TSUKUBA J. MATH.
Vol. 17 No. 2 (1993), 339—343

A CHARACTERIZATION OF PARACOMPACTNESS
OF LOCALLY LINCDLOF SPACES

Lecheng YANG

Abstract. A space X is said to have property @ if every infinite
open cover U of X has an open refinement <V such that every
point xX has a neighborhood W with |[{Vew: WNV+0}| <

{U|. It is proved that a locally Lindelof space is paracompact iff
it has property 3.

All spaces are assumed to be regular 7.

A well-known problem posed by Arhangel’skii and Tall is: Is every
locally compact normal metacompact space paracompact? The problem is af-
firmative if we assume V=L [10] or if the space is perfectly normal or
boundedly metacompact or locally connected [6].

In connection with this problem, in this paper we give a characterization
of paracompactness for locally Lindel6f spaces by using property #, and provide
another partial answer to the problem.

Property # was introduced originally by Zenor as a generalization of
parpcompactness: a space X is said to have property 4, if for every monotone
increasing open cover U= {U,: a<k} (that is, U,cUg if a<<fB) of X, there
exists a monotone increasing open cover V= {V,: ack} which is a shrinking
of U, i.e., V,cU, for ack.

It is proved in that a space X has property @ iff every open cover
of X of infinite cardinality £ has an open refinement <V such that every point
xeX has a neighborhood W with |{Vew: VAW=@}|<k; we say such a
refinement €V is locally . It is known from Rudin [9] that normal spaces
with property @ are not necessarily paracompact. However, Balogh and Rudin
recently proved that a monotonically normal space is paracompact iff it has
property B. Using the idea in Balogh [2] we now prove the following theorem.

THEOREM 1. A locally Lindeldf space is paracompact iff it has property B.

PrROOF. Let X be a locally Lindelof space with property 8. Suppose X
is not paracompact. Then there exists a minimal cardinal &£ such that we have
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some open cover U of X of cardinality £« which has no locally finite open re-
finement. We will show 9 has, however, a locally finite open refinement. Let
U={U,: a=k}. Since X is countably paracompact and locally Lindelof we
can assume that #>w and each U, is Lindeléf. There are two cases to consider.

Case 1. « is singular. Then cf(k)=7<#k. Let {x,: p=t} be an increasing
cofinal subset of £ so that {u‘UK#: ¢Et} is a monotone increasing open cover
of X, where U,={Up: f=a} for every ack. Since X has property B, there
is a monotone increasing open cover {V,: pet} of X such that V#CU“U,C# for
every pet. By the definition of &, there exists a locally finite open collection
G, such that G, refines U,, and V,=\UG, Let us consider the open caver
¢=U{G,: per} of X. Note that each member of ¢ has Lindelof closure, it
is easy to check that each member of ¢ meets at most r many other members
of ¢. Using usual chaining argument, we may find some partition {A4,: ac A}
of ¢ such that (JAIN(UA)=@ if a, a’€A with a#a’, and |A.| <7 for
every ac=A. By the definition of &, A, has, since \UJ, is clopen, a locally
finite open refinement 4 ,, so that \U{4,: a< A} is the desired refinement of .

Case 2. « is regular. Using property # find an open refinemnet ¢ of U
such that every point in X has a neighborhood V with

1{G: Geg, GNV+@) | <«k.

Clearly we may assume ¢=1{G.: ack} with G,cU, for every ac=k. Let us
first show that

S={ack: GG+ D}
is a non-stationary subset in x, where G¥=U{(Gg: B=a} for ack.
Suppose the contrary that S is stationary. Then for every a&S, pick a
point x,=GX\G¥ and let s(a)=sup{puck: x,=G,} which belongs to «, since &

is regular. Define a subset C of £ by
C={ack: BeSNa implies s(B)<a}.

Let us check that C is a c.u.b. set in x. Indeed, if a=C, then there is a
BeSNa with s(8)=a, so that (8, a] is a neighborhood of « which misses C.
To see C is unbounded, let a«=«k be given, since S is stationary, we may find
an a;=S such that a<a,. Proceeding by induction, find an «a,,, S so that

ans1>sup{s(p): pES, p<an}.

