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A CHARACTERIZATION OF PARACOMPACTNESS
OF LOCALLY LINCDLOF SPACES

Lecheng YANG

Abstract. A space $X$ is said to have property $\mathscr{D}$ if every infinite
open cover $qj$ of $X$ has an open refinement $\mathcal{V}$ such that every
point $x\in X$ has a neighborhood $W$ with $|\{V\in \mathcal{V}:W\cap V\neq\emptyset\}|<$

$|^{c}U|$ . It is proved that a locally Lindelof space is paracompact iff
it has property $\mathscr{Q}$ .

All spaces are assumed to be regular $T_{1}$ .
A well-known problem posed by Arhangel’skii and Tall is: Is every

locally compact normal metacompact space paracompact? The problem is af-
firmative if we assume $V=L[10]$ or if the space is perfectly normal [1] or
boundedly metacompact [5] or locally connected [6].

In connection with this problem, in this paper we give a characterization
of paracompactness for locally Lindelof spaces by using property $\mathscr{Q}$ , and provide

another partial answer to the problem.
Property $B$ was introduced originally by Zenor [12] as a generalization of

parpcompactness: a space $X$ is said to have property $B$ , if for every monotone
increasing open cover $cu=\{U_{\alpha} : \alpha\in\kappa\}$ (that is, $U_{\alpha}\subset U_{\beta}$ if $\alpha<\beta$ ) of $X$ , there
exists a monotone increasing open cover $\mathcal{V}=\{V_{\alpha} : \alpha\in\kappa\}$ which is a shrinking

of $cU,$ $i$ . $e.,$ $V_{\alpha}\subset U_{\alpha}$ for $\alpha\in\kappa$ .
It is proved in [11] that a space $X$ has property $\mathscr{Q}$ iff every open cover

of $X$ of infinite cardinality $\kappa$ has an open refinement $\mathcal{V}$ such that every point
$x\in X$ has a neighborhood $W$ with $|\{V\in \mathcal{V}:V\cap W\neq\emptyset\}|<\kappa$ ; we say such a
refinement $\mathcal{V}$ is locally $\kappa$ . It is known from Rudin [9] that normal spaces
with property S) are not necessarily paracompact. However, Balogh and Rudin
[3] recently proved that a monotonically normal space is paracompact iff it has
property $B$ . Using the idea in Balogh [2] we now prove the following theorem.

THEOREM 1. A locally Lindelof space is paracompact iff it has property $B$ .

PROOF. Let $X$ be a locally Lindelof space with property S. Suppose $X$

is not paracompact. Then there exists a minimal cardinal $\kappa$ such that we have
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some open cover $cU$ of $X$ of cardinality $\kappa$ which has no locally finite open re-
finement. We will show $cU$ has, however, a locally finite open refinement. Let
$cU=\{U_{\alpha} : \alpha\in\kappa\}$ . Since $X$ is countably paracompact and locally Lindelof we
can assume that $\kappa>\omega$ and each $U_{\alpha}$ is Lindelof. There are two cases to consider.

Case 1. $\kappa$ is singular. Then $cf(\kappa)=\tau<\kappa$ . Let $\{\kappa_{\mu} : \mu\in\tau\}$ be an increasing
cofinal subset of $\kappa$ so that $\{\cup^{c}U_{\kappa_{\mu}} : \mu\in\tau\}$ is a monotone increasing open cover
of $X$ , where $cU_{\alpha}=\{U_{\beta} : \beta\in\alpha\}$ for every $\alpha\in\kappa$ . Since $X$ has property S), there
is a monotone increasing open cover $\{V_{\mu} : \mu\in\tau\}$ of $X$ such that $\overline{V}_{\mu}\subset\cup qJ_{\kappa_{\mu}}$ for
every $\mu\in\tau$ . By the definition of $\kappa$ , there exists a locally finite open collection
$\mathcal{G}_{\mu}$ such that $\mathcal{G}_{\mu}$ refines $cU_{\kappa_{\mu}}$ and $\overline{V}_{\mu}\subset\cup \mathcal{G}_{\mu}$ . Let us consider the open caver
$\mathcal{G}=\cup\{\mathcal{G}_{\mu} ; \mu\in\tau\}$ of $X$ . Note that each member of $\mathcal{G}$ has Lindel\"of closure, it
is easy to check that each member of $\mathcal{G}$ meets at most $\tau$ many other members
of $\mathcal{G}$ . Using usual chaining argument, we may find some partition $\{_{\llcorner}A_{\alpha} : \alpha\in A\}$

