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ISOMETRIES OF A GENERALIZED
TRIDIAGONAL ALGEBRAS ;7"

By

Young Soo Jo! and Dae Yeon HA

Abstract. Let A{} be a generalization of a tridiagonal algebra
which is defined in the introduction. In this paper it is proved that
if @1 AS— AL is a surjective isometry, then there exists a unitary
operator U such that ¢(A)=U*AU for all A in A{}” or a unitary
operator W such that ¢(A)=W!'AW* for all A in JA{7’, where ‘A
is the transpose matrix of A.

I. Introduction

In [3], Gilfeather and Larson discovered tridiagonal algebras and in [4], Jo
characterized all linear isometric maps of a tridiagonal algebra onto itself. Let
4 be a complex Hilbert space with an orthonormal basis {f;, f2, -+, fsn}. Then
a member of the tridiagonal algebra on 4 has the form

* %k *
%
* k%
*
K .
. o%
%

with respect to the basis {fi, f» -, fan}, Where all non-starred entries are
zero. If we write the given basis in the order {fi, fs, f5 -, fen-1, f2, Jfu, =+,
fen}, then the above matrix looks like this
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where all non-starred entries are zero. Let 4 be a complex Hilbert space with

an orthonormal basis {e,, e., :--, ¢:,} and let
* *
X ok
%* %
%
So:

{ *

be an (n, n)-matrix, where all non-starred entries are zero.
Let S be an (n, n) matrix. Then S, =S means that if the (¢, 7)-component

of S, is %, then the (7, s)-component of S is also *. Let Jé#’:{(lg’ g) D,
2

and D, are (n, n) diagonal matrices and S is an (n, n) matrix with m stars in

each row and column and SoéS}. Then A7 is a generalization of a tridiagonal

algebra. In this paper, we will prove the following.

THEOREM. Let ¢: AP — AT be a surjective isometry. Then there exists
a unitary operator U such that @o(A)=U*AU for all A in ALY or a unitary
operator W such that @(A)=W*'AW* for all A in A3, where ‘A is the trans-
posed matrix of A.

From now, we will introduce the terminologies which are used in this paper.
Let 4 be a complex Hilbert space. If x and y are two vectors in 4, then
(x, y) means the inner product of the two vectors x and y. If S is a non-
empty subset of 4, then [S] means the closed subspace generated by the
vectors of S. An operator is a continuous linear transformation on 4 and the
set of all such is B(4). A projection on 4 is a self-adjoint idempotent operator
in 8(4). There is an obvious correspondence between projections and their
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ranges, which are always norm-closed subspaces of 4.

A lattice .£ of projections (or subspaces) is a collection of projections closed
under the operations A and \/, where EAF is the projection whose range is
(range E)N\(range F) and EVF is the projection whose range is [(range E)U
(rauge F)]. An operator A leaves a projection E invariant in case AE=FAE,
and we denote by Alg.L the collection {A: AE=EAE for all EeL}. Alg.l
is a weakly closed subalgebra of B(4).

Dually, if A is a subalgebra of B(%), then LatA is the lattice of all or-
thogonal projections invariant for each operator in 4. An algebra A is reflexive
if A=AlgLatA and a lattice .£ is reflexive if .L=LatAlg.L. Let a be in C,
then @ is the complex conjugate of a. Let: and j be non-zero natural numbers.
Then E;; is the matrix whose (7, j)-component is 1 and all other components
are zero. Let 4, and A, be subalgebras of B(%).

A linear map ¢ of A, into A, is isometry if it preserves norm.

2. Examples

EXAMPXE 1. Let 4 be a 2n-dimensional complex Hilbert space with an

orthonormal basis {e;, e, ‘-, €2}. Let Ercusornei, Ercnvirinsis °» Emsid.nes DE
mn A{™ for all 7(1</<n) and let .£ be the subspace lattice generated by {[e,],
[92], ttty [en], [el(n+1), ty Emn+l) en+1], l:el(n+2), Crn+2)y "'y Cm(n+2), en+2], Tt
[eicany, **» @acznys *** 5 @meznys @2nl}. Then AW =Alg.L and A is reflexive.

