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Abstract. We prove the following theorem: Let $f:X\rightarrow R^{n}$ and
$g:Y\rightarrow R^{n}$ be any maps of compacta $X$ and $Y$ into the Euclidean n-
space $R^{n},$ $n\geqq 5$ . Suppose that $\dim(X\times Y)<n$ and that 2 $\dim X+$

$\dim Y<2n-1$ . Then for every $\epsilon>0$ there exist maps $f^{\prime}$ : $X\rightarrow R^{n}$

and $g^{\prime}$ : $1^{\nearrow}\rightarrow R^{n}$ such that $d(f, f^{\prime})<\epsilon,$ $ d(g, g^{\prime})<\epsilon$ and $f^{\prime}(X)()g^{\prime}(Y)$

$=\emptyset$ .
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Introduction

Dimension theory, a classical discipline of general topology, has wittnessed
in recent years an unexpected revival. It started with a paper of D. McCul-
lough and L. R. Rubin [37] in which a counterexample to the major result of
[36] was constructed: they proved that for every $k\geqq 2$ , there exists a k-
dimensional compactum $X$ such that every map of $X$ into $R^{2k}$ can be approxi-
mated by an embedding. (Their proof was based on the beautiful short paper
by J. Krasinkiewicz and K. Lorentz [31] who first spotted the gap in [36].)

Their examples satisfied the inequality $\dim(X\times X)<2\dim X$ and McCullough
and Rubin asked whether this property was perhaps characteristic.
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This initiated two parallel, but independent lines of investigation–one in
Moscow (by A. N. Drani\v{s}nikov, D. Repov\v{s} and E. V. $\check{S}$Uepin, joined at a later
stage by J. E. West in Ithaca, cf. $[10]-[18]$ ) and the other one in Warsaw (by

J. Krasinkiewicz, K. Lorentz, S. Spiez and H. Toru\’{n}czyk, joined at a later
stage by J. Segal in Seattle, cf. [30], [31], [48], $[51]-[54]$ ). It was soon
verified that the McCullough-Rubin question had an aflirmative answer: For
every $(k\geqq 2)$-dimensional compactum $X$ , every map of $X$ into $R^{2k}$ can be appro-
ximated by an embedding if and only if $\dim(X\times X)<2k$ . This was a corollary
of more general result, proved by A. N. Drani\v{s}nikov, D. Repov\v{s} and E. V.
$\check{S}\check{c}epin[16]$ and independently, using different methods, by J. Krasinkiewicz
$[30]$–in the only if direction and by S. Spiez $[51]-[53]$–in the if direction:

THEOREM 1.1 (Dranisnikov-Repovs-SUepin, Krasinkiewicz-Spiez). Given com-
pacta $X$ and $Y$ such that $\dim X+\dim Y=n$ , there exists a pair of maps $f:X\rightarrow R^{n}$

and $g:Y\rightarrow R^{n}$ with stable intersections if and only if $\dim(X\times Y)=n$ . $\blacksquare$

We say that the maps $f:X\rightarrow R^{n}$ and $g:Y\rightarrow R^{n}$ of compacta $X$ and $Y$ into
$R^{n}$ have unstable intersection if for every $\epsilon>0$ there exist maps $f^{\prime}$ : $X\rightarrow R^{n}$ and
$g^{\prime}$ : 1 $\rightarrow R^{n}$ such that $d(f, f^{\prime})<\epsilon,$ $ d(g, g^{\prime})<\epsilon$ , and $ f^{\prime}(X)\cap g^{\prime}(Y)=\emptyset$ .

Recall that for polyhedra $X$ and $Y$ , the necessary and sufficient condition
that every pair of maps $f:X\rightarrow R^{n}$ and $g:Y\rightarrow R^{n}$ intersect unstably is that
$\dim X+\dim Y<n$ . Since the logarithmic law for dimension holds in the class
of polyhedra, one can replace this condition by $\dim(X\times Y)<n$ . On the other
hand it is wellknown that for compacta the logarithmic law formula fails badly
(see $e$ . $g$ . [1], [2], [4], [9], [20], [40], [41], [43], [44]). However, if one
considers the inequality $\dim(X\times Y)<n$ instead, then as Theorem (1.1) demon-
strates, one gets a result analogous to the one for polyhedra.

The following question immediately arises: Does Theorem (1.1) remain
valid if one omits the hypothesis that $\dim X+\dim Y=n^{p}$ It was recently shown
by A. N. Drani\v{s}nikov and J. E. West [18] that it is indeed unnecessary for the
only if part of Theorem (1.1):

THEOREM 1.2 (Drani\v{s}nikov-West). For every pair $X$ and $Y$ of compacta such
that $\dim(X\times Y)\geqq n$ , there exists a pair of maps $f:X\rightarrow R^{n}$ and $g:Y\rightarrow R^{n}$ such
that $f$ and $g$ intersect stably. $\blacksquare$

It is interesting to note that in the first version of our earlier paper [16]

we had a slick proof of Theorem (1.2), based on a theorem of D. $0$ . Kiguradze
[29] which, in turn, depended on a classical theorem of G. $\check{C}ogo\check{s}vili[7]$ from
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$1930\prime s$ . However, in 1989 a serious gap was detected in [7] and hence the

status of Kiguradze’s paper [29] became unclear. As a consequence, in our
paper [16], the complementary dimensions case of Theorem (1.2), $i$ . $e$ . the if
part of Theorem (1.1), was then reproved, invoking a different, more recent

result of Kiguradze, a complete proof of which was at this time included in
our paper [16] (see our comments in [16] for more history and details). We
discuss Cogosvili’s theorem [7] and related problems in the Epilogue.

