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LERAY-VOLEVICH CONDITIONS FOR SYSTEMS OF
ABSTRACT EVOLUTION EQUATIONS
OF NIRENBERG/NISHIDA TYPE

By

Michael REISSIG

Let us consider the following Cauchy problem for a linear differential equa-
tion of first order with analytic coefficients and data in a neighbourhood of the
origin :

d:u(t, x)—a,(t, x, 0z)ut, x)=1(t, x), u(0, x)=u,x).

The Cauchy-Kovalevsky theorem asserts that if the order of a, with respect
to 0, fulfils ord a,<1, then there exists a unique analytic solution u=u(t, x)
in a neighbourhood of the origin. In it is shown that ord a;=1 is necessary,
too. The situation is quite different for linear systems with analytic coefficients
and data, for example, for

0cus(t, x)—a 1, x, 0-)us(t, x)—ay, o2, x, 0-)ust, x)=1.(¢, x),
0:us(t, X)—as,1(t, X, 0)us(t, X)—as o(t, X, 0z)Us(t, X)=fo(t, x),
u,(0, x)=1u,(x), us(0, x)=us(x).

Local well-posedness is valid under more general conditions, the so-called
Leray-Volevich conditions [4, 13]

ord a;, ;<q;—q;+1, 7, j€11, 2}, (1)

where ord a; ; denotes the order of a, ¢, x, d.) with respect to d,, ¢; are
arbitrary natural numbers (a, (¢, x, 0.)=0 if ¢;—¢;+1<0). Setting g,=¢. then
we obtain the Cauchy-Kovalevsky conditions. The conditions (1) are in general
not necessary for local well-posedness [1, 4]. But under the condition (1) the
system can always be reduced to a first order system [7]. In the case dim x
=1 a necessary and sufficient condition for the local (uniformly at every point)
well-posedness of the Cauchy problem is that the system can be reduced to a
one satisfying the Leray-Volevich conditions (1) within meromorphic functions [6].

Besides the nonlinear classical Cauchy-Kovalevsky theorem abstract nonlinear
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versions were given in [8, 9, 10]. These abstract versions imply an existence-
and uniqueness result for d,u=F(u, t), u(0)=0, where the nonlinear operator F
satisfying suitable assumptions in a scale of Banach spaces is a singular operator
of first order (see [11]). These assumptions are of Cauchy-Kovalevsky type.

The goal of the present paper is to show Leray-Volevich conditions which
guarantee conical evolution of the solutions (see [1, 12, 14]) can be formulated
for the following Cauchy problem for a system of nonlinear abstract evolution
equations of Nirenberg/Nishida type :

dtui:Fi(ul, Tty uny t)) uz(o):(); (2)
i=1, ---, n. Let us assume
(Buy 10| shococsy={(XH", 1813= S Iudds}  Ho, I lsbocscs,
i=1 088
is a scale of Banach spaces, this means, H, C H,., |||« <||-]ls for 0<s'<s<s,,

so=<1; %, ¢;, C:i.;, R and K are positive constants, p; ; are nonnegative constants
for ¢, j=1, -, n):
For any 0<s'<s<s,<% the mappings

Fi: (uy, -, un, t) —> Fu,, -+, u,, t) are continuous of
{ieB;: |ull.<R}X[0, n) into B, . (3)
For any 0<s'<s<so, all @4=(u,, -, uy), 9=(vy, =+, va)E B, With |u,, <R, l|lvills

<R and for any t<[0, ») the mappings F; are nonlinear singular operators of
order p, ; with respect to u; in {#ieB,: ||u;ll;<R}, that is,

< 1 —vslls
HFi(ul, ey un, t)'—Fi(vly Tty vny t)”s'éjgl Cl.jzsis/)ji;?j' (4)

Choosing u,;=0 the mappings F;(0, :--, 0, t) satisfy for all 0<s<s,
1F0, -, 0, Ol <K/(so—s)%. (5)
The numbers p; ; and ¢; fulfil the Leray-Volevich conditions

pii=qi—q;+1. (6)

THEOREM 1. Under these assumptions there exists a positive constant b and
there exists in a subscale {Bs;, |-|s}o<scsee @ uniquely determined solution e
CY[0, b(sw—35)), Bsocs<sw 0f (2) possessing conical evolution, this means,

(N o(b(s.0—$)—1) < o0

su
08 800: tEL0,b(800—8))

for all i=1, ---, n. Moreover, |u,t)|s<R for all admissible t.
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REMARK 1. In the special case ¢,=p;, ;=1 which is studied in [8, 9, 10] the
Leray-Volevich conditions are obviously satisfied.

