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ON SOME CLASS OF INITIAL BOUNDARY VALUE
PROBLEMS FOR SECOND ORDER
QUASILINEAR HYPERBOLIC SYSTEMS

By

Andrzej CHRZESZCZYK

Summary We consider some class of initial-boundary value problems
for second order, quasilinear, hyperbolic systems containing the
Neumann and Dirichlet problems. Using Shibata’s ideas we prove
the existence of an unique local, smooth solution. In the separate
paper we show that the presented results can be applied to
elasticity and generalized thermoelasticity.

Introduction.

In recent years we can observe an interesting progress in the theory of the
existence of local solutions to the initial-boundary value problems for second
order, quasilinear, hyperbolic systems. The Cauchy-Dirichlet problem was in-
vestigated in the papers [3], [6], and the Cauchy-Neumann problem was
solved in [16], [20], [21]. In the paper an abstract, semigroup approach
was presented which allows for solving the both types of mentioned problems.
Although the semigroup approach is very elegant, it seems that from the point
of view of applications the concrete and elementary energy methods used in
[20] are more adequate. Furthermore, using the energy methods one can con-
sider the systems with coefficients depending explicitely on ¢ and on the deriva-
tives of the unknown function with respect to ¢ (cf. (1.1), below). In the
present paper we demonstrate an unified approach to the mixed problems with
Neumann and Dirichlet boundary conditions. We assume that some components
of the unknown vector-function satisfy the Neumann boundary conditions, while
the remaining ones the Dirichlet conditions. Since we do not exclude the situa-
tion in which all components satisfy the same type of boundary conditions we
obtain generalization of the results presented in [3], [6] and [20]. In a con-
sequence our theory can be applied to such problems of elastodynamics as the
traction or presure problem as well as to the problem of place. On the other
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hand, our results allow for some new applications. There are, namely physi-
cally important theories for which the Neumann end Dirichlet boundary condi-
tions are considered at the same time. For example, in generalized thermoelas-
ticity the components of the displacement vector can satisfy the Neumann con-
ditions and the temperature difference the Dirichlet one (or reverse). Since the
present paper is relatively long we have decided to present the mentioned ap-

plications in a separate article (cf. also [7], [8], [15D.

1. Formulation of the problem.

In the present paper we consider the initial-boundary value problem

(I.D) 1,‘?:(]“”(2‘, o, D'u@)00,ut)+an(t, -, D'u(t)=fot)
in (0, T)X®,

(1.2) éniai(l‘, o, D'u@®)+ar(t, -, D'u@)=fr), up(t)=0
on (0, X[,
(1.3) u(0)=u,, 0,u(0)=u, in Q,

where 2 is a domain in R” with a compact and infinitely smooth boundary I,
(n., ns, -+, n,) denotes the unit outer normal to /" (for simplicity we assume
that n,eC3(R™), i=1, ---, n), 0,=0,, 0;, i=1, ---, n denote the differentiations
with respect to ¢ and x, respectively, u=*'(u', ---u™) is the vector-valued unk-
nown function on (0, T)X £, (!(-) denotes the operation of transposition). The
real matrices a;,=(a®?), I, J=0, ---, n, a, b=1, -, m and the real vectors
ap="%4as, -, a}), a;="%at, -, a™, i=1,--, n, ar="4ap, -, af) are given
functions of the variables t<=[0, T], x=(x,, -+, x,)E£ and

(1.4) Ut)y=D'u()=(0.u(®), V-u(®), u(t)).

The real vectors fo='(fb, -+, f&), fr="f}, -+, fF) are given functions defined
on [0, TI1x®Q and u,=%u}, -, uf*), k=0, 1 are defined on 2.

REMARK 1.1. In (1.1)-(1.4) and in the sequel, the dependence of vector or
matrix functions on x=(x,, -, x,)= 2 is allowed but usunally omited for
brevity.

To describe the precise meaning of the boundary conditions let us
assume that two subsets Mp and My of the set M= {1, ---, m} are given, such
that

(15) MDmMNZQ and MDUA/IN:M
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and for arbitrary vector-valued function ¢=*"(¢', ---, ¢™) let us define the func-
tion ¢p:
16) . ¢a, if GEMD
(1. =Ydp, -+, ¢F), where ¢F=
Po=@b 0 98 P51 04t aeMy.

We shall assume that
(a.0) at=a}=f%=0 if acsMp, and i=l, -, n.

Thus the second part of the boundary condition [(1.2) indicates that some com-
ponents of the unknown function satisfy the homogeneous Dirichlet boundary
conditions while the first part of is simply the Neumann boundary condi-
tion (roughly speaking) for remaining components. Let us note that we do not
exclude the situation Mp=@ or My=@. Thus the usual Neumann or Dirichlet
boundary conditions are allowed. In this sense our considerations generalize
the results proved in [3], [6], [11], [16], [20], [21]. Note also that the in-
homogeneous Dirichlet boundary conditions can be reduced to the homogeneous
ones by replacing the unknown function by the difference between it and the
function having appropriate traces on the boundary (cf. for example [5])).

Let us list the basic assumptions of the present paper. Let u§, »$% and
u%s,, i=1, .-+, n, a=1, ---, m denote the independent variables corresponding to
d0.u®, d;u* and u® respectively. Let U, and T, be given positive constants. Put

1.7 DU )={UcsR™»™m . |[U|<U,}, U=u$, u%, ul,,).
First of all we shall assume that the coefficients of the system (1.1), [(1.2) are
smooth. To be more precise, we assume that

aIJ(t) X, U), ai(ty X, U); aV(t’ X, U)EBOQ(I:——TO, TO]XQXD(UO)):

(a.1)
I, j=0,1, .-, n, i=1,--,n, Vei{, '},

where B> denotes the space of vector functions with continuous and bounded
derivatives of arbitrary order. In the case of unbounded domain £ we assume
additionally

