ON SELF-INJECTIVE DIMENSIONS OF ARTINIAN RINGS

By

Mitsuo Hoshino

Throughout this note R stands for a left and right artinian ring unless specified otherwise. We denote by $\bmod R\left(\right.$ resp. $\left.\bmod R^{\circ \mathrm{p}}\right)$ the category of all finitely generated left (resp. right) R-modules and by ()* both the R-dual functors. For an $X \in \bmod R$, we denote by $\varepsilon_{X}: X \rightarrow X^{* *}$ the usual evaluation map, by $E(X)$ its injective envelope and by $[X]$ its image in $K_{0}(\bmod R)$, the Grothendieck group of $\bmod R$.

In this note, we ask when $\operatorname{inj} \operatorname{dim}_{R} R=\operatorname{inj} \operatorname{dim} R_{R}$. Note that if inj $\operatorname{dim}_{R} R$ $<\infty$ and $\operatorname{inj} \operatorname{dim} R_{R}<\infty$ then by Zaks [10, Lemma A] $\operatorname{inj} \operatorname{dim}_{R} R=\operatorname{inj} \operatorname{dim} R_{R}$. So we ask when $\operatorname{inj} \operatorname{dim} R_{R}<\infty$ implies $\operatorname{inj} \operatorname{dim}_{R} R<\infty$. There has not been given any example of R with $\operatorname{inj} \operatorname{dim}_{R} R \neq \operatorname{inj} \operatorname{dim} R_{R}$. However, we know only a little about the question. By Eilenberg and Nakayama [5, Theorem 18], ${ }_{R} R$ is injective if and only if so is R_{R}. In case R is an artin algebra, we know from the theory of tilting modules that $\operatorname{inj} \operatorname{dim}_{R} R \leqq 1$ if and only if $\operatorname{inj} \operatorname{dim} R_{R} \leqq 1$ (see Bongartz [3, Theorem 2.1]). Also, if R is of finite representation type, it is well known and easily checked that inj $\operatorname{dim}_{R} R<\infty$ if and only if inj $\operatorname{dim} R_{R}$ $<\infty$.

Suppose inj $\operatorname{dim} R_{R}<\infty$. Then we have a well defined linear map

$$
\delta: K_{0}\left(\bmod R^{\mathrm{op}}\right) \longrightarrow K_{0}(\bmod R)
$$

such that

$$
\delta([M])=\sum_{i \geq 0}(-1)^{i}\left[\operatorname{Ext}_{R}^{i}(M, R)\right]
$$

for $M \in \bmod R^{o p}$. Since R is artinian, both $K_{0}\left(\bmod R^{o p}\right)$ and $K_{0}(\bmod R)$ are finitely generated free abelian groups of the same rank. Also, for an $M \in$ $\bmod R^{\text {op }},[M]=0$ if and only if $M=0$. Thus $\operatorname{inj} \operatorname{dim}_{R} R<\infty$ if (and only if) the following two conditions are satisfied:
(a) δ is surjective.
(b) There is an integer $d \geqq 1$ such that $\delta\left(\left[\operatorname{Ext}_{R}^{d}(X, R)\right]\right)=0$ for all $X \in \bmod R$.

In this note, along the principle above, we will prove the following

[^0]Theorem A. Let $m, n \geqq 1$. Suppose that $\operatorname{inj} \operatorname{dim} R_{R} \leqq n$ and that for all $0 \leqq i \leqq n-2$ (if $n \geqq 2$) $\operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{m}(-, R), R\right)$ vanishes on $\bmod R$. Then inj $\operatorname{dim}_{R} R$ $<\infty$.

