ON SELF-INJECTIVE DIMENSIONS OF ARTINIAN RINGS

By

Mitsuo Hoshino

Throughout this note R stands for a left and right artinian ring unless specified otherwise. We denote by mod R (resp. mod R^{op}) the category of all finitely generated left (resp. right) R-modules and by ()* both the R-dual functors. For an $X \in \text{mod } R$, we denote by $\varepsilon_X : X \to X^{**}$ the usual evaluation map, by E(X) its injective envelope and by [X] its image in $K_0 \pmod{R}$, the Grothendieck group of mod R.

In this note, we ask when inj dim $_{R}R$ =inj dim R_{R} . Note that if inj dim $_{R}R$ $<\infty$ and inj dim $R_{R}<\infty$ then by Zaks [10, Lemma A] inj dim $_{R}R$ =inj dim R_{R} . So we ask when inj dim $R_{R}<\infty$ implies inj dim $_{R}R<\infty$. There has not been given any example of R with inj dim $_{R}R \neq$ inj dim R_{R} . However, we know only a little about the question. By Eilenberg and Nakayama [5, Theorem 18], $_{R}R$ is injective if and only if so is R_{R} . In case R is an artin algebra, we know from the theory of tilting modules that inj dim $_{R}R \leq 1$ if and only if inj dim $R_{R} \leq 1$ (see Bongartz [3, Theorem 2.1]). Also, if R is of finite representation type, it is well known and easily checked that inj dim $_{R}R < \infty$ if and only if inj dim $R_{R} < \infty$.

Suppose inj dim $R_R < \infty$. Then we have a well defined linear map

$$\delta: K_0 (\mathrm{mod} \ R^{\mathrm{op}}) \longrightarrow K_0 (\mathrm{mod} \ R)$$

such that

$$\delta([M]) = \sum_{i \ge 0} (-1)^{i} [Ext_{R}^{i}(M, R)]$$

for $M \in \text{mod } R^{\circ p}$. Since R is artinian, both $K_0 \pmod{R^{\circ p}}$ and $K_0 \pmod{R}$ are finitely generated free abelian groups of the same rank. Also, for an $M \in \text{mod } R^{\circ p}$, [M]=0 if and only if M=0. Thus inj dim $R < \infty$ if (and only if) the following two conditions are satisfied:

- (a) δ is surjective.
- (b) There is an integer $d \ge 1$ such that $\delta([\operatorname{Ext}_R^d(X, R)]) = 0$ for all $X \in \operatorname{mod} R$.

In this note, along the principle above, we will prove the following Received August 26, 1991. Revised March 15, 1993.

Mitsuo Hoshino

THEOREM A. Let $m, n \ge 1$. Suppose that inj dim $R_R \le n$ and that for all $0 \le i \le n-2$ (if $n \ge 2$) $\operatorname{Ext}_R^i(\operatorname{Ext}_R^m(-, R), R)$ vanishes on mod R. Then inj dim $_R R < \infty$.

REMARK. Let $0 \rightarrow R_R \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots$ be a minimal injective resolution of R_R . Suppose projdim $E_i < m$ for all $0 \le i \le n-2$. Then it follows by Cartan and Eilenberg [4, Chap. VI, Proposition 5.3] that for all $0 \le i \le n-2 \operatorname{Ext}_R^i(\operatorname{Ext}_R^m(-, R), R)$ vanishes on mod R. The converse fails. Namely, there has been given an example of R such that projdim $E_0 = \infty$ and $\operatorname{Ext}_R^1(-, R)^*$ vanishes on mod R (see Hoshino [7, Example]).

Consider the case n=1 in Theorem A. Then the last assumption is empty and we get the following

COROLLARY. inj dim $_{R}R \leq 1$ if and only if inj dim $R_{R} \leq 1$.