(@.l),  ait, x, 0)=ayt, x, 0)=0 for (¢, x)&[—T,, TolX®R, i=1, ---, n,

Vel{Q, '},
Now, let us introduce the mXm matrices
bV]:(b](}?), where b%’:%%:;, ], _]':Oy Tty n+1: Z:‘l’ e, N,
(1.8) !
0a?

biJ:(bia})} Where b‘,,a}:—"—-—b—*, a, b:]_, e, m.
ou’
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As our second assumption we take the following one
tarst, x, Uy=ay ¢, x,U), I, J=0, -, n,
—b#(t, x, U)=a¥t, x,U) if acMy,
(a.2) b=1, -, m, i, j=1, -, n,
tort, x, U)+br¢, x, U)=0, i=1, -, n,
for arbitrary (¢, x, U)e[—T, To]X2XDWU,).
Next we assume that there exist positive constants d,, ;, d,, such that

aot, x, U)=8,1 for (¢, x,U)s[—T, TolX2XDWU,),

— 33 (@it -, Uy, 0+ 33 <brit, - U, vy
(a.3) =1 =)

=0.llv|i—0:llvl§  for arbitrary t<[—T,, ToJ,
veHi) and UsH='Q, DU,)).

Here and hereafter H*(G), s R denotes the Sobolev space of scalar or vector
functions on G with the norm |-|s¢. In the case G=2 we write || |l;,¢=]"s-
Similary ||-|s, 7=¢-); denotes the norm of the Sobolev space H*(/') on the
boundary I" of . The brackets (-, -) and (-, -> denote the inner products
of L¥2)=H°LQ) and L*[")=HI") respectively. The symbol HiG) denotes
the closure of the set C%(G) of infinitely smooth functions with compact sup-
port contained in G, with respect to the norm ||-|;.¢. In (a.3)and in the sequel
we use also the following spaces

(1.9) HAQ)={us H*R): ups HYQ)} if s=1, (cf. (L), HYQ)=L¥Q),
(1.10) H=YQ2, DU = {Us LR, R**»™): |U(x)|<U, for x=Q}, cf.
Our fourth assumption is of the form

(a.4) éni(x)bm(t, x, U)=0 for (t, x, U)e[—To TolX2XDWU,)

and the final one is the following

S{% iZ:lni(x)(aoi+a,-o)(t, x, U)+bot, x, U)}E'&%O
(a.5) for arbitrary (¢, x, U)e[—T,, T\IXI'XDU, and
g=4§", .-, &™) R™ such that £&*=0 if e=Mp.
In (a.5) we have posed S{A}=1/2(A+*A),
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M

(1.11) bo= 23 nbio+br0, (ct. (1.8))

t=1

and the dot denotes the usual inner product in R™ i.e.
(1.12)  &-p=&'np'+ - +&mp™  for &=Y§, -, &™), p="(n', -, ™)

To formulate our main result, let us introduce the following notations. For
an interval J of R and Hilbert space X we denote by C*(J, X) and Lip(/J, X)
the spaces of all X-valued functions of class C* or Lipschitz-continuous on J,
respectively. If L is non-negative integer and M a real number we put

(1.13) XM, G)= IéOCN(], HEHM=N(G)).

Using these notations we can state

THEOREM 1.1. Let Q be an open domain in R", n=2, with C* and compact
boundary I', T, a given postive number and K an integer =[n/2]+3. Assume
that the conditions (a.0)-(a.5) are valid and the data u,, u,, fo, fr satisfy the
following hypotheses

u s HE@), u,esHE (), focs XE->°([0, To], ),

(1.14) fre X 2V¥[0, T, I'), 0 *fasLip([0, To1, LX),
of —*freLip([0, T\, H'*(I")),
(1.15) the compatibility condition of order K—2 is satisfied
(cf. sect. 3 below)

(1.16) (ui(-), Diug(-NEeH2, DU,  (Diu=.u, u)).
Let B be a positive constant such that

luoll g +llusllx-s+1folk-20.t0,73F | frlK-2.112,00,741

+§—“:estso_sTuyllazK"fg(t)H o+‘eES[SO,STl3§)<<atK—lfl‘(t»)l/zéB

(1.17)

where |*lx-2.0r07y1 @Nd || K-21/2.00,7,1 QY€ NO¥mMs of X¥-*%[0, T,], 2) and

XE-2Ux[0, Ty], I') respectively which will be defined in formulas
below. Then, there exist T<[0, T°] and A>0 depending only on K and B such
that the prablem (1.1)-(1.3) admits a unique soluiion

(1.18) ue XE ([0, T], 2), (cf. [2.5) below)
satisfying the conditions

(1.19) lulg, oco.ri=4,



448 Andrzej CHRZESZCZYK
(1.20) Diut)ye H>\(2, DU,)  for t=[0, T].

REMARK 1.2. Since we have assumed that K=[n/2]+3, by Sobolev im-
bedding theorem we have u(t)e C%[0, T]1X 2), thus the theorem 1.1 gives the
existence of classical solutions to the problem (1.1)-(1.3).

The present paper is organized as follows. In Section 2 we introduce basic
notations. In Section 3 we formulate the compatibility condition for (1.1)-(1.3).
In Section 4 we define the iteration procedure leading to the solution of (1.1)-
(1.3). In Sections 5 and 6 we present some results from the theory of linear
elliptic and hyperbolic problems. These results are used in Section 7 where
the convergence of our iteration scheme is proved. In the Appendix we su-
marize some facts concerning the estimates of nonlinear terms.

2. Notations.

For v=%uv,, ---, v.) where v,, ---, v, are real functions and for a=(a,, -,
a,) where a,, -+, @, are nonegative integers we put v*=v{t---vf*, |a|=a;+ -
+a,. We use the following notations concerning differentiations

az:(aly Tty an): ag:ag{aggy a{agvzt(a{agvl; R a{agvk),
DED¥y=(0i02v: j+|a|<L+M, j<L), DPv=D*Djv, D¥v=D°D¥v.

