL¥R; L¥Q)),
greCAR; HYXI"), 8.8x=L*R; H'XI") (E=H, P);
(5.2b) fe®O=7e®, Est), Zet)=gzt) te] (E=H, P).

Furthermore, without loss of generality, we can assume that

(5.2¢)  fr=0 for t&[—T, 2T], gk=0 for t&£[0, 2T] (E=H, P).

(Since gz(0, x)=0, we can put gz, x)=0, t<0, E=H, P.) Let k®)eC%([1, 2])
such that x()=0 and Sx(t)dt:l. Using £(t), we mollity /% and gy (E=H, P)

with respect to ¢, and we put them f"E and 3¢ (E=H, P). From the way of
making these, we have

(5.3) 8%(0)=0 on [ for any ¢>0 (E=H, P);
(5.4) feeCs(R; LX), gx)eCs®R; HV ") (E=H, P).

Furthermore, we have
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(5.5) SV U %00,k H<8%D0. 172 B)
E=H.P

+, o3 (0 FEOI+@EEdI=C  for any o€, T,
where 3, is the same as in Lemma 2.3. Now, let %’ be solutions in E*[0, T]; Q)
to the equations for each ¢=(0, X,):
(5.642) AGO[ROI=F%®), AFOEOI=F%¢)  in [0, TIXQ,
(5.6,b) Ol ®O]=8%®), BrO[u°®)]=gs¢) on [0, TIXT,
(5.6,4¢) 1%(0)=0,1%(0)=0, u%0)=0 in 2.
Existence of the solutions to (5.6,) is guaranteed by of [1], be-

cause the compatibility condition of order 0 is satisfied. Furthermore, using

with L=2 to (5.6,) and noting (b) of and (5.5), we
have
6.7) | D*ug @)1+ 110 25@) 12+ 1 2512

t t
+{ 19 tds+ | (Daan(Nds<C:

(6.8) E’(t, 0:u7)t)<e®*{E’(0, 0.2°(0)+ R},

where

¢

Re=C{|, |5 (0. A8La7I*+(0. B5L* D1 ds

0 E P

+| 10as(s)ds +  (Dacas@)2inds

+ DRI+ 13+ |25(5) D d s}

for all te[0, T], E° is the energy norm for the operators A%() and B%({) (E=
H, P) and C denotes various constants indendent of ¢. From now on, we shall
prove that the limit of #’ belongs to E*(J; ). To this end we need the fol-
lowing lemma

LEMMA 5.3. Put J'=[0, T]. Assume that (A.1)-(A.4) are valid. Let i°=
(U4 u%) be functions in E*J’; Q) satisfying (5.6). Then, there exists a U=
(g, ip)Y P o(J ; Q)XY 2]’ ; 2) such that Do uxt)s L*(J ; H V*I")), 0.up()
eL¥J’; H(Q)) and

5.9) m (12% — |10+ | Bp—iiplo.0.5)=0;
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(5.10) () =0,0 u(0)=0, #pO=0 in Q;

(5.11a) 05 —> i) weakly in HXQ) as 6—0 for all te ]’ ;
(5.11b) 0.5y (t) —> 0, y(t) weakly in HY(Q) as a—0 for all te]’;
(5.11¢) up(t) —> Up(t) weakly in H¥) as a—0 for all t]’;
(5.12a) Bu®)[U@)]=8u(t) in the sense of HY*(I") for all t&]";
(5.12b) BpO[U@)]=gp(t) in the sence of HY*(I') for all te]’.