On the other hand, the general case of the if part of Theorem (1.1) re-
mains an open problem:

PROBLEM 1.1. Suppose that $X$ and $l^{7}$ are compacta such that $\dim(X\times Y)<n$ .
Does then every pair of maps $f;X\rightarrow R^{n}$ and $g;Y\rightarrow R^{n}$ intersect unstably.$\rho$

Note that by [2], the condition $\dim(X\times Y)<n$ implies, in general, only that
$\dim X\leqq n-2$ and $\dim Y\leqq n-2$ hence $\dim X+\dim Y\leqq 2n-4$ . On the other hand,

it follows by [9] that for every $r\leqq 2n-4$ , there exist compacta $X$ and $Y$ such
that $\dim(X\times Y)<n$ and $\dim X+\dim Y=r$ so all intermediate cases (between $n$

and $2n-4$ ) can actually occur. The simplest unsolved case of Problem (1.1) is
therefore the case of 3-dimensional compacta $X^{3}$ and $Y^{3}$ such that $\dim(X^{3}\times Y^{s})$

$=4$ : Do every two maps $f:X^{3}\rightarrow R^{5}$ and $g:Y^{3}\rightarrow R^{5}$ intersect unstably?

Problem (1.1) naturally splits into two problems:

PROBLEM 1.2. Suppose that $X$ and }’ are compacta such that $\dim(X\times Y)$

$<n$ , and choose any map $f:X\rightarrow R^{n}$ and any $\epsilon>0$ . Dose then there exist a map
$f^{\prime}$ : $X\rightarrow R^{n}$ such that $ d(f, f^{\prime})<\epsilon$ and $\dim(f^{\prime}(X)\times Y)<n^{\rho}$

Using the theory of regular branched maps, we have proved in our previous
paper that Problem (1.2) has an affirmative answer provided 2 $\dim X+\dim 1^{\gamma}<$

$2n-1$ (cf. Corollary (3.2) of $]16]$ ):

THEOREM 1.3 $(Drani\check{s}nikov- Repov\check{s}-\check{S}\check{c}epin)$ . Suppose that $X$ and $Y$ are com-
pacta such that $\dim(X\times Y)<n$ and 2 $\dim X+\dim Y<2n-1$ . Then the set

$N=$ { $f\in C(X,$ $R^{n})|\dim f(X)\leqq\dim X$ and $\dim(f(X)\times Y)<n$ }

contains a dense $G_{\delta}$ subset of $C(X, R^{n})$ (where $C(X, R^{n})$ is the space of all con-
tinuous maps of $X$ into $R^{n}$ , equipped by the sup-norm metric). $\blacksquare$

PROBLEM 1.3. Given a compactum $X\subset R^{n}$ such that for some compactum $Y$ ,

$\dim(X\times Y)<n$ , is then $C(Y, R^{n}-X)$ dense in $C(Y, R^{n})^{P}$
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A. N. Drani\v{s}nikov [11], [12] answered Problem (1.3) in the $af^{\wedge}Jlrmative$–for
the case when compactum $X\subset R^{n}$ is a tame (in the sense of M. A. \v{S}tan’ko [56])
and has codimension three.

The purpose of this paper is to prove that also Problem (1.3) (hence Prob-
lem (1.1)) have affirmative answers in the case when 2 $\dim X+\dim Y<2n-1$ .

THEOREM 1.4. Suppose that $X$ and $Y$ are compacta such that 2 $\dim X+$

$\dim 1^{r}<2n-1$ and $\dim(X\times\}^{r})<n$ , for some integer $n\geqq 5$ . Then every two maps
$f:X\rightarrow R^{n}$ and $g:1^{\nearrow}\rightarrow R^{n}$ intersect unstably.

Combining Theorems (1.2) and (1.4) one gets the following generalization
of Theorem (1.1):

COROLLARY 1.1. Suppose that $X$ and $Y$ are compacta such that 2 $\dim X+$

$\dim Y<2n-1$ , for some integer $n\geqq 5$ . 7 hen every two maps $f:X\rightarrow R^{n}$ and
$g;Y\rightarrow R^{n}$ intersect unstably if and only if $\dim(X\times Y)<n$ . $\blacksquare$

At the 1989 Eger Colloquium on Topology, E. V. \v{S}\v{c}epin presented a paper
by A. N. Drani\v{s}nikov [10], from which the special case of Theorem $(1.4)$–when
2 $\dim X+\dim Y<2n-2$ followed. Later that year, at the 1989 Habarovsk Soviet-
Japanese Dimension Theory Symposium, S. Spiez presented a joint paper with
J. Segal [48] which obtained the same result as [10] via a different route.

Following that E. V. Scepin presented in Habarovsk our present Theorem
(1.4) and pointed out how it can be derived from [10] (and [48]) by invoking
the so-called hart part of the Freudenthal Suspension theorem, the complete
proof of which is included in this paper-see Appendix. (The paper [48] was
also subsequently rewritten to include SUepin’s trick. Later, a technical im-
provement of [48] appeared in a joint work of S. Spiez and H. Toru\’{n}czyk [54].)

We wish to point out that while our approach (as well as of [10]) is more
$algebraic-it$ is based on the Spanier-Whitehead duality [50] and the theory of
regularly branched maps [16], the papers [48] and [54] are more geomelric–
their key ingredient is a classical result of C. Weber [58]. The only common
tool of all these papers is the Freudenthal Suspension theorem. Recently, the
first author [11] obtained yet another proof of Theorem (1.4), using localiza-
tions and spectral sequences but not invoking the Freudenthal Suspension
theorem3).

3) Added in revision. After this paper had been submitted we have announced in the Fall
of 1991 several new results on this subject [17]. $\ln$ particular, Theorem (1.4) remains
valid if the condition 2 $dimX+dimY<2n-1$ is replaced by a weaker hypotheses that
codim $X\cdot codimY\geqq n$ , codim $X\geqq 3$ , and codim $Y\geqq 3$ .

$\grave{\{}J$
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In conclusion we wish to point out that results described above might play
an important role in the attempts on the 4-dimensional Cell-like Mapping prob-
$lem$–the only remaining case of the celebrated problem from geometric topology:
It was shown by W. J. R. Mitchell, D. Repov\v{s} and E. V. SUepin [39] that prob-

lem reduces to a question concerning general position properties of maps of
certain 2-dimensional compacta, called Pontrjagin disks, into 4-manifolds. (For

more on this connection see the survey [38].)

The preliminary version of this paper was written during the second
author’s visit to the Steklov Mathematical Institute in Moscow in 1989 (and

announced in $[13]-[15]$ ), on the basis of the longterm agreement between the
Slovene Academy of Arts and Sciences and the Russian Academy of Sciences
(1986-1990). The final version was then prepared during the visit by all three
authors to the University of Tsukuba in 1990. We wish to thank Professor
Yukihiro Kodama for his kind hospitality. We would also like to acknowledge
several useful comments from the referee who, in particular, observed that an
argument was missing from the first version of the proof of Theorem (1.4).

2. Preliminaries

We shall work in the category of separable metrizable spaces and continuous
maps throughout this paper. A compactum is a compact metric space. For a
CW complex $M$ and an integer $i$, let $\Sigma^{i}M$ denote the i-th derived suspension,
$\Omega^{i}M$ the i-th iterated loop space, and

$\Omega^{\infty}\Sigma^{\infty}M=\vec{\lim_{i\in N}}\{\Omega^{i}\Sigma^{i}M\}$

(see $e$ . $g$ . $[59]$ ). Recall that $\Pi_{k}(\Omega^{\infty}\Sigma^{\infty}X)\cong\Pi_{k^{lable}}^{s}(X)$ . The following is well-
known for polyhedra [59] and is also true for compacta [10]:

THEOREM 2.1 (Spanier-Whitehead Duality). For every compactum $Z$ and
every compact subset $X\subset S^{n+1}$ , there exists a natural isomorphism:

$[Z, \Omega^{\infty}\Sigma^{\infty}(S^{n+1}-X)]\rightarrow^{\beta}[Z\wedge X, \Omega^{\sigma}\Sigma^{\sigma}S^{n}]$ .

Furthermore, if $\dim Z<\infty$ then $\Omega^{\infty}\Sigma^{\infty}$ can be replaced by $\Omega^{m}\Sigma^{m}$ for some large
enough integer $m$ . $\blacksquare$

PROPOSITION 2.1. Let $n\geqq 5$ and let $X\subset R^{n}$ and $Y$ be compacta such that
$\dim(X\times Y)<n$ . Then for every closed subset $Y_{0}\subset Y$ and every map $g;Y_{0}\rightarrow B^{n}$

-X there exists an extension $\overline{g}$ : $Y\rightarrow\Omega^{\infty}\Sigma\infty(B^{n}-X)$ .
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PROOF. For some large enough $m$ , consider the following commutative
diagram:

$\gamma_{1}$ $\gamma_{2}$

$[Y_{0}, \Omega^{m}\Sigma^{m}(IntB^{n}-X)]-[Y_{0}\wedge X^{\prime}, \Omega^{m}\Sigma^{m}S^{n-1}]-[\Sigma^{m}(Y_{0}\wedge X^{\prime}), S^{m+n-1}]$

$\uparrow\alpha_{1}$ $\uparrow\alpha_{2}$ $\uparrow\alpha_{3}$

$[Y, \Omega^{m}\Sigma^{m}(IntB^{n}-X)][Y\wedge X^{\prime}\underline{\beta_{1}}\Omega^{m}\Sigma^{m}S^{n-1}][\Sigma^{m}(Y\wedge X^{\prime})\underline{\beta_{2}}S^{m+n-1}]$

where $X^{\prime}=(X\cap B^{n})/(X\cap\partial B^{n})$ . Homomorphism $\alpha_{3}$ is onto due to the inequality
$\dim\Sigma^{m}(Y\wedge X^{J})<n+m$ . Theorem (2.1)implies that $\beta_{1}$ and $\gamma_{1}$ are isomorphisms.

Homomorphisms $\beta_{2}$ and $\gamma_{2}$ are bijective since

$[Y_{0}\wedge X^{\prime}, \Omega^{m}\Sigma^{m}S^{n-1}]=[Y_{0}\wedge X^{\prime}, \Omega^{m}S^{m+n-1}]=[\Sigma^{m}(Y_{0}\wedge X^{\prime}), S^{m+n-1}]$ .

Here $\alpha_{1}$ is an epimorphism. $\blacksquare$

Recall the Kuratowski notation $A\tau B[32]$ : it means that for every closed
subset $A_{0}\subset A$ and every map $\alpha$ : $A_{0}\rightarrow B$ there exists an extension $\overline{\alpha}:A\rightarrow B$ .

In Chapter 3 we shall also need the following result:

PROPOSITION 2.2. Let $f:X\rightarrow Y$ be a surjective map between ANR’s $X$ and
$Y$ such that $f_{*}:$ $\Pi_{i}(X)\rightarrow\Pi_{i}(1^{7})$ induces an isomorphism for every $i\leqq n$ . Let $Z$

be a compactum of dimension $\leqq n+1$ and suppose that $Z\tau Y$ . Then $Z\tau X$ .

PROOF. First, we shall consider the case when $Z$ is a polyhedron. So
suppose that we are given a map $\alpha:Z_{0}\rightarrow X$ where $Z_{0}\subset Z$ is a subpolyhedron
of $Z$ . Let $\beta=f\circ\alpha$ . Then by hypothesis, there exists an extension $\overline{\beta}$ : $Z\rightarrow Y$

such that $\overline{\beta}|Z_{0}=\beta$ .
We construct an extension $\overline{\alpha}:Z\rightarrow X$ of $\alpha$ , inductively over the skeleta of

$Z$ . Since by hypothesis, $f$ is an n-equivalence, there exists an extension
$\tilde{\alpha}$ : $ Z^{(n)}\subset$) $Z_{0}\rightarrow X$ and that the diagram below commutes [47],

$Z_{0}Z^{(n)}\cup Z_{0}\underline{incl}$

$\alpha\downarrow$ $\downarrow\overline{\beta}|(Z^{(n)}\cup Z_{0})$

$X\overline{f}Y$

so it remains to extend $\tilde{\alpha}$ over the $(n+1)$-simplices $\sigma\in Z^{(n+1)}$ . Since $[\overline{\beta}(\partial\sigma)]=$

$[0]\in\Pi_{n}(Y)$ and since, by hypothesis, $f_{\#}$ : $\Pi_{n}(X)\rightarrow\Pi_{n}(Y)$ is a monomorphism,
it follows from the diagram above that $\tilde{\alpha}$ extends over $\sigma$ . Doing this for all
$\sigma$ we get the desired map $\overline{\alpha}$ : $Z\rightarrow X$ such that $\overline{\alpha}|Z_{0}=\alpha$ .
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We now consider the general case: let $Z$ be a compactum of dimension
$\leqq n+1$ and let $Z_{0}\subset Z$ be an arbitrary closed subset of Z. Then

$(Z, Z_{0})=\leftarrow\lim_{k\in N}\{(Q_{k}, P_{k}), p_{k.k+1}\}$

where for every $k,$ $(Q_{k}, P_{k})$ is a polyhedral pair, $p_{k.k+1}$ : $(Q_{k+1}, P_{k+1})\rightarrow(P_{k}, Q_{k})$

are the bonding maps and $\dim Q_{k}\leqq n+l[35]$ .
Suppose we are given a map $\alpha;Z_{0}\rightarrow X$ . Since $X$ is an ANR there exists

$k_{0}\in N$ and a map $\gamma_{k}$ : $P_{k}\rightarrow X$ such that for every $k\geqq k_{0},$ $\alpha$ and $\gamma_{k^{o}}(p_{k}^{\infty}|Z_{0})$ are
homotopic.

Use now the special case above to get an extension $\overline{\gamma}_{k}$ : $Q_{k}\rightarrow X$ such that
$\overline{\gamma}_{k}|P_{k}=\gamma_{k}$ . Then $\tilde{\alpha}=\overline{\gamma}_{k}\circ p_{k}^{\infty}$ : $Z\rightarrow X$ has the property that

a $|Z_{0}=\overline{\gamma}_{k}\circ p_{k}^{\infty}|Z_{0}=(\overline{\gamma}_{k}|P_{k})\circ(p_{k}^{\infty}|Z_{0})=\gamma_{k}\circ(p_{k}^{\infty}|Z_{0})$

is homotopic to $\alpha$ . Therefore, by the Borsuk Tophat theorem [5], $\tilde{\alpha}$ is homo-
topic to a map $\overline{\alpha}$ ; $Z\rightarrow X$ such that $\overline{\alpha}|Z_{0}=\alpha$ . $\blacksquare$

The next auxiliary result for our proof of Theorem (1.4) can be obtained
by an adaptation of the higher dimensional version of the well-known Casson
finger moves [6], [22]: for details see the proof of a similar low dimensional
result–Theorem (5.1) of our previous paper [16] (compare also with the proof
of Proposition (1.6) in [54]):

PROPOSITION 2.3. Let $Z\subset M$ be a compactum in a $PL$ n-manifold with
boundary $\partial M$ and assume that $\dim Z\leqq n-2,$ $n\geqq 5$ . Then for every pair of com-
pact polyhedra $(P, Q)$ where $k=\dim P\in\{[n/2], \cdots, n-1\}$ and every $PL$ immer-
sion $f:(P, Q)\rightarrow(M-Z, \partial M-Z)$ there is a $PL$ homotopy $G:P\times I\rightarrow M-Z$ such
that:

(1) $G_{0}=f$ ;
(2) For every $t\in I,$ $G_{l}$ : $P\rightarrow M-Z$ is an immersion and $G_{l}|Q=f|Q$ ;
(3) $G_{1}$ : $P\rightarrow M-Z$ is a general position map; and
(4) The Whitehead product

$\Pi_{n-k-1}(M-G_{1}(P))\times\Pi_{n-k-1}(M-G_{1}(P))-\Pi_{2n-2k-8}(M-G_{1}(P))$

is trivial on all elements of $\Pi_{n-k-1}(M-G_{1}(P))$ . $\blacksquare$

3. Proof of Theorem (1.4)

First, let us observe that we can avoid describing some of the technicalities
of the proof since the interested reader can easily reconstruct them by consult-
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ing our earlier paper [16] where similar methods are presented in all details.
We have also omitted the proofs of some standard facts of cohomological dimen-
sion theory which can be found in the literature, $e$ . $g$ . in [9].

Let $n\geqq 5$ and pick any $\epsilon>0$ . Suppose we are given maps $f:X\rightarrow R^{n}$ and
$g:Y\rightarrow R^{n}$ , where $X$ and }’ are compacta, satisfying the hypotheses of Theorem
(1.4), $i$ . $e$ . $\dim(X\times Y)<n$ and 2 $\dim X+\dim Y<2n-1$ . Because of Theorem (1.1),

we may assume that $\dim X+\dim Y>n$ . Let $k=\dim X$ and $l=\dim Y$ .

Case 1. $k\geqq[n/2]$ . Since $\dim(X\times Y)<n$ it follows that $k\leqq n-2$ and $1\leqq$

$n-2$ . Observe that for our proof we may assume by Theorem (1.3) that $X$

already lies in $R^{n}$ and that $f:X\rightarrow R^{n}$ is an inclusion. Also, we may replace
$R^{n}$ by $B^{n}$ (cf. [16]). We thus have to solve the following problem: For some
closed subset $Y_{0}\subset Y$ , the image of the restriction of the map $g,$ $g|Y_{0}$ : $Y_{0}\rightarrow B^{n}$ ,

already lies in $B^{n}-X$ . In order to complete the proof of Theorem (1.4) we
must show that $g|1_{0}^{\nearrow}$ extends to a map $\tilde{g}:Y\rightarrow B^{n}-X$ .

By Proposition (2.1), the restriction $g|Y_{0}$ extends to a map

$\overline{g}$ : $Y-\Omega^{\infty}\Sigma^{\infty}(B^{n}-X)$ .

Since $B^{n}-X$ is clearly $(n-k-2)$-connected, it follows by the Freudenthal
Suspension theorem that the inclusion map

$\varphi:B^{n}-X-\Omega^{\infty\Sigma\infty}(B^{n}-X)$

induces an isomorphism

$\varphi_{\#}$
; $\Pi_{i}(B^{n}-X)-\Pi_{i}(\Omega^{\infty}\Sigma^{\infty}(B^{n}-X))$

for every $i<2(n-k-1)-1=2n-2k-3$ whereas

$\varphi_{\#}$ : $\Pi_{2n-2k-3}(B^{n}-X)\rightarrow\Pi_{2n-2k-3}(\Omega^{\infty}\Sigma^{\infty}(B^{n}-X))$

is an epimorphism, and by Theorem (5.1), its kernel is generated by Whitehead
products.

Glue to $B^{n}-X$ cells which kill the Whitehead products

$\Pi_{n-k-1}()(B^{n}-X)-\Pi_{2n-2k-S}(B^{n}-X)$

of elements of $\Pi_{n-k-1}(B^{n}-X)$ to get the space $(B^{n}-X)\cup(\bigcup_{i\geq 1}C_{i})$ .
Since $\Omega^{\infty}\Sigma^{\infty}(B^{n}-X)$ is an H-space, the Whitehead products

$\Pi_{n-k-1}(\Omega^{\infty}\Sigma^{\infty}(B^{n}-X))\times\Pi_{n-k-1}(\Omega^{\infty}\Sigma^{\infty}(B^{n}-X))-\Pi_{2n-2k-3}(\Omega^{\infty}\Sigma^{\sigma}(B^{n}-X))$

are all trivial, so we can extend the inclusion map

$\varphi:B^{n}-X-\Omega^{\infty}\Sigma^{\infty}(B^{n}-X)$
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to a map
$\overline{\varphi}$ : $(B^{n}-X)\cup(\bigcup_{i\geqq 1}C_{i})-\Omega^{\infty}\Sigma^{\infty}(B^{n}-X)$ .

Apply now Proposition (2.2) to conclude that the map

$g|Y_{0}$ : $Y_{0}\rightarrow B^{n}-X$

extends over $1^{\nearrow}$ to a map

$\overline{g}$ : $\}^{r}-(B^{n}-X)\cup(\bigcup_{i\geqq 1}C_{i})$ .

Due to the compactness, $\overline{g}(Y)$ intersects only finitely many of the cells $C_{i},$ $i$ . $e$ .
we get an extension of $g|Y_{0}$ to a map

$\overline{g}$ : $Y\rightarrow(B^{n}-X)\cup(\bigcup_{i\in\{1\ldots.,S\}}C_{\sigma(i)})$

for some integer $s\geqq 1$ .
Approximate $X$ by a compact polyhedron $K\subset R^{n}$ such that $\dim K\leqq k[2]$ .

(Note that now $\dim(K\times Y)$ need no longer be $<n$ . However, we do not need
this condition anymore.) By Proposition (2.3) we many assume that the White-

head products in $B^{n}-K$ are all trivial. (The finger moves are done on $K$ in
the complement of $\overline{g}(Y)\cup(\bigcup_{i\in\{1\ldots.,s\}}C_{\sigma(i)}).)$ Therefore we can push the cells
$C_{\sigma(i)}$ back into $B^{n}-K$ and hence also $\overline{g}(Y)\cap(\bigcup_{i\in t1,\cdots.S\}}C_{\sigma(i)})$ so the image of $Y$

under the map $\overline{g}$ falls into $B^{n}-K$ . Therefore we can finally get the desired
extension of $g|Y_{0}$ over all of $Y,\tilde{g}$ : $Y\rightarrow B^{n}-X$ . This completes the proof of

Theorem (1.4) for Case 1.

Case 2. $k<[n/2]$ . By Theorem (3.1) below, it suffices to verify the fol-
lowing:

ASSERTION: Every subset $S\subset R^{n}$ such that $\dim S<n-1$ and $S$ lies in a
hyperplane $H\subset R^{n}$ is antiwhitehead.

PROOF. Observe that $R^{n}-S$ is naturally homotopy equivalent to the suspen-

sion of $H-S$ . By the Freudenthal Suspension theorem, all elements of the first
nontrivial homotopy group of the suspension are suspensions. The assertion
now follows immediately, since the Whitehead product of suspensions is
trivial. $\blacksquare$

A compact subset $C\subset R^{n}$ is said to be antiwhitehead if all the Whitehead
products of the elements of the first nontrivial homotopy group of $R^{n}-C$ are
zero. Note that an antiwhitehead embedding of a compactum into $R^{n}$ cannot

be wild.
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THEOREM 3.1. Every mapping of a compactum $X$ into $R^{n}$ can be approxi-
mated arbitrarily closely by a mapping whose image is antiwhitehead, provided
that 2 $\dim X<n$ .

PROOF. Fix coordinates on $R^{n}$ , let $R^{n-1}$ be a fixed coordinate hyperplane,
let $p:R^{n}\rightarrow R^{n-1}$ be the canonical projection of $R^{n}$ onto $R^{n-1}$ , and let $ q:R^{n}\rightarrow$

$(R^{n-1})^{\perp}$ be the canonical projection of $R^{n}$ onto the orthogonal complement
$(R^{n- 1})^{\perp}$ of $R^{n- 1}$ . Pick any map $f:X\rightarrow R^{n}$ . Then $f$ can be represented as the
ordered pair $f=(f_{1}, f_{2})$ , where $f_{2}=p\circ f$ and $f_{1}=q\circ f$ .

Approximate $f_{2}$ by a regularly branched map $g_{2}$ . Therefore, $g_{2}$ has a 0-
dimensional set of points in the image whose multiplicity is equal to 2. Denote
the image of the map $g=(f_{1}, g_{2})$ by $Y$ . It clearly suffices to prove that $Y$ is
antiwhitehead. To this end, let’s extend $Y$ by adding to it the union of the
O-dimensional family of segments, orthogonal to the hyperplane (this is the
family of segments with ends projecting into the same point of the hyperplane).

Denote the extended $Y$ by $Z$ .
Since the dimension of $X$ is greater than one, we have that $\dim X=\dim Y$

$=\dim Z$ . Since the difference $\dim(Z-Y)=0$ we have an isomorphism of the
first nontrivial homotopy groups of the complements. Therefore it suffices to
verify that $Z$ is antiwhitehead.

The decomposition of $R^{n}$ , generated by the segments which were added to
$Y$ , is shrinkable (since it consists of points and parallel segments). In our case,
the shrinking pseudo-isotopy of $R^{n}$ can be chosen so that its composition with
the projection $p$ yields the identity. As a result, we get an image of $Z$ in $R^{n}$ ,

denoted by $W$ which projects onto the hyperplane, homeomorphically onto
$p(Z)=p(Y)=p(W)$ . Therefore there is an isotopy of $R^{n}$ which translates $W$

into $p(W)$ . Hence $R^{n}-W$ is homeomorphic to $R^{n}-p(W)$ . On the other hand,
$R^{n}-W$ is homeomorphic to $R^{n}-Z$ . $\blacksquare$

4. Epilogue: On $\check{C}ogo\check{s}vili\prime s$ Theorem

Let $X\subset R^{n}$ be a compactum and let $-1\leqq k\leqq n$ . It is easy to see that if
$\dim X\leqq n-k-l$ then every intersection with any k-plane $L\subset R^{n}$ is unstable.
Indeed, approximate $X$ by a polyhedron $P\subset R^{n}$ of dimension $\leqq n$ and apply

general position in $R^{n}$ to move $P$ off $L$ .
G. $\check{C}ogo\check{s}vili$ published a paper in the $1930\prime s[7]$ in which the main result

asserted that the converse is also true, $i$ . $e$ . that if $X\subset R^{n}$ unstably intersects
every k-plane $L\subset R^{n}$ then it follows that $\dim X\leqq n-k-1$ . This statement is
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clearly equivalent to the affirmative answer to the following problem:

PROBLEM 4.1. Does there exist for every $(n-k)$-dimensional compactum
$X\subset R^{n}$ , a k-dimensional plane $L\subset R^{n}$ which stably intersects $X^{p}$

Originally, [7] claimed that even for the case when $X\subset R^{n}$ is noncompact.
Surprisingly enough, it was not unti11950’s that a counterexample to the non-
compact version of [7] was found–by K. A. Sitnikov [49]: Let $W\subset R^{3}$ be the
union of a countable dense family of pairwise disjoint lines in $R^{3}$ and define
$X=R^{3}-W$ . By the Alexander-Sitnikov duality, $\dim X=2$ . It is clear that the
set $X$ unstably intersects every line in $R^{3}$ . Nevertheless, $\dim X\not\leqq 3-1-1=1$

which clearly contradicts [7].

Problem (4.1), $i$ . $e$ . the case of [7] when $X\subset R^{n}$ is compact was long be-
lieved to have been proven correctly in [7] and it appears in most monographs

on dimension theory as one of the dimension theory classics $(e. g. [2], [20])$ .
That the proof in [7] does not go through even in this case was discovered
only recently, by A. N. Drani\v{s}nikov and, independently, by R. Pol. In spite of
several attempts by various people on this problem, the status of Cogosvili’s
theorem remains open4).

Let’s analyze briefly how [7] proposed to solve Problem (4.1). Recall that
a classical result of P. S. Aleksandrov (see $e$ . $g$ . [2] or [20]) asserts that if
compactum $X\subset R^{n}$ has dimension $\dim X=n-k$ , then there exists a $(k-1)-$

dimensional cycle in $[\gamma]\in H_{k-1}(R^{n}-X;Z)$ , locally linking $X$ . The cycle 7 can
be realized in $R^{n}-X$ as a $(k-1)$-dimensional compact polyhedron $P_{0}\subset R^{n}-X$

and $P_{0}$ can be assumed to lie in a k-dimensional compact polyhedron $P\subset R^{n}$

which stably intersects $X$ . Therefore, Aleksandrov’s theorem implies:

PROPOSITION 4.1. Let $X\subset R^{n}$ be an $(n-k)$-dimensional compactum. Then $X$

stably intersects some k-dimensional compact polyhedron $P\subset R^{n}$ . $\blacksquare$

Now, every compact k-polyhedron $P\subset R^{n}$ lies in the union of finitely many
k-dimensional planes in $R^{n}$ , so only one more step was missing to complete the
solution of Problem (4.1), $i$ . $e$ . the proof in [7]: to conclude that the following
problem also has an affirmative answer:

PROBLEM 4.2. Suppose that an $(n-k)$-dimensional compactum $X\subset R^{n}$ stably

4) Added in revision. Y. Sternfeld [55] has recently obtained a partial solution–he has
constructed a 2-dimensional compactum in $R^{21}$ which unstably intersects every 19-
dimensional plane, parallel to some coordinate plane.
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intersects the union $\cup\{L_{i}|1\leqq i\leqq s\}$ of finitely many k-planes $L_{i}\subset R^{f}$ . Does it

follow that for some $\iota_{0}\in\{1, \cdots, s\},$ $X$ stably intersects $L_{i_{0}}^{\rho}$

It is asserted in [7] that this is obvious. It turns out it isn’t and therefore
Problem (4.2) remains an open question. The best approximation to the result
claimed in [7] so far is the recent theorem due to D. O. Kiguradze (stated be-
low) whose complete proof is included in our earlier paper $[16]$–he proved
$\check{C}ogo\check{s}vili\prime s$ theorem for the class of so-called irrational compacta.

For every point $x\in R^{r\iota}$ , let $r(x)$ be the number of rational coordinates of $x$ .
For every subset $X\subset R^{n}$ , define $r(X)=\max\{r(x)|x\in X\}$ . It is wellknown that
$r(X)\geqq\dim X$ . We call $X\subset R^{\prime l}$ irrational if $r(X)=\dim X$ . For example, on the
real line, the irrational compacta are precisely the irrational points.

A surjective map $f:X\rightarrow B^{n}$ of a compactum $X$ onto the n-cell $B^{r\iota}$ is said
to be essential if there is no map $g:X\rightarrow\partial B^{\iota}$ such that $g|f^{-1}(\partial B^{\prime\iota})=f|f^{-1}(\partial B^{n})$

[2].

THEOREM 4.1 (Kiguradze). Let $X\subset R^{\gamma t}$ be a k-dimensional irrational com-
pactum, $k\leqq n$ . $7hen$ there is a k-dimensional plane $L\subset R^{n}$ and a closed k-ball
$C\subset L$ such that the restriction $p|p^{-1}(C)()X:p^{-1}(C)(\gamma X\rightarrow C$ of the orthogonal
$pro]ectionp:R^{n}\rightarrow L$ is an essential map. $\blacksquare$

As it was mentioned in Chapter 1, the first version of our paper [16] had
a proof of Theorem (1.2), based on [29]–that was precisely Theorem (4.1)

without the irrationality condition. That sets forth the following natural ques-
tion:

PROBLEM 4.3. Can one prone theorem (4.1) without the irrationality condition?

If the answer is affirmative, then [16] offers a very simple geometric proof
of Theorem (1.2). (This would be somewhat surprising since the proof of
Drani\v{s}nikov and West [ $ 18\rfloor$ uses strong algebraic tools, $e$ . $g$ . the Spanier-White-
head Duality.) Also, an affirmative answer would clearly imply that $\check{C}ogo\check{s}vili\prime s$

theorem [7]–holds in the compact case. In particular, it would imply the
classical Nobeling theorem on projections of compacta on hyperplanes [42] (re-

proved in [34]).

In conclusion note that, by the Nobeling-Hurewicz theorem [2] every map
of a k-dimensional compactum $X$ into $R^{2k+1}$ , can be approximated arbitrarily

closely by a map whose image is an irrational k-dimensional compactum. Also,

by [57], every embedding of a compactum into $R^{n}$ can be approximated arbi-
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trarily closely by an irrational embedding. Moreover, irrational compacta are
tame (in the sense of \v{S}tan’ko [56]) and their embedding dimension, dem $X$, is
equal to their dimension $\dim X=r(X)$ , $i$ . $e$ . in terms of general position they

behave like $r(X)$-dimensional polyhedra (see [19]).

5. Appendix: The Hard Part of the Freudenthal Suspension Theorem

Let $X$ be a topological space and let $\Sigma X$ denote the suspension of $X$ . One
of the classical results of homotopy theory is the Freudenthal Suspensim theorem
which asserts that for every $n\geqq 1$ and for every $(n-1)$-connected CW complex
$X$ , the suspension homomorphism $E;\Pi_{r}(X)\rightarrow\Pi_{r+1}(\Sigma X)$ is an isomorphism for
every $r\in\{1, \cdots , 2n-2\}$ and an epimorphism for $r=2n-1$ .

What seems to not be so well-known is that this is only the so-called easy
part of the theorem. The hard part describes the kernel of the suspension
homomorphism $L^{\neg}$ in the top dimension:

THEOREM 5.1. For every $(n-1)$-connected $CW$ complex $X$ , the kernel of the
Freudenthal suspension homomorphism $E:\Pi_{2n-1}(X)\rightarrow\Pi_{2n}(\Sigma X)$ is generated by the
set $\{[\alpha, \beta]|\alpha, \beta\in\Pi_{n}(X)\}$ , where [–, -]: $\Pi_{7l}(X)\times\Pi_{n}(X)\rightarrow\Pi_{}.n-1(X)$ is the White-
head product.

We have made an extensive search of the existing literature (including [8],

[21], [24], [25], [26], [27], [46], [47], [59]) to find a proof of Theorem (5.1)

which we suspected to be true. Since it plays a pivotal role in our proof of
Theorem (1.3) (as well as in the ones in [48], [54]) and since we couldn’t
locate it anywhere, we have decided to include a short proof of it:

PROOF. Consider the James Exact Suspension sequence

... $-\Pi_{2n+1}(\Sigma X)\Pi_{2n}(JX\underline{H}X)\Pi_{2n-1}(X)\Pi_{2n}(\Sigma X)-\underline{p}\underline{E}\ldots$

In order to prove the assertion of the theorem, it clearly suffices, by exactness,

to study the image of the homomorphism $p:\Pi_{2n}(JX, X)\rightarrow\Pi_{2n-1}(X)$ .
Since $(JX, X)$ can be replaced by $(J_{2}X, X)$ we can reduce the problem to

the consideration of the boundary homomorphism $\partial:\Pi_{2n}(J_{2}X, X)\rightarrow\Pi_{2n-1}(X)$ .
Recall that $J_{2}X=X\times X/(e, x)\sim(x, e)$ , where $e\in X$ is a distinguished point in $X$ .

Next, since the map $J_{2}X\rightarrow J_{2}X/X$ is $(n-1)+(2n-1)+1=3n-1>2n$ -connected,

it follows by the Blakers-Massey theorem that $\Pi_{2n}(]_{2}X, X$) $\cong\Pi_{2n}(J_{2}X/X)$ .
Furthermore, $J_{2}X/X\cong X\wedge X$ and the group $\Pi_{2n}(X\wedge X)$ is evidently generated
by the elements of the type $\sigma\wedge\tau$ which make up the $2n$ -skeleton of $X\wedge X$ .
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Therefore the preimages of these elements under the isomorphism $\Pi_{2n}(J_{2}X, X)$

$\rightarrow\Pi_{2n}(X\wedge X)$ generate $\Pi_{2n}(J_{2}X, X)$ . On the other hand, these preimages are
clearly generated by the elements $\sigma\times\tau$ where $\sigma$ and $\tau$ are n-cells of $X$ .
Finally, the image of $\sigma\times\tau$ under the boundary homomorphism $\partial:\Pi_{2n}(J_{2}X, X)$

$\rightarrow\Pi_{2n-1}(X)$ is the Whitehead product $[\partial\sigma, \partial\tau]$ . Hence $KerE={\rm Im}\partial$ is indeed
generated by the set $\{[\alpha, \beta]|\alpha, \beta\in\Pi_{n}(X)\}$ . $\blacksquare$
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