Put
|v]w z=sup| Div(x)],
(2.1) el _
||, 2. r=sup{| D*v(¢, x)| : (¢, )E[—T, TI1X 2}
For time interval J and Hilbert space X, let L*(J, X) denote the set of all
X-valued, measurable and bounded (everywhere!) functions defined on J. For
s€R put Y*¥J, G)=L=J, H¥G)) and for an integer L>=1 put Y%*(J, G)=
{fuye Xr-t(J, G): ofut)ye L=(J, HE+*"¥(G)NLip(J, HE+*-Y(G)) for 0= M <
L—1}. Note that YI:cCYEi-M.s+M and XL-°C XL+ for 0<M<L. The
space Y% J, G) is endowed with the norm defined as follows

|vlo,s,J_G:stu‘p,)IIv(t)Hs,a and if L is an integer=1
(=)

(2.2) 1@ 0)(E)— (PO VYE )| v s -1

(vlLs.s.c=vloLss.s,6+ 25 sup 7
Aot tes [t—1|

If v(t)e Xt *(J, G), then
L
(2.3) vl s.0.6= 2 supll0¥v()lr+s-u.c -
M=0 teJ

Hence we also use |-|; s s ¢ as the norm of XZ*(J, G). In the case G=£ we
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put

(2.4) \Vieso=|vlLs .0 and <wppss=|vless.r-

For Z=X or Y we define the subspace Z5°(/J, 2):

(2.5) ZE(], D={umsZ(J, D: up()= HYD)} (cf. (1.6),
endowed with the norm |-|z s .

REMARK 2.1. If the vector function is replaced by the scalar or matrix
one we use analogous notations.

REMARK 2.2. In the paper we shall use the same letter C to denote dif-
ferent constants depending on the same set of arguments. C(:--) denotes a
constant depending essentially on the quantities appearing in the parentheses.
By using the subscripts 1, 2, --- we distinguish the important constants.

For a sufficiently smooth function F(¢, x, v) we put

dﬁlc-i-’f m[(a’fagﬁ")(t, x, v—}-zé 0.w, ”

(2.6) for 60=(0., -, 0»),

(a]gagth)(t: X, v)(wb T wh):

f=0

(F)\(t, x, N=F(, x, v)—F(, x, O)——:S:(dF)(t, x, Ovvdf

Observe that (F),(¢, x, 00=0and F({, x, v)=F(, x, 0)+(F)(t, x, v). The remain-
ing part of this Section is devoted to some estimates of bilinear forms connected
with first order linear differential operators on the boundary /. To be more
precise let us assume that R x) is a mXm matrix of functions in B*£2) such
that

2.7 éni(x)R"(x)ZO for xel.

We shall describe some bilinear forms S,(R)[v, w] on {H}2)}? and S,(R)[v, w]
on H}(82)x L¥Q) such that

28) (& Row, w>=s,(R)[v, wl+Su(R)[v, w] for ve HYQ), we HXQ),

where R=(R!, ---, R"). The bilinear forms S.(R)[-, -] k=1, 2 will be useful
in the investigation of linear problems connected with our iteration procedure,
cf. Sections 5, 6 (for example (5.5) or (6.6), (6.8)). To define these forms 1et
us note that since /' is a compact and C~hypersurface of R* we may select a
finite number of open sets G, in R", positive numbers ¢, and C*= diffeomor-
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phisms ¥, from G| onte G, (=1, ---, p, such that G;={y=(y,, -+, yn)ER":
[y 1=1(yy, 5 Yu-D<orand |y, <ai}, QNG =¥.({y=GCGi: y,>0})and I'NG,
=¥,({yeG},: v,=0}). Let @®,=(®,,, -, D,,) be the inverse maps of ¥,. If
we put Y{i(y)=(09,,;/0x)¥ () and [, (y)=|Y }(y’, 0), -, Y a(¥’, 0))| we have
n(x)=—Yx’, 0)/Ju(y") and dI'.,=],(y)dy’ for x=¥y’, 0)=G.NI" where
dIl’, is the surface element of /'. Using the assumption (2.7) we see that

(2.9) DRy, O iy, 0=0  for (¥, 0)=Gi.

Let ¢,=C%(G,), =1, ---, p be the partition of unity on /' and put ¢.(y)=
6.(T(y)=CG. By the change of variables x=¥,(y) and we obtain

<§nl Rv, w>= i: égamrgbz(x)l?‘(t, x)0z v x)w(x)dl’;

=2 28 00, ORE Wiy, 00, (5, 0X@Duefdx )y, 0)
(2.10) _—
Xw'(y', 0 (3)dy'= 5 S| gy’ OSUR, 3/ (y', 0)
Xw'(y’, 0dy’, where 8;=0/0y;, v'(»)=v(¥(¥), w (y)=w¥(y)
and SR, y)= 3 RI@ (3", OV 4y’ OJi(3)-
If we put
SR, wl= 3T | SUnSUR, ¥/ ()-05/(3)
(2.11) 51 d=1 )Ry
. —SUR, ¥ (3)- 0w (hdy,
P n-1
o1y SR WI=ZF [ B NOSUR, Y (0 ()

— (0 (YNSY(R, )0 (y)-w'(y)}dy
where R2={y=(y,, -+, y2.)ER": y,>0}, noting the formula

n-=1

(E R0, w)=2"S —{ 0 0u»SUR, y)0'(3)-w' () dy

we obtain (2.8) integrating by parts. Furthermore using Schwarz’s inequality
we can prove that for v, we HXQ)

(2.13) SR, W)l SC{ B IR o} 0l 0],
(2.14) |SUBRYv, Wl ZC{ 2 IR vl 010,

with some constants C independent of R*, v and w.
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3. Compatibility conditions.
Let us introduce the following notations
0(ars(t, DUN=@¥ art, Du)+ 3 S alfansnlt, D)
3.1 X(D20,u)* 1. -(D1oru)*R(@%u)Pt @3+ u)fh
afy(t, u, u, -, 0¥ +'u) for I, J=0,--,n, M=0,1, -