of $\mathcal{G}$ such that $(\langle i_{c}A_{a})\cap(\cup A_{\alpha^{\prime}})=\emptyset$ if $\alpha,$
$\alpha^{\prime}\in A$ with $\alpha\neq\alpha^{\prime}$ , and $|_{\llcorner}A_{\alpha}|\leqq\tau$ for

every $\alpha\in A$ . By the definition of $\kappa,$
$\llcorner fl_{\alpha}$ has, since $\cup A_{\alpha}$ is clopen, a locally

finite open refinement $\mathcal{H}_{a}$ , so that $\cup\{\mathcal{H}_{a} : \alpha\in A\}$ is the desired refinement of $cU$ .
Case 2. $\kappa$ is regular. Using property $B$ find an open refinemnet ${}_{4}C$ of $cU$

such that every point in $X$ has a neighborhood $V$ with

$|\{G:G\in \mathcal{G}, G\cap V\neq\emptyset\}|<\kappa$ .

Clearly we may assume $\mathcal{G}=\{G_{\alpha} : \alpha\in\kappa\}$ with $G_{\alpha}\subset U_{\alpha}$ for every $\alpha\in\kappa$ . Let us
first show that

$S=\{\alpha\in\kappa;\overline{G_{a}^{*}}\backslash G_{a}^{*}\neq\emptyset\}$

is a non-stationary subset in $\kappa$ , where $G_{a}^{*}=\cup\{(G_{\beta} : \beta\in\alpha\}$ for $\alpha\in\kappa$ .
Suppose the contrary that $S$ is stationary. Then for every $\alpha\in S$ , pick a

point $x_{a}\in\overline{G_{\alpha}^{*}}\backslash G_{\alpha}^{*}$ and let $s(\alpha)=\sup\{\mu\in\kappa;x_{\alpha}\in G_{\mu}\}$ which belongs to $\kappa$ , since $\kappa$

is regular. Define a subset $C$ of $\kappa$ by

$C=$ { $\alpha\in\kappa;\beta\in S\cap\alpha$ implies $ s(\beta)<\alpha$}.

Let us check that $C$ is a $c$ . $u$ . $b$ . set in $\kappa$ . Indeed, if $\alpha\overline{\in}C$ , then there is a
$\beta\in S\cap\alpha$ with $ s(\beta)\geqq\alpha$ , so that $(\beta, \alpha$] is a neighborhood of $\alpha$ which misses $C$ .
To see $C$ is unbounded, let $\alpha\in\kappa$ be given, since $S$ is stationary, we may find
an $\alpha_{1}\in S$ such that $\alpha<\alpha_{1}$ . Proceeding by induction, find an $\alpha_{n+1}\in S$ so that

$\alpha_{n+1}>\sup\{s(\mu):\mu\in S, \mu\leqq\alpha_{n}\}$ .

Then we obtain an increasing sequence $\{\alpha_{n} : n\in N\}$ such that $\alpha<\sup\{\alpha_{n} ; n\in lV\}$

