
$I^{\cdot}SUKUBA$ J. MATH.
Vol. 18 No. 1 (1994), 119–129

WEIERSTRASS GAP SEQUENCE AT TOTAL INFLECTION
POINTS OF NODAL PLANE CURVES

By

Marc COPPENS and Takao KATO

0. Introduction

Let $\Gamma$ be a plane curve of degree $d$ with $\delta$ ordinary nodes and no other
singularities. Let $C$ be the normalization of $\Gamma$. Let $ g=((d-1)(d-2)/2)-\delta$ ;

the genus of $C$ . We identify smooth points of $\Gamma$ with the corresponding points

on $C$ . In particular, if $P$ is a smooth point on $\Gamma$ then the Weierstrass gap
sequence at $P$ is considered with respect to $C$ . A smooth point $ P\in\Gamma$ is called

an $(e-2)$-inflection point if $i(\Gamma, T;P)=e\geqq 3$ where $T$ is the tangent line to $\Gamma$

at $P$(cf. Brieskorn-Knorrer [1, p. 372]). Of course, $e\leqq d$ and a l-inflection point

is an ordinary flex. In particular, a $(d-2)$ -inflection point is called a total in-

flection point.
Let $N$ be the semigroup consisting of the non-gaps of $P$, so $N-N=\{\alpha_{1}<$

$\alpha_{2}<\cdots<\alpha_{g}\}$ is the Weierstrass gap sequence of $P$. Clearly $\{d-1, d\}\subset N$, so
$N_{d}:=\{a(d-1)+bd|a, b\in N\}\subset N$ (see also Lemma 1.2).

Let $k=\min\{l\in N|\delta\leqq(l(l+3))/2\}$ and let

$N_{d,\delta}^{(1)}=N_{d}\cup\{n\in N|n\geqq(d-k-3)d+\frac{k(k+3)}{2}-\delta+2\}$ .

Let $N-N_{a.\delta}^{(1)}=\{\alpha_{1}^{(1)}<\alpha_{2}^{(1)}<\cdots<\alpha_{g}^{(1)}\}$ . One has $\alpha_{i}\geqq\alpha_{t}^{(1)}$ for $1\leqq i\leqq g$ . So $N_{d,\delta}^{(1)}$ is
the minimal (in the sense of weight) possible semigroup of nongaps.

For $\delta\in\{0,1\}$ , one has $N=N_{d,\delta}^{(1)}$ . For $\delta\geqq 2$ there exist pairs of $(\Gamma;P)$ as
above with $N\neq N_{d.\delta}^{(1)}$ . We give a list of all possible values for $N$ in case $ 2\leqq$

$\delta\leqq 5$ . (see end of \S 1).
Define $N_{d.1}^{(\max 2)}=N_{d.1}^{(\max)}=N_{d,1}$ and, by means of induction, for $\delta\geqq 2$ ,

$N_{d.\delta}^{(\max)}=N_{d.\delta-1}^{(\max)}\cup\{(d-\delta-2)d+1\}$

$N_{d.\delta}^{(\max 2)}=N_{d.\delta-I}^{(\max 2)}\cup\{(d-\delta-2)d+\delta\}$ .
$N_{d.\delta}^{(\max)}$ (resp. $N_{d.\delta}^{(\max 2)}$ ) is a semigroup if and only if $d\geqq 2\delta+1$ (resp. $ 2\delta$). Let

$N-N_{d.\delta}^{(\max)}=\{\alpha_{1}^{(\max)}<\alpha_{2}^{(\max)}<\cdots<\alpha_{g}^{(\max)}\}$
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$N-N_{d.\delta}^{(\max 2)}=\{\alpha_{1}^{(\max 2)}<\alpha_{2}^{(\max z)}<\cdots<\alpha_{g}^{(\max 2)}\}$ .

We prove that $\alpha_{i}\leqq\alpha_{i}^{(\max)}$ for $1\leqq i\leqq g$ and if $N\cdot\neq N_{d}^{(m_{\delta}ax)}$ , then $\alpha_{i}\leqq\alpha_{i}^{(\max 2)}$ for
$1\leqq i\leqq g$ (Lemma 3.1). So $N_{d.\delta}^{(\max)}$ (resp. $N_{d.\delta}^{(\max 2)}$ ) is the maximal (resp. up to 1
maximal) semigroup of non-gaps.