I

0¥(ay(t, D)= ay)t, D'u)+ 3 Sakhnpnt, D'u)
(3.2) X(D10,u)*t - (D1opu)*h(@u)Bt (@ +1u)B R

=afl(t, u, 0u, -, 0¥+ 'u) for Ve{@,1I,:¢, ---, n}, M=0,1, -,
where a}%ngr, a%tngn and in a consequence a;, af are uniquely determined
functions of their arguments, a*=(a%, ---, a}), B*=(B"%, -+, B}) are sets of

multiindices and the summation 3* is taken over all (a®, ") such that

Ze(la |+ BE)s=h.
Now we can define the vector functions uy.,, 0 M < K—2 by the recursive
formula (u,, u, are the initial values from [1.3))
aso(0, u,, ul)uM+2:(ag{f)(0)
S M
(3.3) -=(,

—ag(oy Ugy, "+, uM+1)

)a’;J(O, Ugy Uny =y Up41)080% Upria—p-s1-s7

where X}’ denotes the summation over all indices k=0, ---, M, I, J=0, ---, n
such that (%, I, J)+#(0,0, 0) and where s/=0 if =0 and s/=1 if I+0. Let
us note that due to (a.3) the matrix a0, u,, u,) is invertible and the equality
allows for determining u .. if we know u,, uy, =+, Usyir.

Using Theorems Ap. 1, Ap. 3 from the appendix we can prove

LEMMA 3.1. If u,, u,, fo are the functions and B, K the constants from
Theorem 1.1, then '

(3-4) uySHEM(Q) and |uylx-w<C(K, B)  for 2<M<K.
We shall say that wu,, u,, fo, fr satisfy the compatibility condition of order K—2 if
12"@61{4(0, uO’ Tty uM-l-l)_l_a]A!(O, uo, Y uM+1):a€lf]"(O)

for 0EM=<K—2 and wuyp=0 for 0OSM<K—-1on I.

3.5

Recall that for arbitrary ¢, ¢p is defined in [1.6).
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4. Iteration procedure.

Since the boundary condition (1.2) is fully nonlinear, the usual (Picard’s)
iteration technique is not applicable to the problem (1.1)-(1.3). It leads namely
to the so called derivative loss. To omit this dificulty we use Shibata’s idea
presented in [16], [20], [21], which roughly speaking consist in reduction of
the problem (1.1)-(1.3) to a “hyperbolic-elliptic” coupled system for unknowns
u and d,u. To describe precisely this iteration scheme let us differentiate eqs
(1.1)-(1.3) once in t and put d,u=v, U{t)=((t), Diu(t)). Using the notations
introduced in (1.8), [(1.11), (1.16) and [3.3) with M=0 we obtain

33 ansdt, U dst)+aolt, U)=d.fol)  in (0, TIXR,

I 0

wn (bt UO bt UM

+ar, U@)=0a.fr(t), vp(t)=0 on (0, I,
v(0)=u,, 0,v0)=u, in 2.

In (4.1) we have posed

aolt, U)=@.a)t, Ut)+ 'gbma, U3, 0(t)
(4.2) + 37| @uaroXt, UO)+ 2 arsnt, UOR®) o5y us=1-7(t)

+.3 |@uauXt, UE)+ S austt, Utzo®) [0.d,u),

where
317 denotes the summation over all pairs of indices I, /=0, ---, n
such that /=0 or /=0, the functions d,u’', J+0 are identified with
(4.3) d,v, the functions 93¢, d,..¢ are identified with ¢ and u?® is iden-
tified with 0,v, furthermore a;;r=0a;;/00@ u) for I, J=0, ---, n,
L=0, ---, n+1,
ar(t, UD)=( 2 nebensalt, UO)+bran(t, UGN )o(d)
(4.4)

+ 2 n@uait, UD)+@ear)t, U®)

With the use of the new notations, the original problem (1.1)-(1.2) can be
written as follows
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SV ars(t, UDWOY w1~/ )+ 33 ayt, U®)d:du(t)
i, j=1
(4.5) +aglt, Ub)+au®=fob)+i(us+| v(s)ds)  in 0

2 madt, Ut)+art, UO)=fr®), ups®=0 on I’

for t<[0, T], where 2 is a constant determined in below. Since
(4.5) is still fully nonlinear with respect to u(¢#) we shall reduce it to an equi-
valent problem as follows. Let u°(#) be a function in X£X-2%R, Q) such that

(4.6) 0 u’(0)=uy in £ for 0=M<£K-2,
4.7) IDX-2u’(t)].< Co(K, B) for teR.

The existence of u° which satisfies [4.6), is proved in Ap. 5b.
Put u(®)=u"t)+w() and U°(t)=(v(¢), Diu’)). Noting that U°0)=(u,, Diu, we
can rewrite (4.5) as an equation for unknown w(¢). In this purpose let us put
U@)=(t), Di(u’@®)+0w())) for 0<H<1, and adopt the formula (2.6) with £=0,
a=0, h=1, 2, v=Dlu’t) and w,, w,=DLw(t). Using the notations introduced
in (4.3) and Taylor formula we obtain for /=0 or /=0

ars(t, U)o u- 137 ()=a ,(t, U')030% u?-*1-%7(¢t)

+dars0, UN0)Diw(t)of0% us—ss-ss
(4.8) +da;s0, UN0)DLw()oi0% (w1 =*7(t)—ug_s1-ss)

+ldars(t, UND)—dars0, UlO)IDuw(dfay u=+1-(t)

+,d2ars(t, U@OND1w(®), Dw@)dgay ur=*1=+(1)d0,

for 7, j=1, -+, n
a:;(t, U)0:0,(u’t)+wt)=a(t, Ut)00;u’(t)
+a,;(0, U0))0,0,w(t)+[a;¢, Ut)— a0, U0))]10:0;,w(t)
+da 0, U0)Diw(t)0:0;u0+d a0, UY0)DLw(#)d.0,(u’(t)—u,)
+Lda:t, UN8)—dai(0, U(0)ID;w()0.:0,;u’(t)
+da;(t, U®))D Lw(t)d,0;w(t)

4.9)

+{ 2% autt, UOXDw®), D)3 (u' )+ w(t)db

and for Ve{Q, 7,1, ---, n}
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av(t, U)=ay(t, UE)+dav(0, UNO0)D1w(?)
(4.10) +Lday(t, U()—day(0, U0)]Diw)
+{.d7av(t, U@XD1w(®), Diw(®)de.