As another application of Theorem A, we will prove the following

THEOREM B. Let $0 \rightarrow R_R \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots$ be a minimal injective resolution of R_R . Suppose inj dim $R_R \leq 2$. Then the following statements are equivalent.

- (1) inj dim $_{R}R < \infty$.
- (2) proj dim $E_0 < \infty$.
- (3) proj dim $E_2 < \infty$.

The following question is raised: Does inj dim $R_R < \infty$ imply proj dim $E(R_R) < \infty$? If this is the case, it would follow from Theorem B that inj dim $_RR \leq 2$ if and only if inj dim $R_R \leq 2$. At least, it would be possible to check directly that inj dim $R_R \leq 1$ implies proj dim $E(R_R) \leq 1$. In connection with this, we notice that proj dim $E(R_R) \leq 1$ does not imply proj dim $E(R_R) < \infty$ (see Hoshino [7, Example]).

1. Proof of Theorem A

We may assume m > n. We claim inj dim $_{R}R \leq m+n-2$. Let

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X \longrightarrow 0$$

be an exact sequence in mod R with the P_i projective. Put $X_i = \operatorname{Cok}(P_{i+1} \rightarrow P_i)$ for $i \ge 0$ and $M_i = \operatorname{Cok}(P_{i-1}^* \rightarrow P_i^*)$ for $i \ge 1$. As remarked in the introduction, we have only to check the following two conditions:

On self-injective dimensions of artinian rings

(a)'
$$[X] = \delta \Big(\sum_{i=0}^{m+n-3} (-1)^i [P_i^*] + (-1)^{m+n-2} [X_{m+n-2}^*] \Big).$$

(b)' $\operatorname{Ext}_R^i (\operatorname{Ext}_R^{m+n-1}(X, R), R) = 0$ for all $i \ge 0.$

We will check these in several steps.

STEP 1:
$$M_i^{**} \cong X_{i+1}^* \cong \operatorname{Ker} (P_{i+1}^* \to P_{i+2}^*)$$
 for all $i \ge 1$.

PROOF. Let $i \ge 1$. Since each P_j is reflexive, we have

$$\begin{split} M_i^* &\cong \operatorname{Ker} \left(P_i^{**} \longrightarrow P_{i-1}^{**} \right) \\ &\cong \operatorname{Ker} \left(P_i \longrightarrow P_{i-1} \right) \\ &\cong \operatorname{Cok} \left(P_{i+2} \longrightarrow P_{i+1} \right). \end{split}$$

Applying ()*, the assertion follows.

.

STEP 2: For each $i \ge 1$, there is the following commutative diagram with exact rows:

PROOF. This is a consequence of Auslander [1, Proposition 6.3]. However, for the benefit of the reader, we provide a direct proof. By Step 1 we have the following commutative diagram with exact rows and columns:

$$P_{i-1}^{*} \quad P_{i+2}^{*}$$

$$\downarrow \qquad \uparrow$$

$$P_{i}^{*} \longrightarrow P_{i+1}^{*} \longrightarrow M_{i+1} \longrightarrow 0$$

$$\downarrow \qquad \uparrow$$

$$M_{i} \stackrel{\varepsilon_{M_{i}}}{\longrightarrow} M_{i}^{**}$$

$$\downarrow \qquad \uparrow$$

$$0 \qquad 0.$$

Since the $\operatorname{Ext}_{R}^{i}(-, R)$ are derived functors of ()*, the assertion follows.

STEP 3: $\operatorname{Ext}_{R}^{1}(M_{i}, R) = 0$ for all $i \geq 2$.

PROOF. Let $i \ge 2$. Note that X_{i-1} is torsionless. We have a finite presentation $P_{i-1}^* \to P_i^* \to M_i \to 0$ with $X_{i-1} \cong \operatorname{Cok}(P_i^{**} \to P_{i-1}^{**})$. Thus by Step 2 $\operatorname{Ext}^1_R(M_i, R) \cong \operatorname{Ker} \varepsilon_{X_{i-1}} = 0$.