$\in C$ . This concludes that $C$ is a $c$ . $u$ . $b$ . set in $\kappa$ . Let $S_{1}=S\cap C$ and for every
$\alpha\in S_{1}$ define $m(\alpha)=\min\{\mu\in\kappa;x_{\alpha}\in G_{\mu}\}$ so that $\alpha\leqq m(\alpha)\leqq s(\alpha)$ . It follows that
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$x_{\alpha}\not\in G_{m(\beta)}$ and $x_{\beta}\not\in G_{m(\alpha)}$ whenever $\alpha,$ $\beta\in S_{1}$ with $\alpha^{\underline{A}}\beta$ . This implies that the
set $P=\{x_{\alpha} : \alpha\in S_{1}\}$ consists of distinct points of $X$ , and $\{G_{m(\alpha)} : \alpha\in S_{1}\}$ is an
open expansion of $P,$ $i.e.,$ $G_{m(\alpha)}\cap P=\{x_{\alpha}\}$ for every $\alpha\in S_{1}$ . Now for every
$\alpha\in S_{1}$ , since $x_{\alpha}\in\cup\{G_{\beta} : \beta\in\alpha\}$ , there is a $\beta(\alpha)\in\alpha$ such that $ G_{\beta(\alpha)}\cap G_{m(\alpha)}\neq\emptyset$ .
By Pressing Down Lemma, there are a $\beta\in\kappa$ and a stationary set $S_{2}\subset S_{1}$ such
that $\beta(\alpha)=\beta$ for all $\alpha\in S_{2}$ , consequently $ G_{\beta}\cap G_{m(\alpha)}\neq\emptyset$ for all $\alpha\in S_{2}$ . This
contradicts our assumption that $\overline{G}_{\beta}$ is Lindelof.

Now take a $c.u$ . $b$ . set $C_{1}$ in $\kappa$ such that $ C_{1}\gamma S=\emptyset$ and thus $G_{\alpha}^{*}$ is clopen

for every $\alpha\in C_{1}$ . Define $H_{\alpha}$ for $\alpha\in C_{1}$ by

$H_{\alpha}=G_{\alpha}^{*}\backslash \cup\{G_{\mu}^{*} : \mu\in C_{1}\cap\alpha\}$

so that $X=\cup\{H_{\alpha} : \alpha\in C_{1}\}$ . Furthermore for every $\alpha\in C_{1}$ , we have
$(*)$ either $ H_{\alpha}=\emptyset$ or $H_{\alpha}=G_{\alpha}^{*}\backslash G_{\mu^{(\alpha)}}^{*}$ for some $\mu(\alpha)\in C_{1}\cap\alpha$ . In fact, if

$ H_{\alpha}\neq\emptyset$ then there is an $x\in H_{\alpha}$ , and thus there is $\gamma\in\alpha$ such that $x\in G_{\gamma}$ and
$x\not\in G_{\mu}^{*}$ for any $\mu\in C_{1}\cap\alpha$ . This shows $(\gamma, \alpha)\cap C_{1}=\emptyset$ , because if there is some
$\mu\in(\gamma, \alpha)(1C_{1}$ , then $\chi\in G_{\gamma}\subset G_{\mu}^{*}$ which is impossible. Define $\mu(\alpha)=\sup\{\mu\leqq\gamma$ :
$\mu\in C_{1}\}$ which belongs to $C_{1}$ . Then for every $\mu\in C_{1}\cap\alpha$ , since $(\gamma, \alpha)\cap C_{1}=\emptyset$ ,

we must have $\mu\leqq\gamma$ . This implies $\mu\leqq\mu(\alpha)$ from which it follows that $H_{\alpha}=$

$G_{\alpha}^{*}\backslash G_{\mu(\alpha)}^{*},$
$i$ . $e.,$ $(*)$ holds. By the definition of $\kappa$ , we can find, for every $\alpha\in C_{1}$ ,

a locally finite open cover of $\mathcal{H}_{\alpha}$ of $H_{\alpha}$ such that every member of $\mathcal{H}_{\alpha}$ is
contained in some member of $cU$ , so that $\cup\{\mathcal{H}_{\alpha} : \alpha\in C_{1}\}$ is, since $X$ is now
the union of the disjoint clopen collection $\{H_{\alpha} : \alpha\in C_{1}\}$ , a locally finite open
refinement of $cU$ . Thus the proof is complete.