Combining the relations (4.8)-(4.10) we can check that the problem (4.5) can be
written in the form

(4.11) pailw®)]=gaot) in 2, prilw®)]=gr), wo(t)=0 on I,

where

poalwl= 33 a0, UNOMdw+ 3 af(0, U0), usduw -+

1, 1

o prilwl="8 (£ nba(0, UO)+bri0, UNON)oiw, (cf. (1.8)

and for [=1, -+, n+1

4.19) a0, U%0), u)0,w= 2 am(O U°0))0,wo$'0% us_sr-os
+boi(0, U(0))0,w, (cf. (1.8), (4.3)),

419 gdD=Cult, W)+ 2 Gralt, v, w®),  Ve(R, T

where the terms Gy, k=1, 2,3, Ve {2, I'} are defined as follows

Gout, v(t)= fo(t)— ?z ars(t, UE))88a% ut=*1-%(t)

I, 0

(4.15) c
—aot, U °(l‘))+ZSO(U(S)—‘asu"(S))ds,
Gos(t, v(t), w(t))=
- Ed a0, UNOND L w(t)33'8% (w12 (t)—ts-s1 -ss)
@16 — 3 [dastt, UN)—dar0, UNONIDhw(dfay ut =1+ (1)

—[dao(t, UAt)—dan0, U0)]Dzw(t)

M=

Lat, U)— a0, U0))]0:0,w(®),

i, j=1

G,Q3(t, U(t)) w(t)):

<.,
1

—5{ d%a1stt, U@ND1w(), Diw(@)d53y =+ (1)d0
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411 = 31 | draut, U@XDw®), Diw®)od u'®)+w(t)do
—| d*aatt, UOXDLw®), Diw®)do
— ié, dayt, UE)Diw®dd,w(t),  (cf. (4.3),
(4.18) Grit, vi)=rrt)— i‘é nsa(t, U®)—ar(, U®),

Gralt, o), wt)=— 3 nldayt, UE)—da0, UO)ID}w)
—[dartt, Ut)—dar©, UNONIDiu(®),

(4.19)

(4200 Grat, ot), w(t)=— 2 nd| d*ait, UONDiw(®), Diw(®)do

—| a*art, U@OXDIW®, Diw)ds.

The problems (4.1), (4.11) form a coupled “hyperbolic-elliptic” system with unk-
nowns v and w. To solve this system we shall use the method of succesive
approximations. To this end, let us introduce the functional spaces Z and Z..
By definition Z is the set of all pairs (v(¢), w(¢)) such that

(4.21) @, w@)eY 5[0, T1, XY E*X[0, T], ), (cf. [2.5),
(4.22) 0¥ w(0)=0, O0=M=K-3, fv0)=uy+, OSM=<K-2,

(4.23) [Vl k1,00 1S A, 1Wlk-2.2.t0.11=A5, |W]k-s210115¢8,
(4.24) (), Diu®(t) and (u(t), Di(ult)+w@)))e H=(2, DU,))
for t=[0, T].

Here and hereafter T, Ay, Ag, ¢z are constants determined below, which depend
only on K and B essentially and U, is a constant =(0, U,) also determined
below. We shall assume that

(4.25) 0<T<min(l, Ty) and 0<eg<l.

Analogousely we define the space Z. as the set of pairs (v(¢), w(t))eZ such that
(4.26) w®), wt)e XF%[0, T, DX XL>X[0, T, 9),

(4.27) Yw0)=0, 0=M<K—-2, otfv0)=uy., O0=SM=<K-1.

The iteration scheme used in this paper can be described as follows. Let
(v'(t), w'(t)) be an arbitrary element of Z. (cf. (7.1)). For p=2 and (wP~(¢),
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wP(t)eZ. we define v?(t) as a solution of the following linear “hyperbolic”
problem

Y as@, UP=(0)8:0,07(t)=08.f o) —dolt, UP-X(®)) in (0, T)XR,

I,J=0

Jéo(g: niby(t, UP~H()+br.(t, Up—l(t)))a./vp(t)
(4.28) on (0, T)XI’,
=0.fr()—ar(t, UP7'®),  vjt)=0

v?(0)=u,, 0.0°(0)=1u, in 2,
where
(4.29) Ur={()=@?~'(t), Dz(u*@®+wP~' )
and the function w?(t) is defined as a solution of the linear “elliptic” problem
pailw?(H)]=gh®) in 0

(4.30) for te[0, T],
priafw?@®)]=g%®), wi(=0 on I’

where
(4.31) gy)=Gv\(t, v?(t)+ é)sz(t, vP(t), wP(2)), velQ, I'}.

It is clear that to prove the convergence of the presented iteration procedure
we have to investigate the linear problems corresponding to (4.28) and (4.30).

5. Auxiilary theorems from the theory of linear elliptic problems.
In the present section we consider the boundary-value problem

(5.1) goilwl=hgo in 2, grifwl=hr, wp=0 on I,

where wp is defined by the use of formula and where

(5.2) qm[w]=iélq‘€ja¢-8jw+ %: g0, w+Aw ,
n+1 n r
(5.3) arafwl="2 (2 nahi+a)dnw.

We assume that the mXm matrices ¢%=(q%), ¢V =(qV*"), ¢li=(¢}*®) and m-
vectors hy=*'(Ch}, ---, h{¥) are functions of x&£. Here and in the sequel we
shall assume that

(5.4) i, 7=1, -, n, =1, -, n+l, a, b=l ,m Ve{, I}, 0..9=9¢.