Our main results are the following:
i) There exist pairs $(\Gamma;P)$ such that $N=N_{d.\delta}^{(1)}(2.2)$ ,

ii) If $d\geqq 2\delta+1$ (resp. $ d\geqq 2\delta$) then there exist pairs $(\Gamma;P)$ such that $N=$

$N_{d.\delta}^{(\max)}$ (resp. $N=N_{d.\delta}^{(\max 2)}$ ) $(3.2)$ .
The existence of Weierstrass points with gap sequence $N-N_{d.\delta}^{(1)}$ is already

proved in [4] for the case $\delta=(d^{2}-7d+12)/2$ . The method used in that paper
is completely different from ours. It has the advantage of not using plane

models but the proof looks more complicated. It might be possible to prove
our existence result in this way completely, but it might become very com-
plicated. We didn’t try it. Also, it gives an affirmative answer to Question 1
in [2] for the case $s=n+1$ . It is not clear to us at the moment how to
generalize the proof for the cases with $s\geqq n+2$ .

1. Generalities and low values for $\delta$

To start, we deal with the case $\delta=0$ .

LEMMA 1.1. Let $\Gamma$ be a smooth plane curve of degree $d$ and let $P$ be a total

inflection point of $\Gamma$. Then $N_{d}=N_{d.0}^{(1)}$ is the semigroup of non-gaps of $P$.

PROOF. Let $T$ be the tangent line at $P$, $L_{1}$ be a general line passing
through $P$ and let $L_{2}$ be a general line not passing through $P$ . Then the curve
$C(a, b)=aT+bL_{1}+(d-3-a-b)L_{2}$ is canonical adjoint, if $0\leqq a\leqq d-3,0\leqq b\leqq d$

$-3-a$ . Then we have $i(\Gamma. C(a, b);P)=ad+b$ . Hence, $\{ad+b+1:0\leqq a\leqq d$

$-3,0\leqq b\leqq d-3-a\}$ is the gap sequence at $P$. This completes the proof.

In order to study the case $\delta>0$ , we prove some lemmas. For the rest of
this section, $\Gamma$ is a plane curve of degree $d$ with $\delta(>0)$ ordinary nodes $s_{1},$

$\cdots$ ,
$s_{\delta}$ as its only singularities. Also $ P\in\Gamma$ is a total inflection point.

LEMMA 1.2. The set of nongaps at $P$ contains $N_{d.0}$ .

PROOF. Assume that $n\in N_{d,0}$ . Let $\alpha=[(n-1)/d]+1,$ $l$ be the equation of
$T$ (the tangent line at $P$ ), $l_{0}$ be the equation of a general line passing through
$P$ and let $l_{1}$ be the equation of a general line. Considering
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$l_{0}^{\alpha d-n}l_{1}^{\alpha+n-\alpha d}$

$\overline{l^{\alpha}}$

we obtain that $n$ is a nongap at $P$ .

LEMMA 1.3. Let $\gamma$ be a curve of degree less than $d$ so that $ i(\gamma, \Gamma;P)=k\geqq$

$d$ . Then, $T$ is a component of $\gamma,$
$i$ . $e$ . there is a curve $\gamma^{\prime}$ of degree $\deg\gamma-1$

such that $\gamma=\gamma^{\prime}T$ .

PROOF. Since $i(T, \Gamma;P)=d$ and $i(\gamma, \Gamma;P)\geqq d$ , by Namba’s lemma [5,

Lemma 2.3.2] (cf. Coppens and Kato [3, Lemma 1.1] for a generalization), we
have $ i(T, \gamma;P)\geqq d\geqq\deg\gamma$ . Hence we have the desired result by Bezout’s
theorem.

By a successive use of this lemma we have:

LEMMA 1.4. Let $\gamma$ be a canonical adjoint curve such that $i(\gamma, \Gamma;P)=\alpha d+$

$\beta(0\leqq\alpha\leqq d-3,0\leqq\beta\leqq d-3-\alpha)$ . Then, there is an adjoint curve $\gamma^{\prime}$ of degree
$ d-3-\alpha$ such that $\gamma=T^{\alpha}\gamma^{\prime}$ and $ i(\gamma^{\prime}, \Gamma;P)=\beta$ .