For the proof of Theorem 1 we need the next lemma.

LEMMA. For a fixed positive constant h=1 we have for all t[0, h)
[[(h—eyarrirde<Dh—tye, (7)
where D depends only on q; and pi, ;.
PROOF. i) 0<gq;+p:;<1,
[[h—oyarrindesa—(g o po ) SA—(@s+po ) =Dy,
i) ¢;+p:;=1, using ¢;>0 then
S:(h—r)"dfgln(h—-t)‘l§ Clge)h—t)i,
iii) g+ pi,;>1, using g;+p., ;—1=¢q;, h<1 then
[[h—rawsrerdeggt poy—1)h—ty @rres
=(g;+pi =7 (h—1)".

PROOF OF THEOREM 1. Let us consider the problem (2). The change of
variables t=t'b, 0<b<1 is determined later, transforms (2) in
deuy=bF;(uy, -, un, 'b)=G(uy, -+, Un, t'), u;(0)=0, (8)
n’=7%/b, the relation (4) in

’ ’ 3 Mus=vslls
1Gi(us, o+, Un, )G vy, -+, Un, t )”s‘§]§l Ci b (s—s")Pi.i’ (9)
and, finally, the relation (5) in
1G:0, -+, 0, tHIls=bK /(so—5)%. (10)

As in [8, 9] the solution # of (8) will be obtained as the limit of a sequence
U, = Uy 4, '+, Un,z) defined recursively by u; =0, U; p.1= U; x+0vi r, Where
s, e @)Is=<R/2 for '<[0, sp—s), sp<%, Ses1=5:(1—(2+2)7?), and u,,, is defined
by

y
ui,k(t/):So Gi(Uy, k-1(D), =+, Un,x-1(7), T)dT, k=0, 1, 2, ---.

Now let us introduce the functionals
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M, [v:]= sup v, e @)l s(se—s—1")20.
0S8  L'E[0, 8 —8)

Using we get for M,[v:]

M,[v]= sup 8)”Ut,o”s(50'—s_t,)qi

088 t'c[0,8p~

t’
= sup S G40, --- 0, r)dr” (so—s—1')%
0<8<L8g. t'E00.89-8) 1l J0 )
bK.
< su 9250 (5y—s—t" Y <bKs,.

_o<s<so.z'ep[o.so-s) (S¢—s)%
Now we suppose that ||u;, .@)|ls<R for t'€[0, s,—s).
Using (3) from the iteration process u; ..:(t’), respectively, v; (') are well-
defined for #’<[0, s,—s). Consequently, we can estimate by (9)

.
e s @M= Gt -, s, D=Gilitsams, -+, s s, D]
llvj, k-1(‘l‘)“s,,(r)

(sa(t)—s)Ptd

where s,(7)=(s;,+s—1)/2 for <[0, s,—s). Obviously, s<s.(r)<s, for all ¢
and 0<s<s,. From the definition of M,_,[v;] we obtain (s, <<si_i, sx(t)+7<s:
for all z€[0, s;z—s))

dr,

- t' n C
=" s cuw

Mk_,[v,] < Mk—l[vj]

=S D)—DY T (sp—sk(D)—D)¥

1058 1@ley0 S
These estimates lead to
19015 3 Maaloi1Co 270 (sa—s ey Pirde.
Taking into consideration the statement of the lemma gives
945 Dlsy—s—1)% 3} Co b2 P4 M [v)],

equivalently, M,[v,1=<3%..C;, ;Db294%?4.iM,_,[v;]. Choosing now the positive
constant b<1 such that X7%.,C; ;Db2%*Pi.i=A<]1 we arrive step by step at
Ml[vi]_S_Xsto, Mz[vi]ézszSO, S Mk[vijézkaSO-

From the definition of the functionals M,[v;] we obtain
Milvi]  _ Mie[vJ(k+2)" _ 2*bKs((k+2)™

Vi 2D - = y < _
” 1.k( )”8_ (Sk_Sk.;.l)q" sz:, SZJ'

)

respectively,
k bK k
6,01 ES 2 Nos @S ~gg® 2 (2%

=0

for all £ and all #<[0, s.—s), where s. is the limit of the sequence {s:}. Now
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a suitable choice of b yields sx%ibKso> i ((+2)* %A <R/2 for all i=1, -+, n.
From this follows |u; r 1)< R/2 for all ke N, t'<[0, sw—s) and 0<s <Sew.