ExAMPLE 2. Let & be a 2n-dimensional complex Hilbert space with an
orthonormal basis {e;, e, -, e:,} and let U be a (2n, 2n) diagonal unitary
matrix whose (Z, 7/)-component is u;; for all /(1=</<2n). Define ¢: A’ —A"
by ¢(A)=U*AU for all A in A{}’. Then ¢ is an isometry such that ¢(E;;)=
E;; for all 1=1, 2, ---, 2n. If E;; is in A{P, then the (7, j)-component of ¢(A)
is #;.a4;u;; for A=(a;;) in AP (1<i<n and n+1<7=2n).

ExXAMPXE 3. Let us consider A{y as the following algebra.

x 0 x 0 =%

D, S * x 0 0 =
A= is in A’ if and only if S=| 0 * =* x 0
0 D, 0 = = x 0

* 0 0 x =

Let V be a (10, 10) matrix whose (1, 2)-, (2, 1)-, (3, 3)-, (4, 4)-, (5, 5)-, (6, 10)-,
(7, 8)-, (8, 7)-, (9, 9)-, and (10, 6)-component are 1 and all other components are
zero. Define ¢: AP —AP by o(A)=V*AV for all A in A{P’. Then ¢ is an
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isometry SUCh that (P(I):[, SD(E“):Egz, ¢(E22):E11, SD(E33>:E33, SD(E.“):E,“,,
¢(Ess)=Ess, @(Ees):Elo,m, ¢(E77):E88, (,D(Ess):E'm SD(E99>=E99y and ﬂD(Elo.m):
Ees.

EXAMPLE 4. Let us consider A{> as the following algebra.

D, S
A= is in A if and only if S=
0 D,

O ¥ ¥ ¥
* * * O
* *¥ O %
* O ¥ *

Let U be the unitary matrix whose (1, 8)-, (2, 7)-, (3, 6)-(4, 5)-, (5, 4)-, (6, 3)-,
(7, 2)-, and (8, 1)-component are 1 and all other components are 0. Define ¢:
AL - A by o(A)=U'AU for all Ain A, where ‘A is the transposed matrix
of A. Then ¢ is an isometry such that ¢(I)=1, ¢(E.;)=Ess, ¢(Ess)=Eq1, ¢(Ess)
=Ese, o(Ew)=Es, @(Ess)=Ey, O(E¢s)=FEss, o(E1)=E,,, and @(Eg)=E;.

EXAMPLE 5. Let us consider A{ as the following algebra.

D, S
A= is in A’ if and only if S=
0 D,

O* O* %
*¥ O¥ ¥ O
O* ¥ ¥ O
* ¥ OO %
* O* O*

Let U be a (10, 10)-matrix whose (1, 8)-, (2, 9)-, (3, 10)-, (4, 6)-, (5, 7)-(6, 4)-, (7, 5)-,
8, 1)-, (9, 2)-, and (10, 3)-component are 1 and all other components are zero.
Define ¢: AP —AP by o(A)=UAU* for all A in A{P, where ‘A is the trans-
posed matrix of A. Then ¢ is an isometry such that ¢o(/)=1, ¢(E;)=FEss,
QD(Ezz)ZEgs, QD(Esa)IElo.xo, SD(Eu):Ess, SD(Ess)zEm SD(EGG)ZEM, QD(Evv)zEss,
(P(Ess):Eu; 90(E99)=E22, SD(Elo,lo)-_—Exs-

3. Results

Through this section, 4 is a 2n-dimensional complex Hilbert space with a
fixed orthonormal basis {e;, ¢,, ¢.,}. We see that there is a commutative sub-
space lattice .£ such that A{’=Alg.L. ¢ will denote an isometry from AW
onto As7’. Let x and y be two non-zero vectors in 4. Then x®y is a rank
one operator defined by (x@y)(h)=(h, x)y for every h in 4.

LEMMA 1 ([7]). Let £ be a subspace lattice and let x and y be two vectors.
Then xRy is in Alg.L if and only if there exists E in L such that vy is in E
and x is in Et, where E_=V\{F: Fe.L and F2E} and Et=(E_)*.
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LEMMA 2 ([8]). Let L be a subspace lattice and let ¢: AlgL—Alg.L be a
surjective isometry. If o(I)=A and if xQx isin Alg.L, then | Ax||=| x|, where
I denetes the identity operator.

THEOREM 3. Let ¢: AP — AL be an isometry. Then ¢o(I) is a diagonal
unitary operator.

PrROOF. Let ¢(I)=(b;;). Since lo(L)esll=|eill=1 and o(I)e;=b;ie;, |bii| =1
for all /=1, 2, ---, n. Since |lo(I)|=II|=1, ¢(I) is a diagonal unitary operator.

Let 9={A: A is a diagonal operator in A§}. Then 9 is a maximal
abelian subalgebra containing .£ and @=J§{M N(ASR)*, where A’ =Alg.L and
(Asmyk={A*: A is in A{M}.

LEMMA 4 ([6]). A linear map ¢ of one C*-algebra into another which carries
the identity into the identity and is isometric on normal elements preserves adjoint,

e., p(A*)=(p(A))*.

DEFINITION 5. Let 4, and 4, be C*-algebras. A Jordan isomorphism or
C*-isomorphism ¢ : A;—J, is a bijective linear map such that if A=A* in J,,
then p(A)=(p(A)* and p(A™)=(¢p(A))".

LEMMA 6 ([6]). a) A linear bijection ¢ of one C*-algebra A, onto another
Ay which is isometric is a C*-isomorphism followed by left multiplication by a
fixed unitary operator, viz, ¢(I).

b) A C*-dsomorphism ¢ of a C*-algebra A, onto a C*-algebra A, is isometric

and preserves commutativity.

Let ¢: AW — A be an isometry and let ¢o(/)=U. Then UA and U*A
are in AP for every A in A§®. Define @: AW —ASE by ¢(A)=U*@(A) for
every A in A{. Then ¢ is an isometry such that $(/)=1. Since 9 is a C*-
algebra, ¢(I)=1I, and ¢ is an isometry, |9 preserves adjoint by Lemma 4.
From this fact, we can prove the following lemma.

LEMMA 7. $(D)=29.

Since ¢: AW —A{M is a surjective isometry, just like ¢, and since the
main theorem would be true of ¢ if it were true of ¢, we now work exclusively
with ¢ and drop the “A”. Equivalently we assume that ¢(/)=1. Then we
can get the following corollary.
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COROLLARY 8. If ¢: A —JAR is an isometry such that ¢(I)=1I, then ¢(D)
=9.

Let ¢: A — A7 be an isometry such that ¢(/)=I. Then since ¢|9 and
¢ '|9D are Jordan isomorphisms, we can prove the following lemma.

LEMMA 9. Let ¢: AT —AY be an isometry such that ¢(I)=1. Then E is
a projection in D if and only if @¢(E) is a projection in 9.

LEMMA 10 ([6]). If ¢ is a Jordan isomorphism from a C*algebra A, onto
a C*-algebra A, then o(BAB)=¢(B)p(A)p(B) with A and B in A,.

Let E and F be orthogonal projections acting on a Hilbert space 4. Then
a partial order relation =< is described as follows: EX<F if and only if EF=

FE=FE. From Lemmas 9 and 10, we can prove the following theorem.

THEOREM 11. Let ¢: A — AR be an isometry such that ¢o(I)=1. Then
o([e:]) is rank one for each i=1, 2, ---, 2n.

LEMMA 12 ([8]). Let ¢: AP =AlgL — A’ =AlgL be an isometry such
that o(I)=1. Let E be a projection in 9D and let T be in AlgL=A{Y with
T=ETE*. Then we have o(T)=¢(E)p(T)p(E)*+¢(E)* ¢(T)p(E).

From Lemma 12, we can get the following lemma.

LEMMA 13. Let ¢: AP —AR be an isometry such that ¢(I)=1. Let E; i),
Ei i@, -, Eiim bein AP (n+1=i(1), -+, i(m)<2n and 1<i<n). Let ¢(E;)=
Eu and let ¢(Eij,ip)=Ez;z; forall j=1, 2, ---, m. If 1<I<n, then x,2n+1
and there exists ai z; in C such that |a; z;|=1 and go(Ei,i(j)):al_,jE,,,j. If n
+1=1<2n, then 1<x;<n and there exists az;. in C such that |az;.|=1 and
§D(Ei,i(j>)—_—ax,,zEx,.z-

PROOF. Suppose that 1 </=<n. Since E;;y; = Eip.i»EuinEigp.ipn =
EiE: i Ety, (P(Ei,i(j))inj. zj(P(Et,uj))Ezj,zj+Exj,szD(Et.i(j))Eij,zj and QD(Ei,uj))
=Eu@p(E: i »p)Et+ELe(Es ip)E, by Lemma 12. So x;=Zn+1 and ¢(E;, ;)=
ai,z;E, z;, for some a, z, in C and |a;.;/=1. Similarly, we can prove the
second part of lemma.

LEMMA 14. Let ¢: AP —AS7Y be an isometry such that ¢(I)=1. Let ¢(E;)
=Ei.. If 1Sksn and if o(E:)=E, (1=<i<n), then 1=i<n. If n+1<k<2n
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and if @(E)=FE, (1<i<n), then n+1<1<2n.

PROOF. Define a permutation ¢ on {1, 2, ---, 2n} by o¢(a)=b if @(Eq.)=
Es. Suppose 1<k<n. Since E, ,,, is in A, o(n+1)=n-+1 by Lemma 13.
Since E; n4y is in AP, 0(2)<n. Since E; ,,. is in A, o(n+2)=n+1. Since
Es 7.0 is in A, ¢(3)<n. Continue this way. Then ¢(@)<n for all /=1, 2, ---,
n. Similarly we can prove the second part of lemma.

LEMMA 15. Let U be a unitary operator. Then ||I+U|=2 if and only if
1 7s in o(U), where I denotes the identity and o(U) is the spectrum of U.

PROOF. Suppose that |I4+U|=2. Since U is unitary, [I+U is a normal
operator. So the norm of I+U is equal to its spectral radius; that is, 2=
I I+Ul|=sup{il4+al|: asoU)}. Hence 1 is in ¢(U) because ¢(U) is a compact
subset of the unit circle in C. Suppose that 1 is in o(U). Since [4+U is a
normal operator, ||[[+U| =sup{|l+ea|: asoU)}. But [|[[+U| Z | I|+|U||=2.
Since 1 is in o(U), sup{|l+al|: asa(U)}=2. Hence | [+U|=2.

PROPOSITION 16. Let A be an (n, n) matrix whose (1, 1)-, (1, n)-, (2, 1)-,
2, 2)-, (3, 2)-, 3, 3)-, -+, (n, n—1)-, ((n, n)-component are 1 and all other com-
ponents are zero (n=2). Then | A||=2.

PROPOSITION 17. Let A be an (n, n) matrix whose (1, 1)-, (1, 2)-, (2, 2)-,
2, 3)-, -+, (n—1, n—1)-, (n—1, n)-, (n, 1)-component are 1 and all other com-
ponents are zero (n=2). Then || Al|l=2.

THEOREM 18. Let ¢: AP —AR be an isometry such that ¢(E;;)=FE; for
i=1, 2, -+, 2n. Then there exists a unitary operator U such that o(A)=U*AU
for every A in A

PROOF. Let @(E:)=a,Es; for all E,; in AW, where |a;|=1. Let a;
=e'?ri. Let A=(ay;) be in A§P and let a,, ., represent the (&, k(7))-component
of A, where 1<k<n, 1</<m and n+1<k()<2n. Let U=(u;;) be a (2n, 2n)
unitary diagonal matrix and let u,;=e%%t(I=1, 2, ---, 2n). Consider U*AU. If
the linear system (x): @ny1—01=01 141, O1y—0:=01,12), 5 O1emy—01=01,1(m)
(I(m)=2n), Gs0y— 03,2015, Oacy —02=0222), -, Oacmy—02= 02,00, *+, Orncy—0a=
0n 0y, Oniy—0rn = On,nizy, 5 Oncmy—6On = O, nmy has solutions, then ¢(A)=
U*AU for every A in JA{P. Let K be the (mn, 2n) matrix consisting of the
coefficients of the linear system (x) the let X=(81.1c1), 01,1, =+, On, nemy)t. Then
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the linear system (*) has solutions if and only if rank K=rank (K, X). We know
that rank K=2n—1. If 0, ,..— 0 1+ 01 ns1cv——04 2 =0(>k=1) and
Og.nrp—0gn1q-1F0q-1.n1q-1—""+0ps1,n4ps1— O pi1.0+p=0(¢g—2= p=1), then rank
(K, X)=2n—1. Let

Xp,nrk 0 . ot 0 Ap,nil
Xpii,n+k Apsl,nsk+ 0 .
Apio,n+k+1 Xki2,n+k+2 0 ° " ¢ 0

-0 Al npl-1 Agnsl

Then we see that |V|=|l¢(B)| for some B in A{3’. Since ||B||=2 by Proposi-
tion 16, |V|=2. Since

Ak, nse 0 o - - . 0
0 ak+1,n+k+1 0 - : * 0
v - : c o |=I4W,
0 0 & _1,n41-1 O
0 . . . . 0 &l,n+l
where

0 . L 0 Q1,1-k+1
agl 0 . 0
0 a4 O 0

W: ’

LO . - 0 Gicksri-n 0

where @z = Qri1, 0420k, nvky Q32 = Xpyo.ntk+1 XArstneks1, "y Qi par, ik = Q1 niri-1

®i_1.n4v1-1, and Ay 1-k+1 — ak.n+l&l.n+l- 1 is in U(W) bY emma 15 So i, ntl

Qpnet@ sl 1@t net-1""Qre1,ns 2@ nrx=1 or equivalently 0, ».1—0: r4s1+ 01 2411
—"'+0k+1.n+k—'0k.n+k:0- Let

Upi1i,nep Ap+1,n+p+1 0 0 0
Api2,n+p+1 Xpi2,nep+2 0
V1= .
. 0
0 ° * ° 0 Qq_1,n+q-2 aq—l,n+q—1
QAg. n+p 0 : c g, n+q-1

Then we see that |V,|=Ill¢(By)| for some B, in A{%. Since |B;|=2 by Pro-
position 17, ||V,||=2. Since
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A i1, ns 0 0
! 6 g C?p+2.n+p+1 0 0
Vi - .=,
1 0 * ° ° O C-iq.n+q-1
where
0 b, 0 - - - 0 0
0 0 b23 0 . i 0 O
W= . . ?

5 0

. —p-1,q-

‘bq_prl O ) . ) .0 q-p Oq p

where blzzap+l,n+p+ld'p+2,n+p+1y bzszap+2,n+p+2dp+s,n+p+2, ety bq—p-l.q—pzaq—l,n+q—1
a’q,n+q-—1, bq—p,l—':aq,n+pa/p+l,n+p- 1 iS iI’l G(Wl) bY - SO aq.n+pap+l.n+p
ap+1,n+p+ld'p+2,n+p+1 aq—l,n+q—1&q,n+q—1 = 1 or equivalently 0q.n+p - 0q.n+q—1 +
Og-t.nsq-1— " +0pi1,n4sps1—0pi1.,nsp = 0. Hence rank (K, X)=2n—1. Hence
o(A)=U*AU for all A in AP

LEMMA 19. Let ¢: AP — ALY be an isometry such that ¢(I)=1I and ¢(E ;)
=FEi,.q, for k=1, 2, .-+, 2n. If 1<i,<n, then there is a unitary operator V such
that Vo(E ) )V*=E, for all k=1, 2, -+, 2n and Vo(Er v )V*=ayy, 14, Er.
for I=1,2, .-, m, and for some a;, ¢, in C.

PROOF. Let V be a (2n, 2n) matrix whose (k, 7;)-component is 1 for all
k=1, 2, ---, 2n and all other entries are 0, where ¢(E;,)=E;,, i, for all k=1,
2, ---, 2n. Then Vgo(Ekk)V* Ewr and VO(Er s ))V*¥=aiy, 140, 4.15, for all
k=1, 2, -+, 2n and (=1, 2, -+, m, and for some a;,,:,,, in C.

THEOREM 20. Let ¢: A — ASp be an isometry such that ¢(I)=1I and
O(Ewr)=E;, ¢, If 1=i,<n, then there is a unitary operator W such that ¢(A)
=W*AW for all A in AP,

PROOF. By there is a unitary operator V such that V(E,)V*
=FE; for all k=1, 2, ---, 2n. Define ¢,: A7 — A7 by ¢i(A)=Ve(A)V* for
all A in JA§7’. Then ¢, is an isometry by Lemma 19 and ¢,(E::)=E}, for all
k=1, 2, ---, 2n. Then there is a unitary operator U such that ¢,(4)=U*AU
for all A in A by Theorem 18. Since ¢,(A)=U*AU=V p(A)V* for all A in

AR, o(A)=V*U*)AUYV) for all A in AP, Put UV=W. Then ¢(A)=W*AW
for all A in A§™.
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LEMMA 21. Let ¢: AP —AT be an isometry such that o(I)=1I and ¢(E +)
=E;,.:,(k=1,2, -+, 2n) If n+1=i,<2n, theu there is a umitary operator V
such that V'e(A)V* is in AP for all A in AP and VIQ(E)V*=E., for all
k=1, 2, ---, 2n.

PrROOF. Let V be a (2n, n) matrix whose (k, 7,)-component is 1 for k=1,
2, -+, 2n and all other components are 0. If E, . is in A for k=1, 2, -,
n and for (=1, 2, -+, m, then @(Er r))=Q:, .1, Ei45. 15 Since VIQ(Er, ra))V*
:aikm-ikVEik-ik(nv*:aik(z)-ik(uE"-‘ku)V*:a‘kcl) ihEk sy for all k=1, 2, -,
n and all [=1, 2, -+, m, Vip(A)V* is in AP for all A in AR and VEip(ER)V*
=F,, for all k=1, 2, ---, 2n.

THEOREM 22. Let ¢: AP — AT be an isometry such that ¢o(Exz)=E,.q,
for k=1,2, .-, 2n. If n+1<i,<2n, then there is a unitary operator W such
that ¢(A)= W‘AW* for all A in AR

PrROOF. By there is a unitary operator V such that Vip(E:)V*
=E,;, for all k=1, 2, ---, 2n and V'¢p(A)V* is in A for all A in A, So
there is a unltary operator U such that V¢p(A)V*=U*AU for all A in A7 by
[Theorem 18 Set {UV)=W. Then o(A)=W*'AW* for all A in A{".
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