REmARK. Let $0 \rightarrow R_{R} \rightarrow E_{0} \rightarrow E_{1} \rightarrow \cdots$ be a minimal injective resolution of R_{R}. Suppose proj $\operatorname{dim} E_{i}<m$ for all $0 \leqq i \leqq n-2$. Then it follows by Cartan and Eilenberg [4, Chap. VI, Proposition 5.3] that for all $0 \leqq i \leqq n-2 \operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{m}(-, R), R\right)$ vanishes on $\bmod R$. The converse fails. Namely, there has been given an example of R such that proj $\operatorname{dim} E_{0}=\infty$ and $\operatorname{Ext}_{R}^{1}(-, R)^{*}$ vanishes on $\bmod R$ (see Hoshino [7, Example]).

Consider the case $n=1$ in Theorem A. Then the last assumption is empty and we get the following

Corollary. inj $\operatorname{dim}_{R} R \leqq 1$ if and only if $\operatorname{inj} \operatorname{dim} R_{R} \leqq 1$.
As another application of Theorem A, we will prove the following
Theorem B. Let $0 \rightarrow R_{R} \rightarrow E_{0} \rightarrow E_{1} \rightarrow \cdots$ be a minimal injective resolution of R_{R}. Suppose inj $\operatorname{dim} R_{R} \leqq 2$. Then the following statements are equivalent.
(1) $\operatorname{inj} \operatorname{dim}_{R} R<\infty$.
(2) proj dim $E_{0}<\infty$.
(3) $\operatorname{proj} \operatorname{dim} E_{2}<\infty$.

The following question is raised: Does inj dim $R_{R}<\infty$ imply proj $\operatorname{dim} E\left(R_{R}\right)$ $<\infty$? If this is the case, it would follow from Theorem B that inj $\operatorname{dim}_{R} R \leqq 2$ if and only if $\operatorname{inj} \operatorname{dim} R_{R} \leqq 2$. At least, it would be possible to check directly that inj $\operatorname{dim} R_{R} \leqq 1$ implies proj $\operatorname{dim} E\left(R_{R}\right) \leqq 1$. In connection with this, we notice that proj $\operatorname{dim} E\left({ }_{R} R\right) \leqq 1$ does not imply proj $\operatorname{dim} E\left(R_{R}\right)<\infty$ (see Hoshino [7, Example]).

1. Proof of Theorem \mathbf{A}

We may assume $m>n$. We claim $\operatorname{inj} \operatorname{dim}_{R} R \leqq m+n-2$. Let

$$
\ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow X \longrightarrow 0
$$

be an exact sequence in $\bmod R$ with the P_{i} projective. Put $X_{i}=\operatorname{Cok}\left(P_{i+1} \rightarrow P_{i}\right)$ for $i \geqq 0$ and $M_{i}=\operatorname{Cok}\left(P_{i-1}{ }^{*} \rightarrow P_{i}{ }^{*}\right)$ for $i \geqq 1$. As remarked in the introduction, we have only to check the following two conditions:
(a) $\quad[X]=\delta\left(\sum_{i=0}^{m+n-3}(-1)^{i}\left[P_{i}^{*}\right]+(-1)^{m+n-2}\left[X_{m+n-2} *\right]\right)$.
(b) $\operatorname{Ext}_{R}^{i}\left(\operatorname{Ext}_{R}^{m+n-1}(X, R), R\right)=0$ for all $i \geqq 0$.

We will check these in several steps.
STEP 1: $\quad M_{i}{ }^{* *} \cong X_{i+1}{ }^{*} \cong \operatorname{Ker}\left(P_{i+1}{ }^{*} \rightarrow P_{i+2} *\right)$ for all $i \geqq 1$.
Proof. Let $i \geqq 1$. Since each P_{j} is reflexive, we have

$$
\begin{aligned}
M_{i} * & \cong \operatorname{Ker}\left(P_{i} * * \longrightarrow P_{i-1} * *\right) \\
& \cong \operatorname{Ker}\left(P_{i} \longrightarrow P_{i-1}\right) \\
& \cong \operatorname{Cok}\left(P_{i+2} \longrightarrow P_{i+1}\right) .
\end{aligned}
$$