STEP 4: Suppose $n \ge 2$. Then $\operatorname{Ext}_{R}^{j+1}(M_{i+j}, R) = 0$ for all $i \ge m$ and $n-1 \ge j \ge 1$.

PROOF. Note that for all $i \ge m$ and $n-2 \ge j \ge 0 \operatorname{Ext}_{R}^{i}(\operatorname{Ext}_{R}^{i}(-, R), R)$ vanishes on mod R. Let $i \ge m$. Applying ()* to exact sequences $(e_{i}), \cdots, (e_{i+n-2})$ in Step 2, we get a chain of embeddings:

 $\operatorname{Ext}_{R}^{n}(M_{i+n-1}, R) \longrightarrow \cdots \longrightarrow \operatorname{Ext}_{R}^{1}(M_{i}, R)$.

By Step 3 the assertion follows.

STEP 5: Ext_Rⁱ(M_i , R)=0 for all $i \ge m+n-1$ and $j \ge 1$.

PROOF. Note that for all $j \ge n+1 \operatorname{Ext}_{R}^{j}(-, R)$ vanishes on mod R^{op} . By Steps 3 and 4 the assertion follows.

STEP 6: X_i is reflexive for all $i \ge m + n - 2$.

PROOF. Let $i \ge m+n-2$. Since $m+n-2 \ge 1$, X_i is torsionless. Also, as in the proof of Step 3, we have $\operatorname{Cok} \varepsilon_{X_i} \cong \operatorname{Ext}^2_R(M_{i+1}, R)$. By Step 5 the assertion follows.

STEP 7: Ext_kⁱ(X_i^* , R)=0 for all $i \ge m+n-2$ and $j \ge 1$.

PROOF. Note that X_i^* is a second syzygy of M_{i+1} . By Step 5 the assertion follows.

STEP 8:
$$[X] = \delta \Big(\sum_{j=0}^{i-1} (-1)^j [P_j^*] + (-1)^i [X_i^*] \Big) \Big)$$
 for all $i \ge m + n - 2$.

PROOF. Let $i \ge m + n - 2$. By Steps 6 and 7 we have

$$\begin{split} [X] &= \sum_{j=0}^{i-1} (-1)^{j} [P_{j}] + (-1)^{i} [X_{i}] \\ &= \sum_{j=0}^{i-1} (-1)^{j} [P_{j}^{**}] + (-1)^{i} [X_{i}^{**}] \\ &= \sum_{j=0}^{i-1} (-1)^{j} \delta([P_{j}^{*}]) + (-1)^{i} \delta([X_{i}^{*}]) \\ &= \delta \Big(\sum_{j=0}^{i-1} (-1)^{j} [P_{j}^{*}] + (-1)^{i} [X_{i}^{*}] \Big) \,. \end{split}$$

STEP 9: Ext_Rⁱ(Ext_Rⁱ(X, R), R)=0 for all $i \ge m+n-1$ and $j \ge 0$.

PROOF. Let $i \ge m+n-1$. Observe the commutative diagram in Step 2. It is not difficult to see that ϕ_i^* is epic. Thus, by applying ()* to the exact sequence (e_i) , the assertion follows by Step 5.

This finishes the proof of Theorem A.

2. Proof of Theorem B

We will use a result of Cartan and Eilenberg [4, Chap. VI, Proposition 5.3] without any reference.

 $(1) \Rightarrow (2)$ and (3). See Iwanaga [8, Proposition 1].

 $(2) \Rightarrow (1)$. Let $m \ge 1$ and $X \in \mod R$. Suppose projdim $E_0 < m$. Then $\operatorname{Hom}_R(\operatorname{Ext}_R^m(X, R), E_0) \cong \operatorname{Tor}_m^R(E_0, X) = 0$ and thus $\operatorname{Ext}_R^m(X, R)^* = 0$. Hence Theorem A applies.