In [9], by proving that the Navy’s space has property $\mathscr{Q}$ Rudin shows
that normality plus property $\mathscr{D}$ does not imply paracompactness. But the
Navy’s space is metacompact [7], in connection with Arhangel’skii and Tall’s
problem, it is natural to ask if the Navy’s space is locally compact. But our
Theorem 1 even shows that

COROLLARY 1. The Navy’s space is not locally Ldelof.

Also from Theorem 1 the problem of Arhangel’skii and Tall can be stated
as follows:

PROBLEM 1. Does every locally compact normal metacompact space have
property $\mathscr{Q}$ ?

However note that normal metacompact spaces do not necessarily have
property $\mathscr{D}$ , see Example 4.9 (ii) in [4] or [8] for such a counterexample.
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With a modification of proof of Theorem 1 we can prove Arhangel’skii’s
result mentioned above, even we have

THEOREM 2. Locally Lindelof perfectly normal metacompact spaces are
paracompact.

PROOF. Since normal metacompact spaces are shrinking (thus countably

paracompact), $\kappa$ and a point-finite open cover $\mathcal{G}=\{G_{\alpha} : \alpha\in\kappa\}$ can be defined in
the same way as Theorem 1. Clearly we need only consider the case of $\kappa$

being regular, and it suffices to prove that

$S=\{\alpha\in\kappa;\overline{\bigcup_{\alpha\beta<}G_{\beta}}\backslash \bigcup_{\alpha\beta<}G_{\beta}\neq\emptyset\}$

is non-stationary.
Suppose indirectly that $S$ is stationary. As in the proof of Theorem 1,

define $ m(\alpha)\in\kappa$ for every $\alpha\in S$ . Without loss of generality, we may assume
that there is a $\beta\in\kappa$ such that

$ G_{m(\alpha)}(\gamma\overline{G}_{\beta}\neq\emptyset$

for all $\alpha\in S$ .
For every $ n\in\omega$ let

$X_{n}=\{x\in X:ord(x, \mathcal{G})\leqq n\}$ .

Then $X_{n}$ is closed in $X$ . Let

$S_{n}=\{\alpha\in S:G_{m(\alpha)}\cap\overline{G}_{\beta}\cap X_{n}\neq\emptyset\}$

so that $S=\bigcup_{n\in\omega}S_{n}$ and thus there is a minimal $ n\in\omega$ with $|S_{n}|=\kappa$ .
Since

$\overline{G}_{\beta}\cap X_{n}=\overline{G}_{\beta}\cap X_{n}\cap(X\backslash (\overline{G}_{\beta}\cap X_{n- 1}))\cup(\overline{G}_{\beta}\cap X_{n- 1})$ ,

we can assume that

$ G_{m(\alpha)}\cap\overline{G}_{\beta}\cap X_{n}\cap(X\backslash (\overline{G}_{\beta}\cap X_{n-1}))\neq\emptyset$

for all $\alpha\in S_{n}$ .
Now every point in $\overline{G}_{\beta}\cap X_{n}\cap(X\backslash (\overline{G}_{\beta}\cap X_{n-\iota}))$ has a neighborhood which

meets $\overline{G}_{m(\alpha)}\cap\overline{G}_{\beta}\cap X_{n}$ for at most finitely may $\alpha\in S_{n}$ . Since $X$ is perfrect, the
set $\overline{G}_{\beta}\cap X_{n}\cap(X\backslash (\overline{G}_{\beta}\cap X_{n-1}))$ is Lindel\"of, and hence

$ G_{m(\alpha)}\cap\overline{G}_{\beta}\cap X_{n}\cap(X\backslash (\overline{G}_{\beta}\cap X_{n-1}))\neq\emptyset$

for at most countably many $\alpha\in S_{n}$ , a contradiction proving $S$ is non-stationary.
Thus the proof is complete.
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Note that normal submetacompact spaces are shrinking [11], but we do

not know whether in Theorem 2 metacompactness can be replaced by submeta-
compactness, that is

PLOBLEM 2. Are locally Lindelof perfectly normal and submetacompact
spaces paracompact.$P$
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