The sequence {u; x(t’)} converges to a function u,(’) in H, for all '
[0, se—s). The vector #(")=(u,t’), ---, u,(t’))€ B belonging to C'([0, sw—Ss),
By)o<s<so, ust)|ls < R, represents a solution of (8). Hence, #(f) belongs to
CY[0, b(se—5)), Bsocs<so, and is a solution of (2). Moreover we obtain for all
t'e[0, sw—s) from

i, @) s(Sew— 5 —t)UEZ |Jvg, 1) s(5 s —5s =1 ) < A*BK s,
immediately,
|2s(t)o(S— 5 — ") < bK's, ,é A< oo,

But this implies
sup ) )] (b(se0— ) — 1)1t <00,

0<8< 800 LELD, B (800—8)
consequently, the solution possesses conical evolution.
Let us now suppose the existence of two different solutions
i, 9 CY([0, b(se—s)), Bslocs<sws lu:i@®lls, Ol <R,
possessing conical evolution, that is,

| [ #:(D)ls(b(s—5)—1)i <00,

Sup
0<8< 800 tE[0, D (S0~ S

sup )Hvi(t)IIs(b(sm—S)~t)‘“< o .

0<8< S0 tEL0, D (800~ $)
After the transformation ¢=t'b we conclude

M= su @) — i)l s(s0—s—t)7 <00

0K 3 8000 L' EL0, Spo—8) » =1,

Applying this relation to

w@)—vt)= G, -, n, D=Civsy -, v, e

implies
M

(Seo—$(7)—7)%(s(7)—8)Pi. dt

o)l 3 Cub

Choosing s(7)=(s«+s—1)/2 gives

¢ M23i*Pi, j
a—vd@) <[ 3 Cob s

7,

and, finally, M <AM. Thus, M =0, equivalently, ;" )=v,(") in H, for t'e
[0, s.—s). From this follows #Z=% in contradiction to the assumption.
Besides the conical evolution of solutions in the notion cylindrical evolu-
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tion of solutions of special systems of partial differential equations is introduced.
The next theorem expresses the possibility to transfer this type of evolution
to solutions of systems of Nirenberg/Nishida type (2).

THEOREM 2. Instead of (6) let us suppose the condition
Pu1=q:1—q;. (11)

Under this assumption and the assumptions of Theorem 1 there exists in a subscale
{Bs, |*1s}tocscse @ uniquely determined solution e C ([0, T], Bsocs<so 0f (2) pos-
sessing cylindrical evolution, this means,

sup ]”ui(t)“a(sw_s)qt<°° for all i=1, e, n,

0880, LtELO. T

where T <7 is a certain positive constant independent on 0<s<Ss.. Moreover, it
holds |u,@®)|s<R for all t[0, T].

SKETCH OF THE PROOF. Let us define the functionals

M,[vd=  sup “Hvi,k(t)lla(sk—s)‘“, where T<7 -

038 g, LEL0.

is determined later. Using

M,(v,]= sup ] lvs, ol s(s0—5)%

088, teO, T

< su —KI——(SO——S)“-—:KT

_0<8<lo-lg[0.2‘] (So—s)qi
and applying (4) to the formulas
t
Ut.k(t):So(Fi(ul.k, vy Un ok, TV—Fi(Uy ko1, 0, Un,kog, T))AT
one obtains

el . 33 Cos il —gr.

Setting §=s+(sx—s)/2 yields with
lve, e@lls(se—5)= jgl C.. 29 P41 3T M, 1 [vs]

and, finally, M,[v;]<X7.,C, 29*?isT M,_,[v;]. A suitable choice of T implies
37.C, 2U*P1iT=2<1. The same reasoning as in the proof of Theorem 1
gives M,[v,]J<A*KT,

: KT = -
'lut.k+l(t)l|s§E’”vi.l(t)nlé T Z.‘:,(l—l-z) U< R/2

for all 7/=1, ---, n and
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sup  [u®lli(s-—)S 3 sup  vsu®ls(si— )"

08 S o0 LEL 0, 1=0 0<s<8 . teLo0,
o0 o0
SIS Mv]<KT Z 2.
1=0 =0

Thus, all statements concerning the existence of the solution are proved. The
uniqueness follows from Theorem 1.

REMARK 2. One should refer to the correspondence of the type of evolution
with the weights are used in the definition of the functionals. In the case of
conical evolution the interval of existence with respect to ¢ depends on the
parameter s, 0<s<s.. The set {(s, )eR?: (s, 1)=((0, Sw)X(—(50—S), So—S5))}
forms a conical set in R2. Contrary to this case in the case of cylindrical
evolution the interval of existence with respect to ¢ does not depend on the
parameters s. The set {(s, )ER?: (s, )E((0, s=)X[0, T])} forms a cylindrical
set in R?.

At the end of this paper we deal with some examples for the case of
conical evolution. The statements can be easy transfered to the case of cylin-
drical evolution.

ExAMPLE 1. Let G be a bounded domain in R”. Then we define as in [2]

_ o a2 (STHHTI
(Ho [ulibim={ue C=(G):, sup, 102wl [P 7cs = Il

where 7,21 and I (a;)=24a;Vi/a}i*® if a;>0, I'1(0)=4,. With a suitable choice
of 2, the spaces H; become Banach algebras. One can show, that the dif-
ferential operators 02 are singular operators of order (B, r>=2>1%.,8,7; in the
scale {H,, ||#|ls}ocs<s,» Thus, is the case of quasilinear systems of the form

n
0 ;= ijlFi_k(t, X, Uy, v, Up)OSt kuy

we obtain the Leray-Volevich conditions <{B: &, 7>=<¢;—¢:+1 were derived for
the nonlinear case in [2].

EXAMPLE 2. Let {Gi}ocscs,={2: 12| <S}ocscs, be a family of domains ge-
nerating the scale of holomorphic functions

{Hs, | u”s}o<s<soz {H(GHN C(Cs), sup|u|=| u”s}0<s<so )

where H(G,) denotes the space of holomorphic functions in G;. The differential
operators 07 are singular operators of order ; in the scale {H,, 2|5} o<s<sy- Thus,
for quasilinear systems of the form
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n .
oiu;= kglFi.k(t; Z, Uy, v, Un)OLE kU

we obtain the Leray-Volevich conditions j; ,<q;—q.+1 were derived for the
linear case of higher order in [1].

The solution #=(u,, ---, u,) satifies the conditions

N lut, 2)1(b(se—s)—1)

sup
G 08800, LE[D. D(800—8

=, oSup gty 2l (blse— |z )=t

Gy tEL0. b(80= 121)

The set {(t, z2): z€G,, and t<[0, b(s.—|z]))} forms a conical set with the base
G;.. (see [12, 14]). This motivates the notion conical evolution. As in one
can also define scales of generalized analytic functions in the sense of 1. N.
Vekua and study linear systems of Leray-Volevich type in such scales.

ExXAMPLE 3. As in [1] we consider scales of Banach spaces of entire func-
tions of exponential type

{Hs, llulls} 0<8<8s1

= {ueHcm: sgyu(z)|exp(—(§(2—s)r,-(1+|z,-|‘1f)))=uulls}

’
,0<8<8gs1

where ¢;=1 and r; are positive constants. The multiplication operator z¢-,

respectively, the differential operator 94 are singular operators of order X7%.,a;/
g:, respectively, of order X7.,8:(¢g:i—1)/q: in the scale {H,, [|ulls}ocs<s,- After
introducing the functionals

M. [v]= sup lvs, o, z)“s(sk_s_t,)z’:;lmj. k9
08 S, L'EL0.85-3)

the solution #=(u,, --, u,) of the linear system

n n
duui= 33 by, O T 285 #3850+ )u,
satisfies

n
sup 1, 2l s(b(See—5)—8)Fr=1™1. k196 00,
0 8< 800, tELD, b (800—8))

The Leary-Volevich conditions are representable in the form
n n
El(ai.j,k+bi.j.Ie(Qk_l))/Qkél'i' kgl(mi.k—mj.k)/%-

One can prove that all entire functions u,(z) satisfying

|u2)] <My TL(+ |24 )™ * exp(@—s)ra(l+ |24 | o
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for all 0<s<1 fulfil

i@l =My TL(L+ |24 ™5 # exp(—(s—s"Ira(l+ 24 )%%)

gMjC/(s——s’)zl?ﬂmf’k/qk for all 0<s'<s<1.

Hence we obtain the same growth conditions as in [I]. The Leray-Volevich
conditions correspond to the conditions from [1].

It seems to be interesting that we can conclude for all examples the special
Leray-Volevich conditions from the same abstract result (Theorem 1). Hence,
the Theorem 1 in the case of conical evolution and Theorem 2 in the case of
cylindrical evolution lead to new qualitative results for systems of abstract
evolution equations.

Acknowledgement: The author thanks the referee for the information
about the papers [6, 7] of Miyake which results seem to be essential for the
introduction of the present paper.
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