(3) \Rightarrow (1). Let $m \ge 2$ and suppose proj dim $E_2 < m$. We claim that $\text{Ext}_R^m(-, R)^*$ vanishes on mod R. Let

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X \longrightarrow 0$$

be an exact sequence in mod R with the P_i projective and put $M=\operatorname{Cok}(P_{m-1}^* \to P_m^*)$. Note first that for all $i \ge m$, since $\operatorname{Hom}_R(\operatorname{Ext}^i_R(X, R), E_2) \cong \operatorname{Tor}^R_i(E_2, X) = 0$, $\operatorname{Ext}^2_R(\operatorname{Ext}^i_R(X, R), R) = 0$. By Step 2 of Section 1 we have an exact sequence

$$0 \longrightarrow \operatorname{Ext}_{R}^{m}(X, R) \longrightarrow M \xrightarrow{\varepsilon_{M}} M^{**} \longrightarrow \operatorname{Ext}_{R}^{m+1}(X, R) \longrightarrow 0.$$

Note that by Step 3 of Section 1 $\operatorname{Ext}_{R}^{i}(M, R)=0$, that since M^{**} is a second syzygy, $\operatorname{Ext}_{R}^{i}(M^{**}, R)=0$ for all $i\geq 1$, and that ε_{M}^{*} is epic. Applying ()* to the above exact sequence, we get

$$\operatorname{Ext}_{R}^{m}(X, R)^{*} \cong \operatorname{Ext}_{R}^{1}(\operatorname{Im} \varepsilon_{M}, R)$$
$$\cong \operatorname{Ext}_{R}^{2}(\operatorname{Ext}_{R}^{m+1}(X, R), R)$$
$$= 0,$$

as required.

3. Remarks

In this and the next sections, we will make some remarks on our subject.

PROPOSITION 1. Let $\dots \to P_1 \to P_0 \to X \to 0$ be an exact sequence in mod R with the P_i projective. Put $X_i = \operatorname{Cok}(P_{i+1} \to P_i)$ for $i \ge 0$. Then for each $n \ge 1$ the following equality holds in $K_0 \pmod{R^{op}}$:

$$\sum_{k=0}^{n} (-1)^{i} [Ext_{R}^{i}(X, R)] = \sum_{i=0}^{n-1} (-1)^{i} [P_{i}^{*}] + (-1)^{n} [X_{n}^{*}].$$

PROOF. By direct calculation.

PROPOSITION 2. Suppose inj dim $R_R \leq 2$ and proj dim $E(R) \leq 1$. Then inj dim $R \leq 2$.

PROOF. By Hoshino [7, Proposition D] $\operatorname{Ext}_{R}^{1}(-, R)^{*}$ vanishes on mod R. Thus by Theorem A and Zaks [10, Lemma A] the assertion follows.

PROPOSITION 3. The following statements are equivalent.

- (1) $\operatorname{inj} \dim_{R} R \leq 1$.
- (2) inj dim $R_R \leq 1$.
- (3) Every $X \in \text{mod } R$ with $\text{Ext}_{R}^{1}(X, R) = 0$ is torsionless.
- (4) Every $M \in \text{mod } R^{\text{op}}$ with $\text{Ext}_{R}^{1}(M, R) = 0$ is torsionless.

PROOF. (1) \Leftrightarrow (2). By Corollary to Theorem A. (1) \Leftrightarrow (4) and (2) \Leftrightarrow (3). See Hoshino [6, Remark].

4. Appendix

In this section, as an appendix, we deal with the case of R being noe-therian.

We remarked in [6] that for a left and right noetherian ring R, injdim $_{R}R \leq 1$ if and only if every $M \in \mod R^{op}$ with $\operatorname{Ext}_{R}^{1}(M, R) = 0$ is torsionless. Compare this with the following

PROPOSITION 4. Let R be a left and right noetherian ring. Then the following statements are equivalent.