Applying ()*, the assertion follows.
STEP 2: For each $i \geqq 1$, there is the following commutative diagram with exact rows:

Proof. This is a consequence of Auslander [1, Proposition 6.3]. However, for the benefit of the reader, we provide a direct proof. By Step 1 we have the following commutative diagram with exact rows and columns:

Since the $\operatorname{Ext}_{R}^{j}(-, R)$ are derived functors of ($)^{*}$, the assertion follows.
STEP 3: $\operatorname{Ext}_{R}^{1}\left(M_{i}, R\right)=0$ for all $i \geqq 2$.

Proof. Let $i \geqq 2$. Note that X_{i-1} is torsionless. We have a finite presentation $P_{i-1}{ }^{*} \rightarrow P_{i}{ }^{*} \rightarrow M_{i} \rightarrow 0$ with $X_{i-1} \cong \operatorname{Cok}\left(P_{i}{ }^{* *} \rightarrow P_{i-1}{ }^{* *}\right)$. Thus by Step 2 $\operatorname{Ext}_{R}^{1}\left(M_{i}, R\right) \cong \operatorname{Ker} \varepsilon_{X_{i-1}}=0$.

STEP 4: Suppose $n \geqq 2$. Then $\operatorname{Ext}_{R}^{j+1}\left(M_{i+j}, R\right)=0$ for all $i \geqq m$ and $n-1 \geqq$ $j \geqq 1$.

Proof. Note that for all $i \geqq m$ and $n-2 \geqq j \geqq 0 \operatorname{Ext}_{R}^{j}\left(\operatorname{Ext}_{R}^{i}(-, R), R\right)$ vanishes on $\bmod R$. Let $i \geqq m$. Applying ($)^{*}$ to exact sequences $\left(e_{i}\right), \cdots,\left(e_{i+n-2}\right)$ in Step 2, we get a chain of embeddings:

$$
\operatorname{Ext}_{R}^{n}\left(M_{i+n-1}, R\right) \subset \cdots \subset \operatorname{Ext}_{R}^{1}\left(M_{i}, R\right) .
$$

By Step 3 the assertion follows.
STEP 5: $\operatorname{Ext}_{k}^{k}\left(M_{i}, R\right)=0$ for all $i \geqq m+n-1$ and $j \geqq 1$.
Proof. Note that for all $j \geqq n+1 \operatorname{Ext}_{R}^{j}(-, R)$ vanishes on $\bmod R^{\text {op }}$. By Steps 3 and 4 the assertion follows.

STEP 6: X_{i} is reflexive for all $i \geqq m+n-2$.
Proof. Let $i \geqq m+n-2$. Since $m+n-2 \geqq 1, X_{i}$ is torsionless. Also, as in the proof of Step 3, we have $\operatorname{Cok} \varepsilon_{X_{i}} \cong \operatorname{Ext}_{R}^{2}\left(M_{i+1}, R\right)$. By Step 5 the assertion follows.

Step 7: $\operatorname{Ext}_{R}^{j}\left(X_{i}^{*}, R\right)=0$ for all $i \geqq m+n-2$ and $j \geqq 1$.
Proof. Note that $X_{i}{ }^{*}$ is a second syzygy of M_{i+1}. By Step 5 the assertion follows.

STEP 8: $\left.[X]=\delta\left(\sum_{j=0}^{i-1}(-1)^{j}\left[P_{j}{ }^{*}\right]+(-1)^{i}\left[X_{i}{ }^{*}\right]\right)\right)$ for all $i \geqq m+n-2$.
Proof. Let $i \geqq m+n-2$. By Steps 6 and 7 we have

$$
\begin{aligned}
{[X] } & =\sum_{j=0}^{i-1}(-1)^{j}\left[P_{j}\right]+(-1)^{i}\left[X_{i}\right] \\
& =\sum_{j=0}^{i-1}(-1)^{j}\left[P_{j}^{* *}\right]+(-1)^{i}\left[X_{i}^{* *}\right] \\
& =\sum_{j=0}^{i-1}(-1)^{j} \delta\left(\left[P_{j}^{*}\right]\right)+(-1)^{i} \delta\left(\left[X_{i}^{*}\right]\right) \\
& =\delta\left(\sum_{j=0}^{i-1}(-1)^{j}\left[P_{j}^{*}\right]+(-1)^{i}\left[X_{i}^{*}\right]\right) .
\end{aligned}
$$

STEP 9: $\operatorname{Ext}_{R}^{j}\left(\operatorname{Ext}_{R}^{i}(X, R), R\right)=0$ for all $i \geqq m+n-1$ and $j \geqq 0$.
Proof. Let $i \geqq m+n-1$. Observe the commutative diagram in Step 2. It is not difficult to see that $\phi_{i}{ }^{*}$ is epic. Thus, by applying ()* to the exact sequence $\left(e_{i}\right)$, the assertion follows by Step 5.

This finishes the proof of Theorem A.

2. Proof of Theorem B

We will use a result of Cartan and Eilenberg [4, Chap. VI, Proposition 5.3] without any reference.
$(1) \Rightarrow(2)$ and (3). See Iwanaga [8, Proposition 1].
(2) $\Rightarrow(1)$. Let $m \geqq 1$ and $X \in \bmod R$. Suppose \quad proj dim $E_{0}<m$. Then $\operatorname{Hom}_{R}\left(\operatorname{Ext}_{R}^{m}(X, R), E_{0}\right) \cong \operatorname{Tor}_{m}^{R}\left(E_{0}, X\right)=0$ and thus $\operatorname{Ext}_{R}^{m}(X, R)^{*}=0$. Hence Theorem A applies.
$(3) \Rightarrow(1)$. Let $m \geqq 2$ and suppose proj $\operatorname{dim} E_{2}<m$. We claim that $\operatorname{Ext}_{R}^{m}(-, R)^{*}$ vanishes on $\bmod R$. Let

$$
\cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow X \longrightarrow 0
$$

be an exact sequence in $\bmod R$ with the P_{i} projective and put $M=\operatorname{Cok}\left(P_{m-1} *\right.$ $\left.\rightarrow P_{m}{ }^{*}\right)$. Note first that for all $i \geqq m$, since $\operatorname{Hom}_{R}\left(\operatorname{Ext}_{R}^{i}(X, R), E_{2}\right) \cong \operatorname{Tor}_{i}^{R}\left(E_{2}, X\right)$ $=0, \operatorname{Ext}_{R}^{2}\left(\operatorname{Ext}_{R}^{i}(X, R), R\right)=0$. By Step 2 of Section 1 we have an exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{R}^{m}(X, R) \longrightarrow M \xrightarrow{\varepsilon_{M}} M^{* *} \longrightarrow \operatorname{Ext}_{R}^{m+1}(X, R) \longrightarrow 0
$$

Note that by Step 3 of Section $1 \operatorname{Ext}_{R}(M, R)=0$, that since $M^{* *}$ is a second syzygy, $\operatorname{Ext}_{R}^{i}\left(M^{* *}, R\right)=0$ for all $i \geqq 1$, and that $\varepsilon_{M^{*}}$ is epic. Applying ($)^{*}$ to the above exact sequence, we get

$$
\begin{aligned}
\operatorname{Ext}_{R}^{m}(X, R)^{*} & \cong \operatorname{Ext}_{R}^{1}\left(\operatorname{Im} \varepsilon_{M}, R\right) \\
& \cong \operatorname{Ext}_{R}^{2}\left(\operatorname{Ext}_{R}^{m+1}(X, R), R\right) \\
& =0,
\end{aligned}
$$

as required.

3. Remarks

In this and the next sections, we will make some remarks on our subject.
Proposition 1. Let $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow X \rightarrow 0$ be an exact sequence in $\bmod R$ with the P_{i} projective. Put $X_{i}=\operatorname{Cok}\left(P_{i+1} \rightarrow P_{i}\right)$ for $i \geqq 0$. Then for each $n \geqq 1$ the
following equality holds in $K_{0}\left(\bmod R^{\text {op }}\right)$:

$$
\sum_{i=0}^{n}(-1)^{i}\left[\operatorname{Ext}_{R}^{i}(X, R)\right]=\sum_{i=0}^{n-1}(-1)^{i}\left[P_{i} *\right]+(-1)^{n}\left[X_{n} *\right] .
$$

Proof. By direct calculation.
Proposition 2. Suppose $\operatorname{inj} \operatorname{dim} R_{R} \leqq 2$ and $\operatorname{proj} \operatorname{dim} E\left({ }_{R} R\right) \leqq 1$. Then inj $\operatorname{dim}_{R} R \leqq 2$.

Proof. By Hoshino [7, Proposition D] $\operatorname{Ext}_{R}^{1}(-, R)^{*}$ vanishes on $\bmod R$. Thus by Theorem A and Zaks [10, Lemma A] the assertion follows.

Proposition 3. The following statements are equivalent.
(1) inj $\operatorname{dim}_{R} R \leqq 1$.
(2) $\operatorname{inj} \operatorname{dim} R_{R} \leqq 1$.
(3) Every $X \in \bmod R$ with $\operatorname{Ext}_{R}^{1}(X, R)=0$ is torsionless.
(4) Every $M \in \bmod R^{\mathrm{op}}$ with $\operatorname{Ext}_{R}^{1}(M, R)=0$ is torsionless.

Proof. (1) $\Leftrightarrow(2)$. By Corollary to Theorem A.
$(1) \Leftrightarrow(4)$ and $(2) \Leftrightarrow(3)$. See Hoshino [6, Remark].

4. Appendix

In this section, as an appendix, we deal with the case of R being noetherian.

We remarked in [6] that for a left and right noetherian ring $R, \operatorname{inj} \operatorname{dim}_{R} R$ $\leqq 1$ if and only if every $M \in \bmod R^{o p}$ with $\operatorname{Ext}_{R}^{1}(M, R)=0$ is torsionless. Compare this with the following

Proposition 4. Let R be a left and right noetherian ring. Then the following statements are equivalent.
(1) $\operatorname{proj} \operatorname{dim} X \leqq 1$ for every $X \in \bmod R$ with $\operatorname{proj} \operatorname{dim} X<\infty$.
(2) $M^{*} \neq 0$ for every nonzero $M \in \bmod R^{\mathrm{op}}$ with $\operatorname{Ext}_{R}^{1}(M, R)=0$.

Proof. (1) $\Rightarrow(2)$. Let $M \in \bmod R^{o p}$ with $\operatorname{Ext}_{R}^{1}(M, R)=0=M^{*}$. We claim $M=0$. Let $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ be a projective resolution in mod $R^{\circ \mathrm{p}}$ and put $X=\operatorname{Cok}\left(P_{1}^{*} \rightarrow P_{2}{ }^{*}\right)$. Then we have a projective resolution $0 \rightarrow P_{0}{ }^{*} \rightarrow P_{1} * \rightarrow P_{2} * \rightarrow X$ $\rightarrow 0$ in $\bmod R$. Since proj $\operatorname{dim} X<\infty$, we get proj $\operatorname{dim} X \leqq 1$. Thus, since each P_{i} is reflexive, $M \cong \operatorname{Cok}\left(P_{1}^{* *} \rightarrow P_{0}{ }^{* *}\right) \cong \operatorname{Ext}_{R}^{2}(X, R)=0$.
$(2) \Rightarrow(1)$. Suppose to the contrary that there is a torsionless $X \in \bmod R$ with
proj $\operatorname{dim} X=1$. Let $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow X \rightarrow 0$ be a projective resolution in $\bmod R$ and put $M=\operatorname{Cok}\left(P_{0}{ }^{*} \rightarrow P_{1} *\right)$. Note that $M \neq 0$. By Auslander [1, Proposition 6.3] $\operatorname{Ext}_{R}^{1}(M, R) \cong \operatorname{Ker} \varepsilon_{X}=0$. On the other hand, since each P_{i} is reflexive, $M^{*} \cong$ $\operatorname{Ker}\left(P_{1} \rightarrow P_{0}\right)=0$, a contradiction.

Proposition 5. Let R be a left and right noetherian ring with $\operatorname{inj} \operatorname{dim} R_{R}$ $\leqq 2$. Suppose there is an integer $m \geqq 1$ such that $\operatorname{Ext}_{R}^{m}(-, R)^{*}$ vanishes on $\bmod R$. Then the following statements are equivalent.
(1) $\operatorname{inj} \operatorname{dim}_{R} R<\infty$.
(2) There is an integer $n \geqq 0$ such that $\operatorname{proj} \operatorname{dim} X \leqq n$ for every $X \in \bmod R$ with proj $\operatorname{dim} X<\infty$.
(3) For an $M \in \bmod R^{\circ \mathrm{p}}, \operatorname{Ext}_{R}^{i}(M, R)=0$ for all $i \geqq 0$ implies $M=0$.

Proof. (1) $\Rightarrow(2)$. See Bass [2, Proposition 4.3].
$(2) \Rightarrow(3)$. Let $M \in \bmod R^{o p}$ with $\operatorname{Ext}_{R}^{i}(M, R)=0$ for all $i \geqq 0$. Then by the same argument as in the proof of $(1) \Rightarrow(2)$ in Proposition 4 it follows that $M=0$.
(3) $\Rightarrow(1)$. Let $M \in \bmod R^{\text {op }}$ with $\operatorname{Ext}_{R}^{i}(M, R)=0$ for all $i \geqq 1$. We claim that M is reflexive. We show first that such an M is torsionless. Let $\cdots \rightarrow P_{1} \rightarrow P_{0}$ $\rightarrow M \rightarrow 0$ be a projective resolution in $\bmod R^{\circ \mathrm{p}}$ and put $X=\operatorname{Cok}\left(P_{m-1} * \rightarrow P_{m}{ }^{*}\right)$. Then we have an exact sequence $P_{0}{ }^{*} \rightarrow \cdots \rightarrow P_{m}{ }^{*} \rightarrow X \rightarrow 0$ in $\bmod R$ with the $P_{i}{ }^{*}$ projective. Since $M \cong \operatorname{Cok}\left(P_{1}{ }^{* *} \rightarrow P_{0}{ }^{* *}\right)$, as in Step 2 of Section 1 , $\operatorname{Ker} \varepsilon_{M} \cong$ $\operatorname{Ext}_{R}^{m}(X, R)$. Thus $\left(\operatorname{Ker} \varepsilon_{M}\right)^{*}=0$. Also, since $\operatorname{Im} \varepsilon_{M}$ is torsionless, the exact sequence $0 \rightarrow \operatorname{Ker} \varepsilon_{M} \rightarrow M \rightarrow \operatorname{Im} \varepsilon_{M} \rightarrow 0$ yields $\operatorname{Ext}_{R}^{i}\left(\operatorname{Ker} \varepsilon_{M}, R\right) \cong \operatorname{Ext}_{R}^{i+1}\left(\operatorname{Im} \varepsilon_{M}, R\right)=0$ for all $i \geqq 1$. Thus $\operatorname{Ker} \varepsilon_{M}=0$. Next, let $\alpha: P \rightarrow M^{*}$ be epic in $\bmod R$ with P projective. Put $\beta=\alpha^{*}{ }_{\circ} \varepsilon_{M}: M \rightarrow P^{*}$ and $N=\operatorname{Cok} \beta$. Then β is monic and β^{*} is epic. Thus the exact sequence $0 \rightarrow M \rightarrow P^{*} \rightarrow N \rightarrow 0$ yields $\operatorname{Ext}_{R}^{i}(N, R)=0$ for all $i \geqq 1$. Hence $\operatorname{Ker} \varepsilon_{N}=0$. Since P^{*} is reflexive, the exact sequence just above yields also that $\operatorname{Cok} \varepsilon_{M} \cong \operatorname{Ker} \varepsilon_{N}$. Therefore M is reflexive and by Hoshino [6, Proposition 2.2] the assertion follows.

According to Bass [2, Proposition 4.3], a result of Jensen [9, Proposition 6] would imply the following

Proposition 6. Let R be a left noetherian ring with inj $\operatorname{dim}_{R} R=m<\infty$. Then proj $\operatorname{dim} X \leqq m$ for every left R-module X with weak $\operatorname{dim} X<\infty$.

Proof. Let X be a left R-module with weak $\operatorname{dim} X<\infty$. According to Bass [2, Proposition 4.3], we have only to prove that proj $\operatorname{dim} X<\infty$. Let

$$
\cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow X \longrightarrow 0
$$

be a free resolution of X and put $X_{i}=\operatorname{Cok}\left(F_{i+1} \rightarrow F_{i}\right)$ for $i \geqq 1$. Let $n=$ $\max \{m+1$, weak $\operatorname{dim} X\}$. We claim that X_{n} is projective. It suffices to show that $\operatorname{Ext}_{R}^{n}\left(X, X_{n}\right)=0$. Note that X_{n} is flat. Let $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow Y \rightarrow 0$ be an exact sequence in $\bmod R$ with the P_{i} projective. Since $\operatorname{Hom}_{R}\left(P_{i}, R\right) \otimes_{R} X_{n} 工$ $\operatorname{Hom}_{R}\left(P_{i}, X_{n}\right)$ for all $i \geqq 0$, and since the functor $-\otimes_{R} X_{n}$ is exact, it follows that $\operatorname{Ext}_{R}^{i}(Y, R) \otimes_{R} X_{n} \xrightarrow{\sim} \operatorname{Ext}_{R}^{i}\left(Y, X_{n}\right)$ for all $i \geqq 0$. Thus inj dim $X_{n} \leqq \operatorname{inj} \operatorname{dim}_{R} R$ $=m<n$ and $\operatorname{Ext}_{R}^{n}\left(X, X_{n}\right)=0$.

References

[1] Auslander, M., Coherent functors, Proc. Conf. Cat. Algebra, 189-231, Springer, Berlin 1966.
[2] Bass, H., Injective dimension in noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
[3] Bongartz, K., Tilted algebras, LNM 903, 26-38, Springer, Berlin 1982.
[4] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Univ. Press, Princeton 1956.
[5] Eilenberg, S. and Nakayama, T., On the dimension of modules and algebras II, Nagoya Math. J. 9(1955), 1-16.
[6] Hoshino, M., Reflexive modules and rings with self-injective dimension two, Tsukuba J. Math. 13 (1989), 419-422.
[7] Hoshino, M., On Lambek torsion theories, Osaka J. Math. 29 (1992), 447-453.
[8] Iwanaga, Y., On rings with finite self-injective dimension II, Tsukuba J. Math. 4 (1980), 107-113.
[9] Jensen, C.U., On the vanishing of $\lim ^{(i)}$, J. Algebra 15 (1970), 151-166.
[10] Zaks, A., Injective dimension of semiprimary rings, J. Algebra 13 (1969), 73-86.
Institute of Mathematics
University of Tsukuba
Ibaraki, 305, Japan

[^0]: Received August 26, 1991. Revised March 15, 1993.