Furthermore, if we put
(5.13) Ou(t)=F 1) +0:(AY()0,;8 u(t))+ AR(X)0:0. 8 u(t)+ Al p(t)0:8 p(t) ;

Up(t)= ApD) " {f b)) +0.( A ()01 p(t)) + Ap(1)0: 1L p(2)
+ A ()0:0,4 1 (t) + ARy ()0:0:1 1)} ,

then

(5.14a) 02Uy (t) —> vu(t) weakly in L*Q) as 0—0 for all t]’;
(5.14b) 0:u%(t) —> Op(t) weakly in L*(2) as —0 for all t<]’;
(©.15) WUa)=vu(t) 0:up(t)=0p1) for almost all t<]’;
(5.16) Jim {198 — F 2O > +119E)— ARO0)* F 2Ol 5 )

H10:82 aO % o) HEr@ONE+ 4D )15 =0

PROOF OF THEOREM 5.3. Subtracting (5.6,-) from (5.6,) and applying (2.1)
to the resulting equation, we have

(5.17) |G —u% 30,0+ UE—UT (5.0,

=C (I(A%(s) —AF (sH[U7 ($) P+ ( BE(s) — BE (NLU () IV%re

J' E=H,P
+ 1 F5(8)— F& ()12 +(8%(s)— 8% ()30 ds .
Using and (a) of Lemma 2.3, we see that {(#%, #%)} is a Cauchy sequence
in Xto(J/; @)xX"(J'; ). By the completeness of X*°(J"; Q)XX*°(J"; ),
we can conclude that there exists a limit #=(iiy, ipsX'°(J' ; D)XX"(J"; Q)
satisfying [5.9). Combining (5.6,c) and implies that (5.10) is valid. More-
over, employing the same argument as in [[2], p. 336-p. 337], we see that
(5.11) and following facts are valid:

(5.18) 12 a®le+ 108 a®l: 4@l <C  for all t€]’;
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(5.19a) U 4(t) and i p(t) are continuous on J’ in the weak topology of H*Q);
0.4 4(t) is continuous on J’ in the weak topology of H(Q);

(5.20) 1211 (t) — 8 ()1 41108k o (t) — 0l ()| + || 2 p(t) — U p(S) |
<Clt—s] for all ¢, s )’;
(5.21) ugtye L=(J’; H(@Q)NLip(J'; H'(2));

dilu(t)E L)' s HN@)NLip(J'; LXD);
ipt)e L] ; H@)NLip(J'; LX),

We have also

.22 [ 10 e(s)tds+{ (DN, nds = C

for any teJ’ (=[0, T]). In fact, implies that for any ¢>0 there exists a
constant 2 such that

t t
(5.23) Sollﬁy—ﬁ‘;,llfds—l—gollﬁp—ﬁ‘},”zds<e for any a<J.
For any ¢, x)=C3((0, t)xX 2),

t

| @i, s =

(tp—it%, 3,0p)ds |+ [S @.ii%, §)ds|

)
([ 1ap—isirds )" (] 10:p12as) ™
(e

II/\

0

+(| 10azizas) " ({ npieas)™;

0

¢

|5:<Dla‘ﬁ”’ ¢>ds‘< S u,;ll*ds (S:<<Dla:¢>>d3>”2

0

+(S:<<l_7‘6zﬁ‘b>)iuzds)m(S:«(o»?/zds)”2

Considering and ((5.23), we have [5.22). Combining [(5.2I) and [5.22) implies
that 2€Y XY *%(J’; ) and D'9,iyt)e L]’ ; H-V¥T')), d:ipt)s LA(J ; H'(2)).
In the same manner as in [[2] p.337-p.338], we can prove (5.12), (5.14) and
(5.15). Furthermore noting that A2(¢)~' is continuous on J’, we have the fol-

lowing fact, toor.
(5.19b) v;(t) and dp(t) are continuous on J’ in the werk topology of L2(Q).

Finally, we shall prove [(5.16). To this end, employing the same argument as
in [[2], p.339] and noting that 0,|i x|} i ullie, SClliull}, collipl|*<(AR(s)lp, iip)
<Clip|® for any UpcsH'(Q), ipcL¥Q), s€l, C=CMLK), Ms(K)), we see
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that our task is only to prove that

(5.24)  lim [Bu@I* 188 n(® 50y 100 5 0= 7 O+ [ AMO) 72Ol o
From (5.19a, b) we have

(5.25) 11 2(0)12+ | AB(0)~* 7 2(O)l| 5 o)