Using Lemma 1.4 we have the following corollaries:

COROLLARY 1.5. If $\delta\geqq 1$ , then $i(\gamma, \Gamma;P)<(d-3)d$ for every canonical
adjoint curve $\gamma$ , hence $(d-3)d+1$ is a nongap at $P$ .

COROLLARY 1.6. Assume that $\delta\geqq 2$ . Then, $(d-4)d+\beta+1$ ( $\beta=0$ or 1) is a
gap if and only if there is a line $L_{0}$ such that $s_{1},$

$\cdots$ , $s_{\delta}\in L_{0}$ . Moreover, in this
case, the following three conditions are equivalent:

i) $P\not\in L_{0}$ , (resp. $P\in L_{0}$),

ii) $(d-4)d+1$ (resp. $(d-4)d+2$) is a gap,
iii) $(d-3-\alpha)d+1+\alpha(\alpha=1, \cdots , \delta-1)$ (resp. $(d-3-a)d+1(\alpha=1,$ $\cdots,$ $\delta-1)$ )

are nongaps.

PROOF. The existence of the line $L_{0}$ and the equivalence between (i) and
(ii) follows immediately from Lemma 1.4.

Assume that $(d-4)d+1$ is a gap. If $(d-3-\alpha)d+\alpha+1(1\leqq\alpha\leqq\delta-1)$ is a
gap then Lemma 1.4 provides an adjoint curve $\gamma^{\prime}$ of degree $\alpha$ with $i(\gamma^{\prime}, \Gamma;P)$

$=\alpha$ . So $\gamma^{\prime}$ has $s_{1},$ $\cdots,$ $s_{\delta}$ as common points with $L_{0}$ . Bezout’s theorem implies

that $\gamma^{\prime}=\gamma^{\prime\prime}L_{0}$ where $\gamma^{\prime\prime}$ is a curve of degree $\alpha-1$ with $ i(\gamma^{\prime\prime}, \Gamma;P)=\alpha$ (since

$P\not\in L_{0})$ . Namba’s lemma implies $\gamma^{\prime\prime}=\gamma^{\prime\prime\prime}T$ , but then $i(\gamma^{\prime\prime}, \Gamma;P)\geqq d$ , so $\delta\geqq\alpha+$

$1\geqq d+1$ . A contradiction since $s_{1},$ $\cdots,$ $s_{\delta}$ are collinear.
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Assume that $(d-4)d+2$ is a gap. If $(d-3-\alpha)d+1(1\leqq\alpha\leqq\delta-1)$ is a gap
then Lemma 1.4 provides an adjoint curve $\gamma^{\prime}$ of degree $\alpha$ with $i(\gamma^{\prime}, \Gamma;P)=0$ .
But $\gamma^{\prime}=\gamma^{\prime\prime}L_{0}$ and $P\in L_{0}$ , hence a contradiction.

Assuming (iii), we obtain (ii) because the number of gaps has to be $g$ .

Using Lemma 1.2 and Corollary 1.6, we are able to determine the gap
sequence in case that $s_{1},$

$\cdots$ , $s_{\delta}$ are collinear.
Checking case by case by use of Lemmas 1.2 and 1.4, we show a table of

possible nongaps $N_{d.\delta}$ for $1\leqq\delta\leqq 5$ .



Weierstrass Gap Sequence at Total 123

2. General Case $(\delta\geqq 2)$

Remember the definition of $N_{d.\delta}^{(1)}$ , let $k=\min\{l\in N|\delta\leqq(l(l+3)/2)\}$ . Then

$N_{d.\delta}^{(1)}=N_{d}\cup\{n\in N|n\geqq(d-k-3)d+\frac{k(k+3)}{2}-\delta+2\}$ .

In this section, we prove that for $(\Gamma;P)$ general, the semigroup of nongaps
of $P$ is equal to $N_{d.\delta}^{(1)}$ .

Let $P_{l}\cong P^{l(l+a)/2}$ be the linear system of divisors of degree $l$ on $P^{2}$ . Let

$P_{l}(s_{1}, \cdots, s_{\delta})=\{\gamma\in P_{l}|s_{1}, \cdots, s_{\delta}\in\gamma\}$ ,

and let
$P_{k}(s_{1}, \cdots, s_{\delta} ; m)=\{\gamma\in P_{k}(s_{1}, \cdots s_{\delta})|i(\Gamma, \gamma;P)\geqq m\}$ .