- (1) proj dim $X \leq 1$ for every $X \in \mod R$ with proj dim $X < \infty$.
- (2) $M^* \neq 0$ for every nonzero $M \in \text{mod } R^{\text{op}}$ with $\text{Ext}_R^1(M, R) = 0$.

PROOF. (1) \Rightarrow (2). Let $M \in \text{mod } R^{\text{op}}$ with $\text{Ext}_{R}^{1}(M, R) = 0 = M^{*}$. We claim M=0. Let $\dots \to P_{1} \to P_{0} \to M \to 0$ be a projective resolution in mod R^{op} and put $X=\text{Cok}(P_{1}^{*} \to P_{2}^{*})$. Then we have a projective resolution $0 \to P_{0}^{*} \to P_{1}^{*} \to P_{2}^{*} \to X \to 0$ in mod R. Since proj dim $X < \infty$, we get proj dim $X \leq 1$. Thus, since each P_{i} is reflexive, $M \cong \text{Cok}(P_{1}^{**} \to P_{0}^{**}) \cong \text{Ext}_{R}^{2}(X, R) = 0$.

 $(2) \Rightarrow (1)$. Suppose to the contrary that there is a torsionless $X \in \mod R$ with

proj dim X=1. Let $0 \rightarrow P_1 \rightarrow P_0 \rightarrow X \rightarrow 0$ be a projective resolution in mod R and put $M=\operatorname{Cok}(P_0^* \rightarrow P_1^*)$. Note that $M \neq 0$. By Auslander [1, Proposition 6.3] $\operatorname{Ext}^1_R(M, R) \cong \operatorname{Ker} \varepsilon_X = 0$. On the other hand, since each P_i is reflexive, $M^* \cong \operatorname{Ker}(P_1 \rightarrow P_0) = 0$, a contradiction.

PROPOSITION 5. Let R be a left and right noetherian ring with injdim $R_R \leq 2$. Suppose there is an integer $m \geq 1$ such that $\operatorname{Ext}_R^m(-, R)^*$ vanishes on mod R. Then the following statements are equivalent.

(1) $\operatorname{inj} \dim_{R} R < \infty$.

(2) There is an integer $n \ge 0$ such that proj dim $X \le n$ for every $X \in \mod R$ with proj dim $X < \infty$.

(3) For an $M \in \text{mod } R^{\text{op}}$, $\text{Ext}_R^i(M, R) = 0$ for all $i \ge 0$ implies M = 0.

PROOF. (1) \Rightarrow (2). See Bass [2, Proposition 4.3].

 $(2) \Rightarrow (3)$. Let $M \in \mod R^{op}$ with $\operatorname{Ext}_{R}^{i}(M, R) = 0$ for all $i \geq 0$. Then by the same argument as in the proof of $(1) \Rightarrow (2)$ in Proposition 4 it follows that M = 0.