Taking into account the relations (5.4) we may list shortly our assumptions
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concerning the operators ¢gz, ¢ra:

(a.5.0) gl =glat=h3=0 if ac=Mp, (cf. (L5,
¢E=a%+a%, dhi=qir+qlt, qV=ql"+ql*,
(a.5.1) 9%, ¢, gf>= BX-\(2), ¢?~=BX-%(Q),

9%, ¢it, qiP e HEN(Q), q¢fre HX(D),

(a.5.2) ‘gf=qf, ‘9i+qi=0, —qif'=ql¥f® if acMy,
there exist constants 0,, 6,>>0 such that

(a.5.3) —i,élkq%ajw, 0:w)+ 12: (ghoaw, w28, w3 —8, w3
for arbitrary we< HA8), (cf. (1.9)),

(a.5.4) g"lnm:o on I".

To investigate the problem (5.1) we shall adopt the well known method of

coercive bilinear forms (cf. for example [2], Sect. 8). First let us discuss the
uniqueness of solutions in H3($2) and the existence of weak solutions in HA(£).

Assuming we HY2), multiplying (5.1) by ve H}(Q2) and integrating by parts
we obtain

(qailw], v)=— zj‘n‘.‘: (0w, 0.v)+ % {nq%ow, vy

T 1 1 1

— 3 @i, V+ S (@Pw, v)+A(w, v),
(5.5) i, j=1 =1

Grifwl, w= 3 mghdw, v>+ 3 SugNw, v]

(B n@hntahn)w, v) (et 28 with R=¢"=(@F, -, g}

In a consequence

(5.6) (goilw], v)+<grilw]l, v¥>=g:[w, v],
where
0:lw, v)=— 3 (@80, dw)+ 3 Su@Nlw, vI+1w, )

(5.7)
— 3 @B, v+ S @Fouw, V+H(( B ndhataha)w, v).
i, 7=1 i=1 i=1

Applying the trace theory (cf. Ap. 4b) one can prove that there exist
a constant C(8,, |2 %=1 n:¢in+1+9%+1llw0, I') for which
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1 n :
6.8)  <ghaw, wE L EIwIEHC(3, | Z nahtahn

o Dhwls.

Assuming that 7. is a constant such that

n

(5.9) 3 104gh et 2 I9F ot

i, f, k=1

n
t Ex niqfnﬂ-i-qﬂﬂ

<7eo

00, 0

using Schwarz’s inequality and (a.5.3) we can show that

(qoalw], w<gralw], w>2 5 8ilwl

(5.10) +(2=8,— (8., | 2 abnwr+ahes

, T)=3772) lwli
0, 0

1
Z 5 Oullwli+@—0—po)lwl,

for some constant po=p(d;, 7=, I') for which

(5.11) 12 C(3,, | 2 neghuni+aba

’ F)+5IIT°2°'
o0, 0
If we choose 4>0 so that
(5.12) A>po+0,,

then the uniqueness of solutions from the space H3(£2) holds. Furthermore
from the Schwarz’s inequality, the inequality and the density of the space

3(2) in HYR) it follows that the bilinear form ¢;[w, v] is continuous and
coercive on H)2)x H) Q) if is satisfied. Thus, applying the Lax-Milgram
theorem (cf. for example [2], p. 99) we can show the existence of weak solu-
tions of the problem (5.1) in the space HA(L2). Usual methods of considera-

tions (cf. [2], Sect. 9, [13], [19]) lead to the regularity theorem.

THEOREM 5.1. Assume that (a.5.0)-(a.5.4) are valid. Let L be an integer
such that 2< L<K. Let yx be a constant such that

2 008l s 18-+ 2 (2 0E o -1+ N -)

1

(5.13)
+(“q?w“m. k-2t ”(]lg"” K—a)'*‘(”q{m“oo. k-1t HQ{SHK—I))érK .

Then, there exist 2,>0 depending only on Yk, 8,, 0, and I’ essentially, such that
for A=A, and given hocs HX-*(Q), hr HE-3**% "), the problem (5.1) admits a unique
solution we H% (Q) satisfying the estimate

(5'14) ”wllLéc(K, TK, F; 5lr 52’ n, m, 2){”hQ”L—Z‘l"”hF”L—ﬁll’.} .
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If the data depend additionally on t<[0, T] we have the following.

THEOREM 5.2. Let (a.5.0)-(a.5.4) be valid, A be the same as in Theorem 5.1,
T>0and J=[0, T]. If ho)c XE-2°J, ) and hp@t)=s XE-=Y%(J, I') then there
exists a unique wit)= XE-*%J, ) which is a solution of the problem

(5.15)  goLw@®I=ho(t) in 2, qrilw@®)]=hr(t), wpt)=0 on I' for te].
The theorems 5.1, 5.2 can be proved in a similar way to the corresponding
theorems in the paper [19]. The details will be given in the author’s separate

paper.
The main theorem of the present section we can formulate as follows.

THEOREM 5.3. Let (a.0)-(a.5) be valid and u,, u,, fo(t), fr(t) be the same
as in Theorem 1.1.

(1) Let (Wt), wt)=Z. and pg;, go(t), pri, gr(t) be the same as in (4.12)-
(4.20). Then there exists a A depending only on K and B such that there exists
a unique z(t)= XE-*%[0, T1, Q) satisfying the conditions

pailz@®)]=go) in 2, prilz@®)]=gr@), zpt)=0 on I,

(5.16)

for every t<[0, T],
(5.17) 0¥z(0)=0 for 0SM<LK-2,
(5.18) 12| x-2,2.00, 1= &, 12|k -3.2. 0. 1= €8,

for some T, Ag, e depending only on K, B, Ay.
(i) Let (u(t), wit)=Z. Then there exists a T depending only on K, B, Ay,
Ag such that for the present A the inequality

— 3 (@ut, U@Rs2, 92)+ B <brutt, Uz, 2>-+lz13
(519)  +({ B nibinnlt, U)+brantt, UD)Z, 2)
+ 8 ot UtWiz, 2~ 3 Guaiiiz, 2 5 oilell:
is valid for t<[0, T] and z€ H}(2) (recall that Ut)=w(t), Di(u@)+w(®)))).

In the proof of we use the following

LEMMA 5.4. Assume that (a.0)-(a.5) are valid and that u,, u, are the same as
in the Theorem 1.1. For indices satisfying (5.4) let us put U'=(u,, Diu,) and
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9%r=ai0,0),  ¢F=(a;,n0, U%, (cf. (2.6)),
gir=b4(0, 0),  giF=(bu)(0, U,
(5.20) q?°=bi(0, 0),  ¢¥*=a¥0, U’ u,), (cf. (4.13)),
gi==br.0,0),  ¢*=(br0, U,
9h=a?r+e%,  dh=gir+alt, i=ql~+ql".
Then, the present ¢¥, qli, q¥, satisfy (a.5.0)~(a.5.4). Furthermore, the following

inequality is valid

S { B U8 e k108 k-0 + T N0k k-1 Igh k-0 |
(5.21)

n+1 .
+ leI(Hq?‘”Hoo.x-z+llq{"’llx-z+Hq‘f“lloo,K-;+Ilq{"!lx-x)§Cs(K, B).

PROOF OF LEMMA 5.4. Since the initial data wu,, u, belong to the space
H=(Q, DWU,) (cf. [T.7), (1.10), we can see that (a.k) implies (a.5.k), k=
0,2, 3,4. Applying Ap. 3, (Ap. 1), and accounting the relations
(1.16), (1.17), we obtain (a.5.1), (5.21).

In the investigation of the right-hand side of the equation (5.16) we shall
use the following.

LEMMA 5.5. Assume that (a.l) is valid. Let u,, u,, fo(t), fr(t) be the same
as in Theorem 1.1. Let (v(t), wit)=Z. and go(t), gr(t) be the same asin (4.14).
Then the following two assertions are valid :

(5.22) (0¥ go)0)=0 on 2, 0¥ gr)0)=0 on I, for 0= M<K-—2
go)e X¥->%[0, T, ), greX* >V [0, T1, I') and
(5.23) | 8ol k20034180 k212,00 11SCA(K, B, An)
+CoK, B, Agx)TAg+C«(K, B, Ag)TA+C(K, B, Ay, Ar)eg.
PRrOOF OF (5.22). From (4.22), [(4.6) and [(3.3) it follows the equality

ot (falt)— ,Zjlz ars(t, U@))030% u*=*1 2/ (t)— ao(t, U1))0)=0

I 0

on 9 for 0SM<K—2. It is also clear that (a;*S:(vcs)—a,u*’(s))ds)(0)=0 for the

same M. Thus (0¥Gg,)0)=0 on £ for 0SM<K-—2. Analogousely, from (4.18),
(4.22) and (3.5) it follows that (0¥Gr,)0)=0 on I for 0<M< K—2. The defini-
tions (4.16), (4.17) and (4.19), (4.20) together with the relations (4.22) give
@¥Gy)0)=0,0sM<K—-2, V{2, '}, k=2,3. In consequence, (5.22) holds
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true.

PROOF OF (5.23). First let us note that due to [I1.14), (1.17), [4.7), (4.23),
applying Ap. 3 and (Ap. 1) we obtain
Go(heXE 20, T1, Q), Gr(eXx>1 x[0, T], I
[Ggl(t)lK—2,0,[0.T]+ [GI‘1(t)|K—2.1/2,[o, T]§C(K, B; AH) .

Applying an analogy of (Ap. 2) with G, u(®)=0{70% u*1-3(¢), v(t)=
dars 0, U0)Diw(t) and next (Ap. 1), and using [3.4), (4.23) we get

(5.24)

— 3} dars(0, UAO)D @y (uh=*1= )= s-sz-21)

I 0 K-2,0,[0.T]

n

< > CK, B, Ap){T1da;s0, UONDiw(t)| k-2,1.c0.73
(5.25) I,J=0
+1dars0, U0)Diw(t)| x-s,1,c0, 73t ECK, B, Ag){T |w(®t)| x-2.2 073

+lw(t)| g-s,2.c0r3t SC(K, B, Ag){T Ap-+ex}.

Similary, using (Ap. 2) with G(t, u(t))=da,,(¢, U't)) and Ap. 2 we
have

— 3 [darst, U®)—dars(0, UNO)IDIwndfay us=1-(1)

1,7=0 K-2,0,00,T]

(6.26) =C(K, B, AH){TIDalcw(t)lK—z.1.Eo,TJ+|D}cw(t)lx—3,x,co,m}

[0305 u®=*1 =7 () | k-2, 0,00, 1= C(K, B, Ax){T Ag+es} .

0

X

7

~

In the same manner we obtain
| —[dao(t, U#)—daq0, U0)]1Dzw()| k-2 0.c0.3

(5.27) SCK, B, |U k-2 1, co.tT 1 Dzw®)| k-2, 1,00, 73+ | Dzw(®) | k-3, 1,00, 72}
=C(K, B, Ax){T Ax+es},

1 1

= 33, Laut, UN0)—au(0, U°O)I085w(®) k-2,0.00.7

(5.28) <C(K, B, AH)“é:l {T10:0,w(t)| k-2, 0,c0, 71+ 10:0;w(E) | k=3, 0, r0, T}

<C(K, B, Ap){T Ag+¢x} .
From the estimates (5.25)-(5.28) and the definition (4.16) it follows the relations:
Gau(t, v(t), w@®)=X%-*%[0, T], Q),

(5.29)
|Gas(t, (@), W) | k-2,0.00i=C(K, B, Ap){T Ag+es}.
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Now, let us estimate all terms of Ggps. Applying [Theoreml Ap. 2, the estimate
(Ap. 4) and using relations [(4.7), (4.23) we get

| =2 d*asutt, U@XD2w(®), D3wE)dyay us=*!-+(t)do

— 3 [laautt, UONDLw®), Diw®0d,u®+w(e)do|

-2,0,00, T3
(6.30)  =37( 1d%ast, UOXDLw(E), Diw(E) k-s,0.c0.1340

X 0§05 u~* 127 (t) | k-2,0,00. 73
+ 31 | |4 autt, UGOXDIw®, D1 k-voc0.r:d0

X lataj(uo(t)+ w(t)) | k-2.0c0. 11
SCWK, B, Ay, A)|Diw®) | k-2.0.c0. 731 D2w(t) | k-3.1.00. 73
éC(Ky B7 AII} AE)SE

and similary

|\ daatt, U@OXDIw®, Diw(trdo|

K-2,0,00.T7

(5.31) <C(K, B, Au, Ae)|Diw®)| k-2,0,c0,131 Dzw(®)| k-5, 1.10,13
<C(K, B, Ay, Ag)ex.