Then we obtain an increasing sequence {a,:n< N} such that a<sup{a,: neN}
& C. This concludes that C isa c.u.b. set in x. Let S,=S"C and for every
ac S, define m(a)=min{pcsk: x,=G,} so that a<m(a)<s(a). It follows that
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XaEGmg and xg#EGney Whenever a, &S, with e+ 3. This implies that the
set P={x,: a=S,} consists of distinct points of X, and {G.,w.,: a=S;} is an
open expansion of P, i.e., Gy P={x,} for every a=S,. Now for every
a<S,, since x,=U{Gs: BEa}, there isa Bl@)Ea such that GsmyNGmw *D.
By Pressing Down Lemma, there are a B=«x and a stationary set S,—S; such
that B(a)=pB for all a=S,, consequently GpN\Gnw#@ for all acS,. This
contradicts our assumption that Gy is Lindeldf.

Now take a c.u.b. set C, in k£ such that C,N\S=¢@ and thus G¥ is clopen
for every a=C,. Define H, for acC, by

H,=GH\\U{G%: peCinal

so that X=\U{H,: a=C,}. Furthermore for every a=C,, we have

(x) either H,=@® or H,=G¥\G%. for some pla)e CiNa. In fact, if
H,+# @ then there is an x&H,, and thus there is y€a such that xeG, and
x&GY for any p=CiNa. This shows (7, @) \C, =@, because if there is some
pe(r, a)NC,, then xeG,<G¥% which is impossible. Define p(a)=sup{p=<7:
p=Ci} which belongs to C,. Then for every p=C,Na, since (7, e)N\C,=@,
we must have p¢<7y. This implies pg<p(a) from which it follows that H,=
G¥\G% ), i.e., (x) holds. By the definition of &, we can find, for every a=C,,
a locally finite open cover of 4, of H, such that every member of 4, is
contained in some member of U, so that \U{H.: a=C,;} is, since X is now
the union of the disjoint clopen collection {H,: a=C,}, a locally finite open
refinement of . Thus the proof is complete.

In [9], by proving that the Navy’s space has property #, Rudin shows
that normality plus property 8 does not imply paracompactness. But the
Navy’s space is metacompact [7], in connection with Arhangel’skii and Tall’s

problem, it is natural to ask if the Navy’s space is locally compact. But our
even shows that

COROLLARY 1. The Navy’s space is not locally Ldelif.

Also from the problem of Arhangel’skii and Tall can be stated
as follows:

PROBLEM 1.
property B?

Does every locally compact normal metacompact space have

However note that normal metacompact spaces do not necessarily have
property @, see Example 4.9 (ii) in or for such a counterexample.
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With a modification of proof of we can prove Arhangel’skii’s
result mentioned above, even we have

THEOREM 2. Locally Lindelof perfectly normal metacompact spaces are

paracompact.

PROOF. Since normal metacompact spaces are shrinking (thus countably
paracompact), £ and a point-finite open cover ¢={G,: a=«} can be defined in
the same way as [Theorem 1. Clearly we need only consider the case of «
being regular, and it suffices to prove that

S={ack: UGp\\UGs+ D}
3<a B<a
is non-stationary.
Suppose indirectly that S is stationary. As in the proof of [Theorem I,

define m(a)ex for every a=S. Without loss of generality, we may assume
that there is a S« such that
Gm(a)/r\éﬁ‘_ﬁ

for all a=S.
For every ncw let

X,={x€X: ord(x, §)<n}.
Then X, is closed in X. Let
Sea={a€S: GnawNGsN\X# D}

so that S=\U,cu S» and thus there is a minimal new with |S,|=«*.

Since
Cﬁan:C—;ﬁmxnm(X\(éﬁan—1))U(éﬁan-1),
we can assume that
G NGsNXaNXNGCENX ) # D

for all a<S,.
Now every point in GgNX,N\(X\(GsNX,-1)) has a neighborhood which

meets G ma\GpNX, for at most finitely may a=S,. Since X is perfrect, the
set GaNX.NX\(GsNX,-1)) is Lindeldf, and hence

Gm(a)méﬂanf\(X\(éﬁan—l)):# @

for at most countably many a<S,, a contradiction proving S is non-stationary.

Thus the proof is complete.
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Note that normal submetacompact spaces are shrinking [11], but we do

not know whether in Theorem 2 metacompactness can be replaced by submeta-
compactness, that is

PLOBLEM 2. Are locally Lindeldf perfectly normal and submetacompact
spaces paracompact ?
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