(3) \Rightarrow (1). Let $M \in \mod R^{\circ p}$ with $\operatorname{Ext}_{R}^{i}(M, R) = 0$ for all $i \ge 1$. We claim that M is reflexive. We show first that such an M is torsionless. Let $\cdots \to P_1 \to P_0 \to M \to 0$ be a projective resolution in $\operatorname{mod} R^{\circ p}$ and put $X = \operatorname{Cok} (P_{m-1}^* \to P_m^*)$. Then we have an exact sequence $P_0^* \to \cdots \to P_m^* \to X \to 0$ in $\operatorname{mod} R$ with the P_i^* projective. Since $M \cong \operatorname{Cok} (P_1^{**} \to P_0^{**})$, as in Step 2 of Section 1, Ker $\varepsilon_M \cong \operatorname{Ext}_{R}^{m}(X, R)$. Thus $(\operatorname{Ker} \varepsilon_M)^* = 0$. Also, since $\operatorname{Im} \varepsilon_M$ is torsionless, the exact sequence $0 \to \operatorname{Ker} \varepsilon_M \to M \to \operatorname{Im} \varepsilon_M \to 0$ yields $\operatorname{Ext}_{R}^{i}(\operatorname{Ker} \varepsilon_M, R) \cong \operatorname{Ext}_{R}^{i+1}(\operatorname{Im} \varepsilon_M, R) = 0$ for all $i \ge 1$. Thus $\operatorname{Ker} \varepsilon_M = 0$. Next, let $\alpha : P \to M^*$ be epic in $\operatorname{mod} R$ with P projective. Put $\beta = \alpha^* \circ \varepsilon_M : M \to P^*$ and $N = \operatorname{Cok} \beta$. Then β is monic and β^* is epic. Thus the exact sequence $0 \to M \to P^* \to N \to 0$ yields $\operatorname{Ext}_{R}^{i}(N, R) = 0$ for all $i \ge 1$. Hence $\operatorname{Ker} \varepsilon_N = 0$. Since P^* is reflexive, the exact sequence just above yields also that $\operatorname{Cok} \varepsilon_M \cong \operatorname{Ker} \varepsilon_N$. Therefore M is reflexive and by Hoshino [6, Proposition 2.2] the assertion follows.

According to Bass [2, Proposition 4.3], a result of Jensen [9, Proposition 6] would imply the following

PROPOSITION 6. Let R be a left noetherian ring with inj dim $_{R}R=m<\infty$. Then proj dim $X \leq m$ for every left R-module X with weak dim $X<\infty$.

PROOF. Let X be a left R-module with weak dim $X < \infty$. According to Bass [2, Proposition 4.3], we have only to prove that proj dim $X < \infty$. Let

 $\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow X \longrightarrow 0$

be a free resolution of X and put $X_i = \operatorname{Cok}(F_{i+1} \to F_i)$ for $i \ge 1$. Let $n = \max\{m+1, \operatorname{weak} \dim X\}$. We claim that X_n is projective. It suffices to show that $\operatorname{Ext}_R^n(X, X_n) = 0$. Note that X_n is flat. Let $\cdots \to P_1 \to P_0 \to Y \to 0$ be an exact sequence in mod R with the P_i projective. Since $\operatorname{Hom}_R(P_i, R) \otimes_R X_n \cong \operatorname{Hom}_R(P_i, X_n)$ for all $i \ge 0$, and since the functor $- \bigotimes_R X_n$ is exact, it follows that $\operatorname{Ext}_R^i(Y, R) \otimes_R X_n \cong \operatorname{Ext}_R^i(Y, X_n)$ for all $i \ge 0$. Thus injdim $X_n \le \operatorname{inj} \dim_R R$ = m < n and $\operatorname{Ext}_R^n(X, X_n) = 0$.

References

- [1] Auslander, M., Coherent functors, Proc. Conf. Cat. Algebra, 189-231, Springer, Berlin 1966.
- [2] Bass, H., Injective dimension in noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
- [3] Bongartz, K., Tilted algebras, LNM 903, 26-38, Springer, Berlin 1982.
- [4] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Univ. Press, Princeton 1956.
- [5] Eilenberg, S. and Nakayama, T., On the dimension of modules and algebras ll, Nagoya Math. J. 9(1955), 1-16.
- [6] Hoshino, M., Reflexive modules and rings with self-injective dimension two, Tsukuba J. Math. 13 (1989), 419-422.
- [7] Hoshino, M., On Lambek torsion theories, Osaka J. Math. 29 (1992), 447-453.
- [8] Iwanaga, Y., On rings with finite self-injective dimension II, Tsukuba J. Math. 4 (1980), 107-113.
- [9] Jensen, C.U., On the vanishing of $\lim^{(i)}$, J. Algebra 15 (1970), 151-166.
- [10] Zaks, A., Injective dimension of semiprimary rings, J. Algebra 13 (1969), 73-86.

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan