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ON SELF-INJECTIVE DIMENSIONS OF ARTINIAN RINGS

By

Mitsuo HOSHINO

Throughout this note $R$ stands for a left and right artinian ring unless
specified otherwise. We denote by $mod R$ (resp. $mod R^{op}$) the category of all
finitely generated left (resp. right) R-modules and by $($ $)^{*}$ both the R-dual
functors. For an $X\in mod R$ , we denote by $\epsilon_{X}$ ; $X\rightarrow X^{**}$ the usual evaluation
map, by $E(X)$ its injective envelope and by [X] its image in $K_{0}(mod R)$ , the
Grothendieck group of $mod R$ .

In this note, we ask when inj $\dim_{R}R=inj\dim R_{R}$ . Note that if inj $\dim_{R}R$

$<\infty$ and inj $\dim R_{R}<\infty$ then by Zaks [10, Lemma $A$] inj $\dim_{R}R=inj\dim R_{R}$ .
So we ask when inj $\dim R_{R}<\infty$ implies inj $\dim_{R}R<\infty$ . There has not been
given any example of $R$ with inj $\dim_{R}R\neq inj\dim R_{R}$ . However, we know only
a little about the question. By Eilenberg and Nakayama [5, Theorem 18], $RR$

is injective if and only if so is $R_{R}$ . In case $R$ is an artin algebra, we know
from the theory of tilting modules that inj $\dim_{R}R\leqq 1$ if and only if inj $\dim R_{R}\leqq 1$

(see Bongartz [3, Theorem 2.1]). Also, if $R$ is of finite representation type,

it is well known and easily checked that inj $\dim_{R}R<\infty$ if and only if inj $\dim R_{R}$

$<\infty$ .
Suppose inj $\dim R_{R}<\infty$ . Then we have a well defined linear map

$\delta:K_{0}(mod R^{op})\rightarrow K_{0}(mod R)$

such that

$\delta([M])=\sum_{i\geqq 0}(-1)^{i}[Ext_{R}^{i}(M, R)]$

for $M\in mod R^{op}$ . Since $R$ is artinian, both $K_{0}(mod R^{op})$ and $K_{0}(mod R)$ are
finitely generated free abelian groups of the same rank. Also, for an $ M\in$

$mod R^{op},$ $[M]=0$ if and only if $M=0$ . Thus inj $\dim_{R}R<\infty$ if (and only if) the
following two conditions are satisfied:

(a) $\delta$ is surjective.
(b) There is an integer $d\geqq 1$ such that $\delta([Ext_{R}^{d}(X, R)])=0$ for all $X\in mod R$ .

In this note, along the principle above, we will prove the following
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THEOREM A. Let $m,$ $n\geqq 1$ . Suppose that inj $\dim R_{R}\leqq n$ and that for all
$0\leqq i\leqq n-2$ (if $n\geqq 2$) $Ext_{R}^{i}(Ext_{R}^{m}(--, R),$ $R$ ) vanishes on $mod$ R. Then inj $\dim_{R}R$

$<\infty$ .

REMARK. Let $ 0\rightarrow R_{R}\rightarrow E_{0}\rightarrow E_{1}\rightarrow\cdots$ be a minimal injective resolution of $R_{R}$ .
Suppose proj $\dim E_{i}<m$ for all $0\leqq i\leqq n-2$ . Then it follows by Cartan and
Eilenberg [4, Chap. VI, Proposition 5.3] that for all $0\leqq i\leqq n-2Ext_{R}^{i}(Ext_{R}^{m}(-, R),$ $R$ )

vanishes on $mod R$ . The converse fails. Namely, there has been given an
example of $R$ such that proi $\dim E_{0}=\infty$ and $Ext_{R}^{1}($ –, $R)^{*}$ vanishes on $mod R$

(see Hoshino [7, Example]).

Consider the case $n=1$ in Theorem A. Then the last assumption is empty
and we get the following

COROLLARY. inj $\dim_{R}R\leqq 1$ if and only if inj $\dim R_{R}\leqq 1$ .

As another application of Theorem $A$ , we will prove the following

THEOREM B. Let $ 0\rightarrow R_{R}\rightarrow E_{0}\rightarrow E_{1}\rightarrow\cdots$ be a minimal injective resolution of
$R_{R}$ . Suppose inj $\dim R_{R}\leqq 2$ . Then the following statements are equivalent.

(1) inj $\dim_{R}R<\infty$ .
(2) proj $\dim E_{0}<\infty$ .
(3) proj $\dim E_{2}<\infty$ .

The following question is raised: Does inj $\dim R_{R}<\infty$ imply proj $\dim E(R_{R})$

$<\infty$ ? If this is the case, it would follow from Theorem $B$ that inj $\dim_{R}R\leqq 2$

if and only if inj $\dim R_{R}\leqq 2$ . At least, it would be possible to check directly

that inj $\dim R_{R}\leqq 1$ implies proj $\dim E(R_{R})\leqq 1$ . In connection with this, we notice
that proj $\dim E(RR)\leqq 1$ does not imply proi $\dim E(R_{R})<\infty$ (see Hoshino [7, Ex-
ample]).

1. Proof of Theorem A

We may assume $m>n$ . We claim inj $\dim_{R}R\leqq m+n-2$ . Let

$...\rightarrow P_{1}\rightarrow P_{0}\rightarrow X\rightarrow 0$

be an exact sequence in $mod R$ with the $P_{i}$ projective. Put $X_{i}=Cok(P_{i+1}\rightarrow P_{i})$

for $i\geqq 0$ and $M_{i}=Cok(P_{i-1^{*}}\rightarrow P_{i^{*}})$ for $i\geqq 1$ . As remarked in the introduction,
we have only to check the following two conditions:



On self-injective dimensions of artinian rings 3

$(a)^{\prime}$ $[X]=\delta(\sum_{i=0}^{m+n-3}(-1)^{i}[P_{i^{*}}]+(-1)^{m+n-2}[X_{m+n-2^{*}}])$ .
$(b)^{\prime}$ $Ext_{R}^{i}(Ext_{R}^{m+n-1}(X, R),$ $R$ ) $=0$ for all $i\geqq 0$ .

We will check these in several steps.

STEP 1: $M_{i^{**}}\cong X_{i+1^{*}}\cong Ker(P_{i+1^{*}}\rightarrow P_{i+2^{*}})$ for all $i\geqq 1$ .

PROOF. Let $i\geqq 1$ . Since each $P_{j}$ is reflexive, we have

$M_{i^{*}}\cong Ker(P_{i^{**}}\rightarrow P_{i-1^{**}})$

$\cong Ker(P_{i}-P_{i-1})$

$\cong Cok(P_{i+2}\rightarrow P_{i+1})$ .
Applying $($ $)^{*}$ , the assertion follows.

STEP 2: For each $i\geqq 1$ , there is the following commutative diagram with
exact rows:

$0-Ext_{R}^{i}(X, R)-M_{i}M_{i^{**}}\underline{\epsilon_{M_{i}}}-Ext_{R}^{i+1}(X, R)-0$

$\Vert$ $\Vert$
$\downarrow$ $\downarrow$

$\phi_{i}$

$(e_{i}):0\rightarrow Ext_{R}^{i}(X, R)-M_{i}\rightarrow P_{i+1^{*}}-\rightarrow M_{i+1}-0$ .

PROOF. This is a consequence of Auslander [1, Proposition 6.3]. However,

for the benefit of the reader, we provide a direct proof. By Step 1 we have
the following commutative diagram with exact rows and columns:

$ P_{i-1^{*}}\downarrow$ $ P_{i+2^{*}}\uparrow$

$P_{i^{*-}}P_{i+1^{*-}}M_{i+1}-0$

$\downarrow$
$\uparrow$

$M_{i}\rightarrow M_{i^{**}}\epsilon_{M_{i}}$

$\downarrow$
$\uparrow$

$0$ $0$ .

Since the $Ext\not\in(-, R)$ are derived functors of $($ $)^{*}$ , the assertion follows.

STEP 3: $Ext_{R}^{1}(M_{i}, R)=0$ for all $i\geqq 2$ .
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PROOF. Let $i\geqq 2$ . Note that $X_{i-1}$ is torsionless. We have a finite pre-
sentation $P_{i-1^{*}}\rightarrow P_{i^{*}}\rightarrow M_{i}\rightarrow 0$ with $X_{i- 1}\cong Cok(P_{t^{**}}\rightarrow P_{i- 1^{**}})$ . Thus by Step 2
$Ext_{R}^{1}(M_{i}, R)\cong Ker\epsilon_{x_{i-1}}=0$ .

STEP 4: Suppose $n\geqq 2$ . Then $Ext_{R}^{j+1}(M_{i+j}, R)=0$ for all $i\geqq m$ and $ n-1\geqq$

$j\geqq 1$ .

PROOF. Note that for all $i\geqq m$ and $n-2\geqq j\geqq 0Ext\not\in(Ext_{R}^{i}(--, R),$ $R$ ) vanishes
on $mod R$ . Let $i\geqq m$ . Applying $($ $)^{*}$ to exact sequences $(e_{i}),$

$\cdots,$ $(e_{i+n-2})$ in Step
2, we get a chain of embeddings:

$Ext_{R}^{n}(M_{i+n-1}, R)=\cdots=Ext_{R}^{1}(M_{i}, R)$ .
By Step 3 the assertion follows.

STEP 5: $Ex\mathfrak{c}4(M_{i}, R)=0$ for all $i\geqq m+n-1$ and $j\geqq 1$ .

PROOF. Note that for all $j\geqq n+1Extf(-, R)$ vanishes on $mod R^{op}$ . By
Steps 3 and 4 the assertion follows.

STEP 6: $X_{i}$ is reflexive for all $i\geqq m+n-2$ .

PROOF. Let $i\geqq m+n-2$ . Since $m+n-2\geqq 1,$ $X_{i}$ is torsionless. Also, as in
the proof of Step 3, we have Cok $\epsilon_{X_{i}}\cong Ext_{R}^{2}(M_{i+1}, R)$ . By Step 5 the assertion
follows.

STEP 7: $ExtA(x_{i}*, R)=0$ for all $i\geqq m+n-2$ and $j\geqq 1$ .

PROOF. Note that $x_{i}*$ is a second syzygy of $M_{i+1}$ . By Step 5 the asser-
tion follows.

STEP 8: $[X]=\delta(\sum_{j=0}^{i- 1}(-1)^{j}[P_{j^{*}}]+(-1)^{i}[X_{i^{*}}]))$ for all $i\geqq m+n-2$ .

PROOF. Let $i\geqq m+n-2$ . By Steps 6 and 7 we have

$[X]=\sum_{j=0}^{i-1}(-1)^{j}[P_{j}]+(-1)^{i}[X_{i}]$

$=\sum_{j=0}^{i-1}(-1)^{j}[P_{j^{**}}]+(-1)^{i}[X_{i^{**}}]$

$=\sum_{J=0}^{i-1}(-1)^{j}\delta([P_{j^{*}}])+(-1)^{i}\delta([X_{i^{*}}])$

$=\delta(\sum_{f=0}^{i-1}(-1)^{j}[P_{j^{*}}]+(-1)^{i}[X_{i^{*}}])$ .



On self-injective dimensions of artinian rings 5

STEP 9: $Extk(Ext_{R}^{i}(X, R),$ $R$ ) $=0$ for all $i\geqq m+n-1$ and $j\geqq 0$ .

PROOF. Let $i\geqq m+n-1$ . Observe the commutative diagram in Step 2. It
is not difficult to see that $\phi_{i}^{*}$ is epic. Thus, by applying $($ $)^{*}$ to the exact
sequence $(e_{i})$ , the assertion follows by Step 5.

This finishes the proof of Theorem A.

2. Proof of Theorem $B$

We will use a result of Cartan and Eilenberg [4, Chap. VI, Proposition 5.3]

without any reference.
(1) $\Rightarrow(2)$ and (3). See Iwanaga [8, Proposition 1].

(2) $\Rightarrow(1)$ . Let $m\geqq 1$ and $X\in mod R$ . Suppose proj $\dim E_{0}<m$ . Then
$Hom_{R}(Ext_{R}^{m}(X, R),$ $E_{0}$) $\cong Tor_{m}^{R}(E_{0}, X)=0$ and thus $Ext_{R}^{m}(X, R)^{*}=0$ . Hence Theo-
rem A applies.

(3) $\Rightarrow(1)$ . Let $m\geqq 2$ and suppose proj $\dim E_{2}<m$ . We claim that $Ext_{R}^{m}(-, R)^{*}$

vanishes on $mod R$ . Let

... $-P_{1}-P_{0}-X-0$

be an exact sequence in $mod R$ with the $P_{i}$ projective and put $M=Cok(P_{m-1^{*}}$

$\rightarrow P_{m^{*}})$ . Note first that for all $i\geqq m$ , since $Hom_{R}(Ext_{R}^{i}(X, R),$ $E_{2}$) $\cong Tor_{i}^{R}(E_{2}, X)$

$=0,$ $Ext_{R}^{2}(Ext_{R}^{i}(X, R),$ $R$ ) $=0$ . By Step 2 of Section 1 we have an exact sequence

$\epsilon_{M}$

$0-Ext_{R}^{m}(X, R)-M-M^{**}-Ext_{R}^{m+1}(X, R)\rightarrow 0$ .

Note that by Step 3 of Section 1 $Ext_{R}^{1}(M, R)=0$ , that since $M^{**}$ is a second
syzygy, $Ext_{R}{}^{t}(M^{**}, R)=0$ for all $i\geqq 1$ , and that $\epsilon_{M^{*}}$ is epic. Applying $($ $)^{*}$ to
the above exact sequence, we get

$Ext_{R}^{m}(X, R)^{*}\cong Ext_{R}^{1}({\rm Im}\epsilon_{M}, R)$

$\cong Ext_{R}^{2}(Ext_{R}^{m+1}(X, R),$ $R$ )

$=0$ ,

as required.

3. Remarks

In this and the next sections, we will make some remarks on our subject.

PROPOSITION 1. Let $\cdots\rightarrow P_{1}\rightarrow P_{0}\rightarrow X\rightarrow 0$ be an exact sequence in $mod R$ with
the $P_{i}$ projective. Put $X_{i}=Cok(P_{i+1}\rightarrow P_{i})$ for $i\geqq 0$ . Then for each $n\geqq 1$ the
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following equality holds in $K_{0}(mod R^{op})$ :

$\sum_{i=0}^{n}(-1)^{i}[Ext_{R}^{i}(X, R)]=\sum_{i=0}^{n-1}(-1)^{i}[P_{i^{*}}]+(-1)^{n}[X_{n}^{*}]$ .

PROOF. By direct calculation.

PROPOSITION 2. Suppose inj $\dim R_{R}\leqq 2$ and proj $\dim E(RR)\leqq 1$ . Then
inj $\dim_{R}R\leqq 2$ .

PROOF. By Hoshino [7, Proposition $D$] $Ext_{R}^{1}($ –, $R)^{*}$ vanishes on $mod R$ .
Thus by Theorem A and Zaks [10, Lemma $A$] the assertion follows.

PROPOSITION 3. The following statements are equivalent.
(1) inj $\dim_{R}R\leqq 1$ .
(2) inj $\dim R_{R}\leqq 1$ .
(3) Every $X\in mod R$ with $Ext_{R}^{1}(X, R)=0$ is torsionless.
(4) Every $M\in mod R^{op}$ with $Ext_{R}^{1}(M, R)=0$ is torsionless.

PROOF. (1) $\Leftarrow(2)$ . By Corollary to Theorem A.
(1)0(4) and (2) $\Leftrightarrow(3)$ . See Hoshino [6, Remark].

4. Appendix

In this section, as an appendix, we deal with the case of $R$ being noe-
therian.

We remarked in [6] that for a left and right noetherian ring $R$ , inj $\dim_{R}R$

$\leqq 1$ if and only if every $M\in mod R^{op}$ with $Ext_{R}^{1}(M, R)=0$ is torsionless. Com-
pare this with the following

PROPOSITION 4. Let $R$ be a left and right noetherian ring. Then the fol-
lowing statements are equivalent.

(1) proj dim $X\leqq 1$ for every $X\in mod R$ with proj dim $ X<\infty$ .
(2) $M^{*}\neq 0$ for every nonzero $M\in mod R^{op}$ with $Ext_{R}^{1}(M, R)=0$ .

PROOF. (1) $\Rightarrow(2)$ . Let $M\in mod R^{op}$ with $Ext_{R}^{1}(M, R)=0=M*$ . We claim
$M=0$ . Let $...\rightarrow P_{1}\rightarrow P_{0}\rightarrow M\rightarrow 0$ be a projective resolution in $mod R^{op}$ and put
$X=Cok(P_{1^{*}}\rightarrow P_{2^{*}})$ . Then we have a projective resolution $0\rightarrow P_{0^{*}}\rightarrow P_{1^{*}}\rightarrow P_{2^{*}}\rightarrow X$

$\rightarrow 0$ in $mod R$ . Since proj $\dim X<\infty$ , we get proj $\dim X\leqq 1$ . Thus, since each
$P_{i}$ is reflexive, $M\cong Cok(P_{1}^{**}\rightarrow P_{0^{**}})\cong Ext_{R}^{2}(X, R)=0$ .

(2) $\Rightarrow(1)$ . Suppose to the contrary that there is a torsionless $X\in mod R$ with
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proj $\dim X=1$ . Let $0\rightarrow P_{1}\rightarrow P_{0}\rightarrow X\rightarrow 0$ be a projective resolution in $mod R$ and
put $M=Cok(P_{0^{*}}\rightarrow P_{1}^{*})$ . Note that $M\neq 0$ . By Auslander [1, Proposition 6.3]

$Ext_{R}^{1}(M, R)\cong Ker\epsilon_{X}=0$ . On the other hand, since each $P_{i}$ is reflexive, $ M^{*}\cong$

$Ker(P_{1}\rightarrow P_{0})=0$ , a contradiction.

PROPOSITION 5. Let $R$ be a left and right noetherian ring with inj $\dim R_{R}$

$\leqq 2$ . Suppose there is an integer $m\geqq 1$ such that $Ext_{R}^{m}(-, R)^{*}$ vanishes on $mod R$ .
Then the following statements are equivalent.

(1) inj $\dim_{R}R<\infty$ .
(2) There is an integer $n\geqq 0$ such that proj $\dim X\leqq n$ for every $X\in mod R$

with proj $\dim X<\infty$ .
(3) For an $M\in mod R^{op},$ $Ext_{R}^{i}(M, R)=0$ for all $i\geqq 0$ implies $M=0$ .

PROOF. (1) $\Rightarrow(2)$ . See Bass [2, Proposition 4.3].

(2) $\Rightarrow(3)$ . Let $M\in mod R^{op}$ with $Ext_{R}^{i}(M, R)=0$ for all $i\geqq 0$ . Then by the
same argument as in the proof of (1) $\Rightarrow(2)$ in Proposition 4 it follows that $M=0$ .

(3) $\Rightarrow(1)$ . Let $M\in mod R^{op}$ with $Ext_{R}^{i}(M, R)=0$ for all $i\geqq 1$ . We claim that
$M$ is reflexive. We show first that such an $M$ is torsionless. Let $\cdots\rightarrow P_{1}\rightarrow P_{0}$

$\rightarrow M\rightarrow 0$ be a projective resolution in $mod R^{op}$ and put $X=Cok(P_{m-1^{*}}\rightarrow P_{m}^{*})$ .
Then we have an exact sequence $P_{0}^{*}\rightarrow\cdots\rightarrow P_{m}^{*}\rightarrow X\rightarrow 0$ in $mod R$ with the $P_{i^{*}}$

projective. Since $M\cong Cok(P_{1}^{**}\rightarrow P_{0^{**}})$ , as in Step 2 of Section 1, $Ker\epsilon_{M}\cong$

$Ext_{R}^{m}(X, R)$ . Thus $(Ker\epsilon_{M})^{*}=0$ . Also, since ${\rm Im}\epsilon_{M}$ is torsionless, the exact
sequence $0\rightarrow Ker\epsilon_{M}\rightarrow M\rightarrow{\rm Im}\epsilon_{M}\rightarrow 0$ yields $Ext_{R}^{i}(Ker\epsilon_{M}, R)\cong Ext_{R}^{i+1}({\rm Im}\epsilon_{M}, R)=0$

for all $i\geqq 1$ . Thus $Ker\epsilon_{M}=0$ . Next, let $\alpha:P\rightarrow M^{*}$ be epic in $mod R$ with $P$

projective. Put $\beta=\alpha^{*}\circ\epsilon_{M}$ ; $M\rightarrow P^{*}$ and $ N=Cok\beta$ . Then $\beta$ is monic and $\beta^{*}$ is
epic. Thus the exact sequence $0\rightarrow M\rightarrow P^{*}\rightarrow N\rightarrow 0$ yields $Ext_{R}^{i}(N, R)=0$ for all
$i\geqq 1$ . Hence $Ker\epsilon_{N}=0$ . Since $P^{*}$ is reflexive, the exact sequence just above
yields also that Cok $\epsilon_{M}\cong Ker\epsilon_{N}$ . Therefore $M$ is reflexive and by Hoshino [6,

Proposition 2.2] the assertion follows.

According to Bass [2, Proposition 4.3], a result of Jensen [9, Proposition 6]

would imply the following

PROPOSITION 6. Let $R$ be a left noetherian ring with inj $\dim_{R}R=m<\infty$ .
Then proj $\dim X\leqq m$ for every left R-module $X$ with weak $\dim X<\infty$ .

PROOF. Let $X$ be a left R-module with weak $\dim X<\infty$ . According to
Bass [2, Proposition 4.3], we have only to prove that proj $\dim X<\infty$ . Let

$...\rightarrow F_{1}\rightarrow F_{0}\rightarrow X-0$
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be a free resolution of $X$ and put $X_{i}=Cok(F_{i+1}\rightarrow F_{i})$ for $i\geqq 1$ . Let $n=$

$\max$ { $m+1$ , weak $\dim X$ }. We claim that $X_{7l}$ is projective. It suffices to show
that $Ext_{R}^{n}(X, X_{n})=0$ . Note that $X_{n}$ is flat. Let $\cdots\rightarrow P_{1}\rightarrow P_{0}\rightarrow Y\rightarrow 0$ be an exact
sequence in $mod R$ with the $P_{i}$ projective. Since $Hom_{R}(P_{i}, R)\otimes_{R}X_{n}\rightarrow\sim$

$Hom_{R}(P_{i}, X_{n})$ for all $i\geqq 0$ , and since the functor $-\otimes_{R}X_{n}$ is exact, it follows
that $Ext_{R}^{i}(Y, R)\otimes_{R}X_{n}\rightarrow\sim Ext_{R}^{i}(Y, X_{n})$ for all $i\geqq 0$ . Thus inj $\dim X_{n}\leqq inj\dim_{R}R$

$=m<n$ and $Ext_{R}^{n}(X, X_{n})=0$ .
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