LEMMA 2.1. Assume that

$(*)$ $\left\{\begin{array}{l}P_{l}(s_{l},\ldots s_{\delta})=\emptyset if\\P_{k}(s_{1},\cdots,s_{\delta}.\cdot m)=\emptyset\end{array}\right.$
$ l<kifm>\frac{k(k+3)}{2}-\delta$

.

Then the Weierstrass gap sequence of $\Gamma$ at $P$ is given by $N^{+}-N_{d.\delta}^{(1)}$ .

PROOF. By Lemma 1.2, every element of $N_{d,0}$ is a nongap. For $ 0\leqq n\leqq$

$d-3$ the natural number not belonging to $N_{d,0}$ are $nd+1,$ $\cdots$ , $nd+(d-n-2)$ .
Assume such a number $ nd+\beta$ (hence $0\leqq n\leqq d-3,1\leqq\beta\leqq d-n-2$) is a gap.
Then there exists a canonical a\’ojoint curve $\gamma$ of $\Gamma$ with

$i(\gamma, \Gamma;P)=nd+\beta-1$ .
Lemma 1.4 gives us that there exists $\gamma^{\prime}\in P_{d-S-n}(s_{1}, \cdots , s_{\delta})$ with $i(\gamma^{\prime}, \Gamma;P)=$

$\beta-1$ . But the hypothesis $(*)$ implies that this is impossible for $d-3-n<k$ ,

i.e. $n>d-3-k$ or for $n=d-3-k$ and $\beta-1>(k(k+3)/2)-\delta$ . So, the only possi-
ble gaps are

1, 2, $\cdots\cdots,$ $d-2$

$d+1,$ $d+2,$ $\cdots\cdots$ , $2d-3$

$2d+1,3d+2,$ $\cdots\cdots,$ $3d-4$

$(d-4-k)d+1,$ $\cdots\cdots,$ $(d-3-k)d-(d-2-k)$

$(d-3-k)d+1,$ $\cdots\cdots$ , $(d-3-k)d+\frac{k(k+3)}{2}-\delta+1$ .

Since these are $g$ members, we obtain the gaps of $C$ at $P$. It is clear that
this set is $N^{+}-N_{d.\delta}^{(1)}$ .
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THEOREM 2.2. The hypothesis $(*)$ in Lemma 2.1 occurs.

PROOF. (Inspired by the proof of Proposition 3.1 in [8]). Take a union of
$d$ general lines in $P^{2}$ : $\Gamma_{0}=L_{1}\cup L_{2}\cup\cdots\cup L_{d}$ .

Let $P_{1}=L_{1}\cap L_{2},$ $\{P_{2}, P_{3}\}=L_{3}\cap(L_{1}\cup L_{2})$ and so on. Take $0\leqq\delta\leqq(d-1)(d-2)/$

2. The statement $(*)$ holds for $\Gamma_{0}$ instead of $\Gamma$ and $s_{1}=P_{1},$ $\cdots,$
$s_{\delta}=P_{\delta}$ and $P_{0}$

suitably chosen on $L_{d}$ .
Indeed, let $k=\min\{l\in N|\delta\leqq(l(l+3)/2)\}$ . Take $l<k$ and assume that $\gamma\in$

$P_{\iota}(P_{1}, \cdots , P_{\delta})$ . Since

$\{P_{((l+1)l/2)1}+’\cdots, P_{((l+2)(l+1)/2)}\}=L_{l+2}\cap(L_{1}\cup\cdots\cup L_{l+1})\subset\gamma$

one has $\gamma=\gamma_{l- 1}\cup L_{l+2}$ with $\gamma_{\iota-1}\in P_{\iota-1}(P_{1}, \cdots , P_{(l+1)l/2})$ . Continuing this way one
finds

$\gamma=L_{l+2}\cup\gamma_{l-1}=L_{t+2}\cup L_{l+1}\cup\gamma_{l-2}=\cdots=L_{\iota+2}\cup\cdots\cup L_{4}\cup\gamma_{1}$ ,

where $\gamma_{f}\in P_{j}(P_{1}, \cdots , P_{(j+2)(j+1)/2}),$ $(J^{=1} , l-1)$ . Since $P_{1},$ $P_{2},$ $P_{3}$ are not col-
linear, this is impossible.

This already proves that $ P_{\iota}(P_{1}, \cdots P_{\delta})=\emptyset$ for $l<k$ . In particular $P_{k}(P_{1},$ $\cdots$ ,
$ P_{(k+1)(k+2)/2})=\emptyset$ . This implies $\dim(P_{k}(P_{1}, --, P_{\delta}))=(k(k+3)/2)-\delta$ . Because
$\delta\leqq(d-1)(d-2)/2,$ $\{P_{1}, \cdots, P_{\delta}\}\cap L_{d}=\emptyset$ . So if some element of $P_{k}(P_{1}, \cdots, P_{\delta})$

would contain $L_{d}$ then $ P_{k-1}(P_{1}, \cdots , P_{\delta})\neq\emptyset$ , a contradiction.
Hence, $P_{k}(P_{1}, \cdots, P_{\delta})$ induces a linear system of dimension $(k(k+3)/2)-\delta$

on $L_{d}$ . For $P_{0}$ general on $L_{d}$ and $\gamma\in P_{k}(P_{1}, \cdots, P_{\delta})$ , this implies $ i(\gamma, L_{d} ; P_{0})\leqq$

$(k(k+3)/2)-\delta$ , hence

$ P_{k}(P_{1}, \cdots, P_{\delta} ; m)=\emptyset$ if $ m>\frac{k(k+3)}{2}-\delta$ .

CLAIM: There exists a smooth (affine) curve $T$ and $O\in T$ and a family of
plane curves of degree $d$

with $\delta$ sections $S_{1},$ $\cdots$ , $S_{\delta}$ : $T\rightarrow C$ satisfying the following properties:
i) $p^{-1}(0)=\Gamma_{0}=L_{1}\cup\cdots\cup L_{d}$ :
ii) $S_{i}(0)=P_{i}$ for $ 1\leqq i\leqq\delta$ :
iii) for $r\in T-\{0\},$ $p^{-1}(r)$ is an irreducible curve, $S_{i}(r)$ is an ordinary node

for $p^{-1}(r)$ and $p^{-1}(r)$ has no other singularities, $P_{0}$ is a total inflection point on
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$p^{-1}(r)$ .
(For short, we call this a suited family of curves on $P^{2}$ containing $\Gamma_{0}$ preserv-
ing the first $\delta$ nodes and the total inflection point $P_{0}.$ )

Because of semi-continuity reasons that for a general $r\in T$ the curve $p^{-1}(r)$

satisfies the statement $(*)$ . So it is sufficient to prove the claim.
In order to prove the claim we start as follows. Let $\pi_{1}$ ; $X_{1}\rightarrow P^{2}$ be the

blowing-up of $P^{2}$ at $P_{0}$ . Let $E_{I}$ be the exceptional divisor and let $L_{d,1}$ be the
proper transform of $L_{d}$ . Let $P^{(1)}=L_{d,1}\cap E_{1}$ . Blow-up $X_{1}$ at $P^{(I)}$ obtaining
$\pi_{2}$ : $X_{2}\rightarrow X_{1}$ with the exceptional divisor $E_{2}$ and let $L_{a,2}$ be the proper trans-
form of $L_{d,1}$ . Let $P^{(2)}=L_{d,2}\cap E_{2}$ and continue until one obtains

$\pi_{d}$ $\pi_{d-I}$ $\pi_{2}$ $\pi_{1}$

$\pi;X=X_{d^{-}}X_{d-1^{-\cdots-}}X_{1^{-}}P^{2}$ .

Write $L_{i}$ for $\pi^{-1}(L_{i})$ for $1\leqq i\leqq d-1$ and let

$\Gamma_{0}^{\prime}=L_{1}+\cdots+L_{d-1}+L_{d,d}$ .

