ON ISOMETRY OF A COMPLETE RIEMANNIAN MANIFOLD TO A SPHERE

By

Yongfan ZHENG

0. Introduction

In this paper, we obtain some conditions for a complete Riemannian manifold to be isometric to a sphere. This is to expand the following theorems for a compact Riemannian manifold M into the case where M is complete and not necessarily compact.

THEOREM A (Yano [6]). If M is a compact orientable Riemannian manifold of dimension n>2 with constant scalar curvature and admits a non-isometric conformal vector field $X: \mathcal{L}_X g = 2\rho g$ such that

$$(0.1) \qquad \int_{\mathcal{M}} G(d\rho, d\rho) dV \ge 0,$$

then M is isometric to a sphere.

As a corollary of this theorem, the condition (0.1) may be replaced by $\mathcal{L}_X |R|^2 = 0$ or $\mathcal{L}_X |K|^2 = 0$ (see [3, 6, 8]).

1. Notations and Preliminaries

Throughout this paper, by a Riemannian manifold we always mean an n-dimensional connected and oriented manifold covered by a system of local coordinates $\{x^i\}$ $(i=1, 2, \cdots, n)$ and furnished with a Riemannian metric tensor $g=g_{ji}dx^j\otimes dx^i$. We use the Einstein summation convention with respect to repeated indices. Furthermore, geometric objects and some functions appeared in this paper are always assumed to be smooth, unless otherwise stated.

Let M be an n-dimensional Riemannian manifold with a metric tensor g. We use the standard notation for the covariant derivative ∇ , the exterior differential d, the codifferential δ , the Laplacian Δ and the volume element dV of M. We denote by \langle , \rangle and $| \cdot |$ the inner product and the norm induced in

Received July 15, 1992. Revised March 14, 1993.

fibers of various tensor bundles by the metric g of M. In this paper, we identify a 1-form with its dual vector field with respect to g and they are represented by the same letter.

By \mathcal{L}_X we mean the operators of Lie derivation with respect to a vector field X on M. A vector field (or an infinitesimal transformation) X on M is said to be conformal if it satisfies $\mathcal{L}_X g = 2\rho g$ for some function ρ on M. In particular, X is isometric if ρ is identically zero.

We denote by K_{kjih} and R_{ji} local components of the curvature tensor K and the Ricci tensor R of M respectively, and by r the scalar curvature of M. We put

(1.1)
$$G_{ji} = R_{ji} - (r/n)g_{ji}$$
,

$$(1.2) Z_{kjih} = K_{kjih} - \{r/n(n-1)\} (g_{kh}g_{ji} - g_{jh}g_{ki}).$$

Then the tensor G measures the deviation of M from an Einstein manifold and the tensor Z that from a manifold of constant curvature.

The following theorem proved by Obata [4] is well known.

THEOREM B. If a complete Riemannian manifold M of dimension $n \ge 2$ admits a nonconstant function ρ such that $\nabla \nabla \rho + k^2 \rho g = 0$, where k is a positive constant, then M is isometric to an n-sphere of radius 1/k.

By using this theorem and the above geometric objects, Obata [4], Yano [6, 7, 8], Hsiung [3] and others have obtained some conditions for a compact Riemannain manifold admitting a conformal vector field to be isometric to a sphere. One of these results is Theorem A in the introduction.

The following formulae are well known (see [8]). These were prepared in order to prove Theorem A and others.

$$\langle G, g \rangle = G_{ji}g^{ji} = 0,$$

where g^{ji} are the contravariant components of g defined by $g^{ji}g_{ik} = \delta_k^j$.

$$Z_{kjih}g^{kh}=G_{ji},$$

$$|G|^2 = |R|^2 - (1/n)r^2,$$

$$(1.6) |Z|^2 = |K|^2 - \{2/n(n-1)\}r^2,$$

(1.7)
$$\delta G = -g^{kj} \nabla_k G_{ji} dx^i = -\{(n-2)/2n\} dr.$$

Let X be a conformal vector field on M, that is, it satisfies

$$\mathcal{L}_{X}g_{ii} = \nabla_{i}X_{i} + \nabla_{i}X_{j} = 2\rho g_{ii},$$

where ρ is a function, and then we have

$$\rho = -(1/n)\delta X = (1/n)\nabla_i X^i,$$

$$\mathcal{L}_{X}r=2(n-1)\Delta\rho-2\rho r,$$

$$\mathcal{L}_X |G|^2 = -2(n-2)\langle \nabla \nabla \rho, G \rangle - 4\rho |G|^2,$$

$$(1.12) \qquad \mathcal{L}_X |Z|^2 = -8\langle \nabla \nabla \rho, G \rangle -4\rho |Z|^2.$$

Now, we assume that M is complete. Let f be the geodesic distance function from a fixed point on M and B(t) the geodesic ball of radius t, i.e.,

$$(1.13) B(t) = \{x \in M | f(x) \le t\}$$

for t>0. Then there exists a Lipschitz continuous function w_t on M satisfying the following properties:

$$(1.14) 0 \leq w_t(x) \leq 1, \quad x \in M,$$

$$(1.15) w_t(x)=1, x \in B(t),$$

$$(1.16) supp $w_t \subset B(2t),$$$

$$(1.17) w_t \longrightarrow 1 \ (t \to \infty),$$

$$(1.18) |dw_t| \leq C/t \text{almost everywhere on } M,$$

where C is a positive constant independent of t (see [1, 2, 9]).

2. Main Results

THEOREM 1. Let M be a complete Riemannian manifold of dimension $n \ge 2$, and admit a non-constant function ρ such that $\Delta \rho = nk\rho$ for some non-zero constant k. If ρ satisfies that

(2.1)
$$\liminf_{t\to\infty} \int_{\mathbf{M}} \langle R - (n-1)kg, w_t^2 d\rho \otimes d\rho \rangle dV \ge 0,$$

and has first derivatives in $L^2(M)$, then M is isometric to a sphere.

Especially, if $R(d\rho, d\rho) \ge (n-1)k |d\rho|^2$, then we get the condition (2.1) in Theorem 1. Thus we obtain the following

COROLLARY. Let M be a complete Riemannian manifold of dimension $n \ge 2$, and admit a non-constant function ρ such that $\Delta \rho = nk\rho$ for some non-zero constant k. If the Ricci curvature of M in the direction $d\rho$ is not less than (n-1) k and ρ has first derivatives in $L^2(M)$, then M is isometric to a sphere.

REMARK 1. In Theorem 1, if M is compact, then automatically the first derivatives of ρ are in $L^2(M)$ and $\liminf_{t\to\infty}\int_M \langle R-(n-1)kg,\,w_t^2d\,\rho\otimes d\,\rho\rangle dV=\int_M \langle R-(n-1)kg,\,d\,\rho\otimes d\,\rho\rangle dV.$ From the proof of Theorem 1 it follows that the assumption $\int_M |d\,\rho\,|^2 dV < +\infty$ may be replaced by

(2.2)
$$\lim_{t\to\infty} (1/t^2) \int_{B(2t)} |d\rho|^2 dV = 0$$

as in the case of [5].

As a special case of Theorem 1, we assert the following

THEOREM 2. Let M be a complete Riemannain manifold of dimension $n \ge 2$ with non-zero constant scalar curvature, and admit a non-isometric comformal vector field $X: \mathcal{L}_X g = 2\rho g$. If ρ satisfies that

(2.3)
$$\liminf_{t\to\infty} \int_{M} \langle w_{t}^{2}G, d\rho \otimes d\rho \rangle dV \geq 0,$$

and has first derivatives in $L^2(M)$, then M is isometric to a sphere.

PROOF OF THEOREM 2. It follows from (1.10) that $\Delta \rho = nk\rho$, k being the nonzero conatant r/n(n-1). Then we have completed the proof of Theorem 2 as an application of Theorem 1. \square

REMARK 2. From the comment in Remark 1 we can consider that Theorem 2 is a generalization of Theorem A.

THEOREM 3. Let M be a complete Riemannain manifold of dimension n>2 with non-zero constant scalar curvature, and admit a non-isometric comformal vector field $X: \mathcal{L}_X g=2\rho g$. If $\mathcal{L}_X |R|^2=0$ (or $\mathcal{L}_X |K|^2=0$) and ρ has first derivative in $L^2(M)$, then M is isometric to a sphere.

REMARK 3. Here we remark the following fact concerning constant scalar curvatures.

PROPOSITION. Let M be a complete Riemannian manifold M with constant scalar curvature r, and admit a non-isometric conformal vector field $X: \mathcal{L}_X g = 2\rho g$. If ρ has first derivatives in $L^2(M)$, then r is non-negative.

3. Proof of Theorems

In this section, we give the proofs of the theorems mentioned in § 2. We need the lemma below.

LEMMA. Let M be a complete Riemannian manifold, and admit a non-trivial solution ρ of the partial differential equation $\Delta \rho = k \rho$ for some constant k. If ρ has first derivatives in $L^2(M)$, then k is non-negative. (see also [10]).

PROOF. We can easily find that

(3.1)
$$\delta(w_t^2 \rho d\rho) = -w_t^2 |d\rho|^2 + w_t^2 \rho \Delta \rho - \langle w_t \rho d\rho, 2dw_t \rangle \quad \text{a.e. on } M.$$

We integrate the both sides of (3.1) over B(2t). Since Stokes' theorem holds for Lipschitz differential forms and $w_t=0$ on the boundary $\partial B(2t)$ of B(2t), the left hand becomes zero:

$$\int_{B(2t)} \delta(w_t^2 \rho d\rho) dV = -\int_{\partial B(2t)} w_t^2 \langle \rho d\rho, N \rangle dS = 0,$$

where N and dS are the unit normal to $\partial B(2t)$ and the volume element of $\partial B(2t)$ respectively. Then we see

$$(3.2) \qquad \int_{B(2t)} w_t^2 |d\rho|^2 dV - k \! \int_{B(2t)} w_t^2 \rho^2 dV + \! \int_{B(2t)} \langle w_t \rho d\rho, \, 2 dw_t \rangle dV = 0 \, .$$

From Schwartz's inequality and (1.18), we have

$$\begin{split} \left| \int_{B(2t)} \langle w_t \rho d\rho, \, 2dw_t \rangle dV \right| \\ & \leq & \left[\int_{B(2t)} (w_t \rho)^2 dV \right]^{1/2} \left[\int_{B(2t)} \langle d\rho, \, 2dw_t \rangle^2 dV \right]^{1/2} \\ & \leq & \left[\int_{B(2t)} (w_t \rho)^2 dV \right]^{1/2} \left[\int_{B(2t)} 4|d\rho|^2 |dw_t|^2 dV \right]^{1/2} \\ & \leq & \left[\int_{B(2t)} (w_t \rho)^2 dV \right]^{1/2} \cdot \frac{2C}{t} \left[\int_{B(2t)} |d\rho|^2 dV \right]^{1/2}. \end{split}$$

Now we suppose that k is negative. Using the fundamental inequality

$$2ab = -\left(\sqrt{-k}a - \frac{1}{\sqrt{-k}}b\right)^2 - ka^2 - \frac{1}{k}b^2 \le -ka^2 - \frac{1}{k}b^2$$
,

we get the following:

(3.3)
$$\left| \int_{B(2t)} \langle w_t \rho d \rho, 2d w_t \rangle dV \right|$$

$$\leq \frac{1}{2} \left[-k \int_{B(2t)} (w_t \rho)^2 dV - \frac{4C^2}{kt^2} \int_{B(2t)} |d\rho|^2 dV \right].$$

Then it follows from (3.2) combined with (3.3) that

$$-\frac{2C^2}{kt^2}\int_{B(2t)}|d\rho|^2dV\!\ge\!\int_{B(2t)}w_t^2|d\rho|^2dV\!-\!\frac{1}{2}k\!\int_{B(2t)}w_t^2\rho^2dV\!\ge\!0\,.$$

Furthermore, from (1.16), we also have

$$(3.4) \qquad -\frac{2C^2}{kt^2} \int_{\mathcal{M}} |d\rho|^2 dV \ge \int_{\mathcal{M}} w_t^2 |d\rho|^2 dV - \frac{1}{2} k \int_{\mathcal{M}} w_t^2 \rho^2 dV \ge 0.$$

Since $\int_{M} |d\rho|^2 dV < \infty$, letting $t \to \infty$ in (3.4), we have

$$0 \ge \liminf_{t \to \infty} \int_{M} w_{t}^{2} |d\rho|^{2} dV - \frac{1}{2} k \liminf_{t \to \infty} \int_{M} w_{t}^{2} \rho^{2} dV$$

$$\ge \int_{M} |d\rho|^{2} dV - \frac{1}{2} k \int_{M} \rho^{2} dV \ge 0.$$

Then we see that $\rho=0$ on M. This contradicts the hypothesis. Therefore k must be nonnegative. \square

The previous proposition is immediately proved by (1.10) and this lemma. Let us prove Theorem 1.

PROOF OF THEOREM 1. Let i_{ζ} be the inner product operator with respect to a vector field ζ on M, that is, operating it to a (0, 2)-type tensor T, then we get the 1-form $i_{\zeta}T = \zeta^{j}T_{ji}dx^{i}$.

The second equality can be shown by direct computation:

(3.5)
$$\delta \left\{ w_t^2 i_{\zeta} \left(\mathcal{L}_{\zeta} g + \frac{2}{n} \delta \zeta \cdot g \right) \right\}$$

$$= \left\langle \Delta \zeta + \frac{n-2}{n} d \delta \zeta, \ w_t^2 \zeta \right\rangle - \langle 2R, \ w_t^2 \zeta \otimes \zeta \rangle$$

$$- \frac{1}{2} \left| w_t \left(\mathcal{L}_{\zeta} g + \frac{2}{n} \delta \zeta \cdot g \right) \right|^2 - \left\langle \mathcal{L}_{\zeta} g + \frac{2}{n} \delta \zeta \cdot g, \ 2w_t d w_t \otimes \zeta \right\rangle$$
a.e. on M ,

for any vector field ζ on M. Integrating the both sides of (3.5) over B(2t) and applying Stokes' theorem, we have

$$(3.6) \quad 0 = \int_{B(2t)} \left\langle \Delta \zeta + \frac{n-2}{n} d\delta \zeta, \ w_t^2 \zeta \right\rangle dV - \int_{B(2t)} \langle 2R, \ w_t^2 \zeta \otimes \zeta \rangle dV - \frac{1}{2} \int_{B(2t)} \left| w_t \left(\mathcal{L}_{\zeta} g + \frac{2}{n} \delta \zeta \cdot g \right) \right|^2 dV - \int_{B(2t)} \left\langle \mathcal{L}_{\zeta} g + \frac{2}{n} \delta \zeta \cdot g, \ 2w_t dw_t \otimes \zeta \right\rangle dV.$$

Putting $\zeta = d\rho$ in (3.6) and using $\Delta d\rho = d\Delta \rho = nkd\rho$, it follows that

$$(3.7) \quad 0 = \int_{B(2t)} \langle R - (n-1)kg, w_t^2 d\rho \otimes d\rho \rangle dV$$

$$+ \int_{B(2t)} w_t^2 |\nabla \nabla \rho + k\rho g|^2 dV + \int_{B(2t)} \langle \nabla \nabla \rho + k\rho g, 2w_t dw_t \otimes d\rho \rangle dV.$$

From Schwartz's inequality and (1.18), we have

$$(3.8) \qquad \left| \int_{B(2t)} \langle \nabla \nabla \rho + k \rho g, 2w_t dw_t \otimes d\rho \rangle dV \right|$$

$$\leq \int_{B(2t)} |w_t (\nabla \nabla \rho + k \rho g)| \cdot 2| dw_t \otimes d\rho | dV$$

$$\leq \left[\int_{B(2t)} |w_t (\nabla \nabla \rho + k \rho g)|^2 dV \right]^{1/2} \left[4 \int_{B(2t)} |dw_t \otimes d\rho|^2 dV \right]^{1/2}$$

$$\leq \frac{1}{2} \left[\int_{B(2t)} |w_t (\nabla \nabla \rho + k \rho g)|^2 dV + 4 \int_{B(2t)} |dw_t \otimes d\rho|^2 dV \right]$$

$$\leq \frac{1}{2} \left[\int_{B(2t)} |w_t (\nabla \nabla \rho + k \rho g)|^2 dV + \frac{4C^2}{t^2} \int_{B(2t)} |d\rho|^2 dV \right]$$

Then it follows from (3.7) combined with (3.8) that

$$\begin{split} \frac{2C^2}{t^2} \int_{B(2t)} |d\rho|^2 dV & \geqq \int_{B(2t)} \langle R - (n-1)kg, \ w_t^2 d\rho \otimes d\rho \rangle dV \\ & + \frac{1}{2} \int_{B(2t)} w_t^2 |\nabla \nabla \rho + k\rho g|^2 dV \,. \end{split}$$

Furthermore, from (1.16), we also have

$$(3.9) \ \frac{2C^2}{t^2} \int_{\mathcal{M}} |d\rho|^2 dV \geq \int_{\mathcal{M}} \langle R - (n-1)kg, \ w_t^2 d\rho \otimes d\rho \rangle dV + \frac{1}{2} \int_{\mathcal{M}} w_t^2 |\nabla \nabla \rho + k\rho g|^2 dV.$$

Since $\int_{\mathbf{M}} |d\rho|^2 dV < \infty$ and $\liminf_{t \to \infty} \int_{\mathbf{M}} \langle R - (n-1)kg, w_t^2 d\rho \otimes d\rho \rangle dV \ge 0$, letting $t \to \infty$ in (3.9), we see

$$(3.10) \quad 0 \geq \liminf_{t \to \infty} \int_{\mathcal{M}} \langle R - (n-1)kg, \ w_t^2 d\rho \otimes d\rho \rangle dV + \frac{1}{2} \liminf_{t \to \infty} \int_{\mathcal{M}} w_t^2 |\nabla \nabla \rho + k\rho g|^2 dV \\ \geq \frac{1}{2} \int_{\mathcal{M}} |\nabla \nabla \rho + k\rho g|^2 dV \geq 0.$$

Hence we have

$$(3.11) \nabla \nabla \rho + k \rho g = 0 on M.$$

This combined with Theorem B and Lemma completes the proof of Theorem 1.

Theorem 3 is proved below as an application of Theorem 2.

PROOF OF THEOREM 3. Since the scalar curvature r is constant, we first note that $\mathcal{L}_X|G|^2=0$ [resp. $\mathcal{L}_X|Z|^2=0$] is equivalent to $\mathcal{L}_X|R|^2=0$ [resp. $\mathcal{L}_X|K|^2=0$].

The next equality can be shown by direct computation:

$$(3.12) -\delta(w_t^2 \rho i_{d\rho} G) = \langle w_t \rho G, 2dw_t \otimes d\rho \rangle + \langle w_t^2 G, d\rho \otimes d\rho \rangle + \langle w_t^2 \rho G, \nabla \nabla \rho \rangle \text{a.e. on } M.$$

Integrating the both sides of (3.12) over B(2t), applying Stokes' theorem, and using (1.11) and the condition $\mathcal{L}_X |R|^2 = 0$, we have

$$(3.13) 0 = \int_{B(2t)} \langle w_t \rho G, 2dw_t \otimes d\rho \rangle dV + \int_{B(2t)} \langle w_t^2 G, d\rho \otimes d\rho \rangle dV - \frac{2}{n-2} \int_{B(2t)} w_t^2 \rho^2 |G|^2 dV.$$

Hence we know the inequality

$$|\langle w_{t}\rho G, 2dw_{t}\otimes d\rho\rangle| \leq \frac{1}{n-2} |w_{t}\rho G|^{2} + (n-2)|2dw_{t}\otimes d\rho|^{2}$$

$$\leq \frac{1}{n-2} |w_{t}^{2}\rho^{2}|G|^{2} + \frac{4(n-2)C^{2}}{t^{2}} |d\rho|^{2}.$$

Then it follows from (3.13) combined with (3.14) and also (1.16) that

$$(3.15) \quad \int_{\mathcal{M}} \langle w_t^2 G, \ d \, \rho \otimes d \, \rho \rangle dV \geq \frac{1}{n-2} \int_{\mathcal{M}} w_t^2 \rho^2 |G|^2 dV - \frac{4(n-2)C^2}{t^2} \int_{\mathcal{M}} |d \, \rho|^2 dV \ .$$

Letting $t\rightarrow \infty$ in (3.15), we see

(3.16)
$$\liminf_{t \to \infty} \left\langle w_t^2 G, d\rho \otimes d\rho \right\rangle dV \ge \frac{1}{n-2} \liminf_{t \to \infty} \left(\int_{M} w_t^2 \rho^2 |G|^2 dV \ge 0 \right).$$

Then we get the condition (2.3) in Theorem 2.

Similarly, using (1.12) and the condition $\mathcal{L}_X|K|^2=0$ in place of (1.11) and $\mathcal{L}_X|R|^2=0$, we can obtain the condition (2.3). Thus we can apply Theorem 2, thereby completing the proof of Theorem 3. \square

Acknowledgement. The author wishes to express his hearty thanks to the referee whose valuable suggestions improved very much the present paper.

References

- [1] S.S. Chern and W.H. Chen, Lectures on Differential Geometry, Beijing Univ. Press, Beijing, 1983. (in chinese)
- [2] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of U.K. Patodi, 21-27, Springer, 1981.
- [3] C.C. Hsiung, On the group of conformal transformations of a compact Riemannian manifold, Proc. Nat. Acad. Sci. U.S., 54 (1965), 1509-1513; II, Duke Math. J. 34 (1967), 337-341; III, J. Diff. Geom. 2 (1968), 185-190.
- [4] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.

.

- [5] M. Rigoli and I. M. C. Salawessa, Conformal and isometric immersions of Riemannian manifolds, Math. Z. 196 (1987), 293-300.
- [6] K. Yano, On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group. Proc. Nat. Acad. Sci. U.S. 55 (1966), 472-476.
- [7] K. Yano, On Riemannian manifolds admitting an infinitesimal conformal transformation, Math. Z. 113 (1970), 205-214.
- [8] K. Yano, Integral formulas in Riemannian geometry, Marcel-Dekker Inc., New York, 1970.
- [9] S.T. Yau, Some function theoretic-properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1978), 659-670.
- [10] Y.F. Zheng, Complete Riemannian manifolds admitting a projective vector field, Proc. of Symposium on Differential Geometry in honor of Professor Su Buchin, World Sci. Publishing Co., Singapore, 1993, 317-324.

Department of Mathematics, Liaoning University, Shenyang 110036, China