<lim inf (|87 + 1701 o) +H10e 2Ol 5 o)) -

Hence, to obtain (5.24) it is sufficient to prove that

(5.26) lint’l_’osklp No N2+ 10 § 0+ 108 2@ 5 o))

<N £ aO)lI24+ 1 AR0)™ £ (O] 5o -
By [5.7), we see that
(5.27) | E(t, 0.8°()—E“(t, 0.u°()| =CU’(@);

|E(, 0.4°())—E(0, 0.2°@))| =C ¢},
where

U’(t)y=[A%@)—Ap)E=11, P oo, & -1 F[AZE)—AE®) | BER)— Be(O)g=n,pPls, k-2.1-

Noting that E(0, 9.%°(#))=0:%®I*+10:4% O 0 +10: 25D 50y, from and

we have
10: 8% @2+ 11045 @N 0y +110:7HD § o)

<e®E°(0, 0,2°(0)+CU(t)+S’(t).
where S?(t)=e¢®*R?(t)+C|t|. Since
|(F5(0), A, (0)~*FH(0)—(F#(0), AR0)™*7p(0))]
<[ F30)— 7 p(0) | A2, (0)2 F5(0) | 4 | (F 5(0), 8. #H(0)—p(O))],

by (5.14b) E°(0, 8cii"(0))*allf;z(0)||2—l—IIA?:(O)“’fp(O)]lfg(o) as g—0. Therefore, we
have

(5.28) }Tlfrol sup (|03 E @12+ 110: 4% N F 0y + 1107 FE F o))

< (| £ n(0)]|24 1| AH0)* £ (0) | §0)) +S(2) ,
where S(t)=e®*R(t)+C|t| for t=J. By (5.11b) and (5.14a, b)
(5.29) 19 a@NE+10:8 2| 5 0y + 12215 o)

=lim inf (97 (]°+10:2%®)] 5 o) + 10:2:D ] 5 0r) -

Combining and (5.29) implies that
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(5.30) 10O+ 1008 12115 0, 19O F o)
< et (| F u(O)I2+1ARO) " 7 (O F o) +S().

Since ¢°*—1 and S(¢t)—0 as t—0+, (5.26) follows from [5.30), which completes
the proof of Lemma 5.3. B

From and (5.14) we see that
(5.31a) An®[#@)]=F4() in the sense of L) for almost all t€J’;
(5.31b) Jp(t)[ﬁ(t)jzf;(t) in the sense of L% ) for almost all t= ).

If we prove that #=E*J; ), we see that # satisfies [5.1). To this end, we
use a mollifier with respect to ¢. Let p(#) be a function in CH([—2, —1]) such

that Sp(t)dtZI. Put ps(t)=0""p(87), st x)=gp5(t—s)i2(s, x)ds. Note that

;e C=(J; H¥()) provided that 0<d<e/2. Using (5.12) and (5.31) and applying
to #is;—1iy, we have

(5.32) (25— s YOME= C {ll(z5— 25 YOMIE+I5, 5}
for tJ and 0<4d, 0’<e/2, where
Iiy= X {I(J_;i')a_(fé)a' 5.0.0H<(8E)s—(8E)s D8 1/2. 7
E-H.P

+ (I8: 7501+ (@25
+ | Rpstl — Rps i15,0,0 +<{Sesth—SEs U5, 1/2.s
[ (18 Resit())— R D+ (@ Sab )~ S o ROt

Resu=Agltis]—(Agl8])s, Sesti=PBeli;]—(Belit])s (E=H, P).
By Lemma 4.1 of we see that [; ;;—0 as J, 6’—0. In the same manner as
in [[2], p.335], by we can prove that
(5.36) (35— 35 )O)I5 — O as 0, 0'—0.

Letting d, 0’—0 in [5.32), we see that {#;} is a Cauchy sequence in E*J; Q).
This implies that #;—1# in E*J; £2), which completes the proof of the
52. m

Using [Theorem 1.2, [Theorem 3.1 and [Theorem 5.1, we can prove
1.1 for L=3 in the same manner as in §6 of [2], so that we may omit the
proof.
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