For $1\leqq i\leqq d-1$ , let $\mu_{i}=\pi_{i+1}\circ\cdots\circ\pi_{d}$ and let $L$ be a general line on $P^{2}$ . Then

$\Gamma_{0}^{\prime}\in P:=|d\pi^{*}(L)-(\sum_{i=1}^{d-1}\mu_{i}^{*}(E_{i}))-E_{d}|$

We are going to use a theorem of Tannenbaum [7, Theorem 2.13]. Since
$L_{d.d}\cdot K_{X}\geqq 0$ , we are not allowed to take $Y=\Gamma_{0}^{\prime}$ on $X$ in Tannenbaum’s Theorem.
Therefore we first prove the existence of an irreducible curve $\Gamma_{1}^{\prime}$ in $P$ with
enough nodes.

From Tannenbaum’s Theorem it follows that there is a quasi-projective
family $P_{d}((d-1)(d-2)/2)\subset P_{l}$( of dimension $d(d+3)/2-(d-1)(d-2)/2$ such that
a general element belongs to a suited family of curves on $P^{2}$ containing $\Gamma_{0}$

and preserving the first $(d-1)(d-2)/2$ nodes.
The condition $i(\gamma, L_{d} ; P_{0})\geqq d$ for $\gamma\in P_{d}((d-1)(d-2)/2)$ are at most $d$ linear

conditions. Let

$P_{d}((d-1)(d-2)/2;d)=\{\gamma\in P_{a}((d-1)(d-2)/2)|i(\gamma, L_{d} ; P_{0})\geqq d\}$ .
One has $\Gamma_{0}\in P_{d}((d-1)(d-2)/2;d)$ and

$\dim(P_{d}((d-1)(d-2)/2;d))\geqq\frac{d(d+3)}{2}-\frac{(d-1)(d-2)}{2}-d=2d-1$ .

Let $\tilde{P}$ be an irreducible component of $P_{d}((d-1)(d-2)/2;d)$ containing $\Gamma_{0}$ .
Since $\Gamma_{0}$ is smooth at $P_{0}$ , a general element of $\tilde{P}$ is smooth at $P_{0}$ . Let $\Gamma_{1}$ be
a general element of $\tilde{P}$. If $\Gamma_{1}$ is not irreducible then $i$( $\Gamma_{1}$ , La; $P_{0}$) $=d$ implies
that $L_{d}$ is an irreducible component of $\Gamma_{1}$ . Since $\{P_{1}, \cdots P_{(d-1)(d-2)/2}\}\cap L_{d}=\emptyset$
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also $\Gamma_{1}$ possesses $(d-1)(d-2)/2$ nodes none of them belonging to $L_{d}$ . This
implies $\Gamma_{1}=L_{d}\cup\Gamma_{2}$ , where $\Gamma_{2}$ belongs to a family of plane curves of degree
$d-1$ on $P^{2}$ containing $L_{2}\cup\cdots\cup L_{d}$ and preserving the $(d-1)(d-2)/2$ nodes.
Clearly, if a union of at least two of the lines $L_{2},$

$\cdots,$
$L_{d}$ become irreducible

in this deformation, some nodes have to disappear. Since this is not allowed,
$\Gamma_{2}$ is the union of $d-1$ lines. But this would imply $\dim(\tilde{P})=2d-2$ , a contradic-
tion. This proves that $\Gamma_{1}$ is irreducible.

Moreover $\Gamma_{1}$ belongs to a suited family of curves on $P^{2}$ containing $\Gamma_{0}$

preserving the first $(d-1)(d-2)/2$ nodes and the total inflection point $P_{0}$ . Be-
cause of semi-continuity, we can assume that $(*)$ holds for the first $\delta$ nodes of
$\Gamma_{1}$ .

Let $\Gamma_{1}^{\prime}$ be the proper transform of $\Gamma_{1}$ on $X$ . Then $\Gamma_{1}^{\prime}\in P$ and we can
apply Tannenbaum’s Theorem to obtain a suited family of curves on $X$ be-
longing to $P$ containing $\Gamma_{1}^{\prime}$ and preserving the first $\delta$ nodes of $\Gamma_{1}^{\prime}$ . Projecting

on $P^{2}$ we obtain a suited family of curves on $P^{2}$ containing $\Gamma_{1}$ , preserving
the first $\delta$ nodes of $\Gamma_{1}$ and the total inflection point $P_{0}$ . This completes the
proof of the claim.

Let

$P_{l}(d, \delta)=\left\{\begin{array}{lllllllll}\gamma\in P_{d} & . & \gamma & is & irreducible & . & & & \\ & & \gamma & has & a & totalinfl ection & point & and & \\ & & \gamma & has & \delta & nordinaryodes & andno & other & singularities\end{array}\right\}$ .

Then Ran [6, The irreducibility Theorem (bis)] proves that $P_{d}(d;\delta)$ is
irreducible. This implies:

THEOREM 2.3. The normalization of a general nodal irreducible plane curve
of degree $d$ with $\delta$ nodes and possessing a total inflection point $P$ has in general

Weierstrass gap sequence given by $N_{d.\delta}^{(1)}$ at $P$.

3. Case: Maximal Weight

Assume that $\delta\leqq d-2$ and remember the definition for $N_{d.\delta}^{(\max)}$ and $N_{d.\delta}^{(\max 2)}$

in the introduction.
Let $P$ be a total inflection point on the nodal plane curve $\Gamma$ of degree $d$

with $\delta$ nodes, let $\alpha_{1}<\cdots<\alpha_{g}$ be the Weierstrass gap sequence of $P$ and let $N=$

$N-\{\alpha_{1}, \cdots, \alpha_{g}\}$ be the semigroup of non-gaps of $P$.

LEMMA 3.1. For $l\leqq i\leqq g$ one has $\alpha_{i}\leqq\alpha_{i}^{(\max)}$ . Moreover if $N\neq N_{d.\delta}^{(ma\aleph)}$ , then
$\alpha_{i}\leqq\alpha_{i}^{(\max z)}$ for $1\leqq i\leqq g$ .
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PROOF. For $\delta\leqq 2$ see \S 1, so assume that $\delta\geqq 3$ . Let $\alpha_{i,j}=(d-i-2)d+$ ],

$1\leqq j\leqq i\leqq d-2$ . They are just the members of $N-N_{d}$ .

Since $N_{d}\subset N$, by Lemma 1.2, $N$ is the union of $N_{d}$ and $\delta$ values of $\alpha_{i.j}$ .
Moreover, if $\alpha\in N$ then $\{\alpha+d-1, \alpha+d\}\subset N$ . So, if the number of values $\alpha_{i^{\prime},j}$

belonging to $N$ with $i^{\prime}<i$ is less than $\delta$ , then $\alpha_{i,j_{0}}\in N$ for some $1\leqq j_{0}\leqq i$ . Each
of $N_{d.\delta}^{(\max)}$ and $N_{d.\delta}^{(\max 2)}$ does not possess two values $\alpha_{i.j_{1}}\neq\alpha_{i,j_{2}}$ for each $i$ . Hence,

if $\{\alpha_{2,1}, \alpha_{2.2}\}\subset N$, then

$\#\{\alpha_{i,j^{i}}\in N|i^{\prime}<i, j^{\prime}\geqq j\}\geqq\#\{\alpha_{i,j}, \in N_{d,\delta}^{(\max 2)}|i^{\prime}<i, j^{\prime}\geqq j\}$ for $\forall i,$ $j$ .
So, we have $\alpha_{k}\leqq\alpha_{k}^{(\max z)}$ for $1\leqq k\leqq g$ . In particular, $\alpha_{k}\leqq\alpha_{k^{(\max)}}$ . But if $\{\alpha_{2.1}$ ,

$\alpha_{2,2}\}\not\subset N$, then $N\in\{N_{d,\delta}^{(\max)}, N_{d,\delta}^{(\max 2)}\}$ because of Corollary 1.6.
This completes the proof of the lemma.

PROPOSITION 3.2. If $d\geqq 2\delta+1$ , then $N_{d.\delta}^{(\max)}$ occurs as the semigroup of the
non-gaps of a total inflection point and if $ d\geqq 2\delta$ , then so does $N_{d,\delta}^{(\max 2)}$ .

PROOF. Fix $\delta+1$ points $P,$ $P_{1},$
$\cdots,$

$P_{\delta}$ on an arbitrary line $L$ . For $i=1,$ $\cdots$ ,
$\delta$ , take general lines $L_{i}$ and $L_{\dot{l}}^{\prime}$ passing through $P_{i}$ . Let $T$ be a general line
passing through $P$ and let $C$ be a curve of degree $d-2\delta-1$ which does not pass
through any one of $P,$ $P_{1},$ $\cdots$ , $P_{\delta}$ and the common point of each pair of the
above curves. Let

$C_{1}=dL$

$C_{2}=T+C+L_{1}+L_{1}^{\prime}+\cdots+L_{\delta}+L_{\delta}^{\prime}$ .

Let $P$ be the pencil generated by $C_{1}$ and $C_{2}$ . By Bertini’s theorem, a general

element $\Gamma$ of $P$ is a curve of degree $d$ with $\delta$ ordinary nodes at $P_{1},$ $\cdots$ , $P_{\delta}$ as
its only singularities and $P$ is a total inflection point of $\Gamma$ with tangent line $T$ .
In particular, if $\Gamma$ would not be irreducible then $\Gamma=T+\Gamma^{\prime}$ . But then $T$ would
be a fixed component of $P$, which is not true. Hence $\Gamma$ is irreducible. Because
of Corollary 1.6, the semigroup of nongaps of $P$ is $N_{d,}^{(m_{\delta}ar)}$ .

Next, we prove the latter part. Fix $\delta$ points $P_{1},$
$\cdots,$

$P_{\delta}$ on an arbitrary
line $L$ and a point $P$ not on $L$ . For $i=1,$ $\cdots,$

$\delta$ , let $L_{i}$ be the line joining $P$

and $P_{i}$ and let $L_{i}^{\prime}$ be general lines passing through $P_{i}$ . Let $T$ and $T^{\prime}$ be general
lines passing through $P$ but not any of $P_{i}$ and let $C$ be a curve of degree $d-$

$\delta-2$ which does not pass through any one of $P,$ $P_{I},$
$\cdots,$

$P_{\delta}$ and the common
point of each pair of the above curves. Let

$C_{1}=2(L_{1}+\cdots+L_{\delta})+(d-2\delta)T^{\prime}$

$C_{2}=L+T+C+L_{I}^{\prime}+\cdots+L_{\delta}^{\prime}$ .



128 M. COPPENS and T. KATO

Let $P$ be the pencil generated by $C_{1}$ and $C_{2}$ . Again, by Bertini’s theorem, a
general element $\Gamma$ of $P$ is a curve of degree $d$ with $\delta$ ordinary nodes at $P_{1},$ $\cdots$ ,

$P_{\delta}$ as its only singularities and $P$ is a total inflection point of $\Gamma$ with tangent

line $T$ . Also $\Gamma$ is irreducible, by Corollary 1.6, the semigroup of nongaps of
$P$ is $N_{d,\delta}^{(\max 2)}$ .

REMARK 3.3. Define $N_{a^{m_{3}ax3)}}^{t}.=N_{d.3}^{(\max 4)}=N_{d.3}^{(1)}$ and for $\delta>3$ we define in-
ductively $N_{d.\delta}^{(\max 3)}=N_{d.\delta-1}^{(\max 3)}\cup\{(d-\delta-1)d+1\}$ and $N_{d.\delta}^{(\max 4)}=N_{d.\delta-1}^{(\max 4)}\cup\{(d-\delta-1)d$

$+\delta-1\}$ . As above one can check that, for $\delta\geqq 3$ and $N\not\in\{N_{d.\delta}^{(\max)}, N^{t_{d}m_{\delta}ax2)}\}$ one
has $\alpha_{k}\leqq\alpha_{k^{(\max 3)}}$ for $1\leqq k\leqq g$ and, for $\delta\geqq 5$ and $N\not\in\{N_{a.\delta}^{(\max)}, N_{d.\delta}^{(\max 2)}, N_{d.\delta}^{(\max 3)}\}$

one has $\alpha_{k}\leqq\alpha_{k^{(\max 4)}}$ for $1\leqq k\leqq g$ . Moreover $N_{d.\delta}^{(\max 3)}$ (resp. $N_{d.\delta}^{(\max 4)}$ ) occurs if
and only if exactly $\delta-1$ nodes are on a line $L_{0}$ and $P\in L_{0}$ (resp. $P\not\in L_{0}$). As
above one can also discuss the existence.

If one wants to continue, then one has to start making an analysis of the
case where the nodes are on a conic. Another direction of further investigation
could be: let $3\leqq\delta^{\prime}\leqq d/2$ , what is the general situation for $N$ if $\delta^{\prime}$ nodes are
on a line? Probably reasoning as in \S 2, one obtains an answer.
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