Applying Ap. 2, (Ap. 2), (Ap. 1) and [4.7), (4.23) we obtain

n
- 2
i, f=

day(t, UEIDIwBIBw (]| k-2.0.50.

1

A

i 1

C(K) 33 AT 1 daut, UNOD2w®)| k-2.1.0.13

(5.32) +ldayt, U)Diwt) k-3.1,t0. 73} 10:0;w() | k-2, 0,00, 73
<C(K, B, Ag){T | Dizw(t)| k-2.1.c0.73F+ | Dzw(®) | k=3, 1,00, 72} | W] K -2.2.00. T3
<C(K, B, Ag)T A3+C(K, B, Ay, Ag)ek.
Thus from the definition (4.17) and relations (5.30)-(5.32) it follows that
Gast, v(t), wt)eXE-2°([0, T], ),
(5.33)
| Gast, v(®), W) | k-2.0r0.11=CK, B, Ag)TAE+C(K, B, Ay, Apes.

Now, let us estimate the boundary terms Gp., £=2,3. Due to the
Ap. 4a we have
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|G re(t, v@), W) | k-s,172. 00, 11=CU, TG rit, v(@t), WE) | x-2.1,00.77-

Applying (4.19), (Ap. 2), [4.7), (4.23) we obtain Gy, v(t), w@)s X210, T], £2)
and

G ra(t, v(8), w®) | x-2.1.00. 13

<Ci, N| Zldat, U®)—dal0, UO)IDIwE0)|

K-2.1,[00,T]

(5.3 +1[dart, U®)—dar©, UONIDIw® | k-s1,c0.75}

SCK, B, AD{T w®] K-2.2.00,717F | W)l x-3.2 0, 71}
<C(K, B, Ag){T Ag+ex}.

Applying (4.20), (4.23) and (Ap. 4) we get also Grs¢, v(®), wQ®) <
X%-=4([0, T], 2) and
(5.35) |G rst, v@), w®)) | x-2.1. 0,73
<C(K, B, Ay, AE)‘w(tﬂK"Z'Q'EO'T]‘w(t)lK—s,z.[o,T]_S_C(K, B, Ay, AE)sE,

From (5.24), (5.29), (5.33)-(5.35) we obtain (5.23).

PROOF OF THEOREM 5.3. First we prove [5.19). Put U@®)=Q@{®), Di(u’#)+
w(t))) for @), wt)=Z. By (Ap. 9) we have

104 st U@H w0t 2 barlt, UB)er o

i, fo k=1
636  +|( B nbmntbrant U] SCUFTIU k100

<C {14+T(CxK, By+ A+ Ap)} for te[0, T].
Choose T'>0 so that

(6.37) T(CoK, B)y+Au+An)=1.

If we put ¢?=bg:, ¢¥i=aj, ¢ins1=bin+1, ¢h+1=brn.+, then the estimate
is valid with 7.=2C,. Hence we can choose the constant g, from (5.11) in-
dependent of K, B, Ay, Ag, eg and T. If A=p,+3d, then by we have
[(5.19). In the sequel g, will allways denote the constant determined in the
just prescribed way.

Now we prove the first part of [Theorem 5.9, Let ¢l;, ¢, 4%, 7, i=1, ---, n,
[=1, ---, n+1 be the same as in (5.20). By (5.21) we may put 7x=C(K, B)
(cf. (5.13)). In the view of lemma 5.4 we can apply theorems 5.1, 5.2. Thus
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we can chose A=u,+0, depending only on K, B such that there exist unique

solution z(t)c XE-2*([0, T, £) satisfying (5.16) for t=[0, T]. By (5.22) we have
p0[0¥z(0)]1=0 in L, p,[0¥z(0)]=0, 0¥#z,(0)=0 on I', for 0OSM<K—2.

Hence by and we obtain (5.17).
Finally we prove the estimate [5.I8). Differentiating (5.16) M-times in ¢

and applying with L=K—M we get
(5.38) 10¥ 2|k -m < Cu(K, B){10¥ go® |k -2-u +40¥ )N & -3/2-n}

for t=[0, T] and 0 M<K—2, where we have used the fact that the present

7x and A depend on K and B only. Combining (5.23) with we have
( IZIK—z.z,[o,TJ§C4(K, B){C\(K, B, Am)+Cy(K, B, AH)TAE
5.39)

+Cy(K, B, An)TA+C(K, B, Ay, Ag)es} .

If we choose Ag, s and T so that

3
(5.40) As=C(K, BY{Z C+(K, B, Am)+1},
(5.41) Ci(K, B, An, Ap)es=1,
(5-42) TAE: TAE'éSEél,

then we obtain

(5.43) |2 | k-2, 2,0, r=Ag.

Furthermore, since aé"z(t)zgsag’“z(s)ds for 0SM<K—3, we have

t
(5.44) 182Dl -1 = 1025 c-1-uds
From it follows that
(5.45) [zl k-3, 2.00.11=T 12|k -2,2.00.71=T A =c¢k.

Thus [(5.18) is proved and the proof of is complete.

6. Auxiliary theorems from the theory of linear hyperbolic problems.

Let us consider the problem

R%,(8)010,0@)=ho(t) in (0, T)x$£,

0

(6.1) Ro)[v(®)]=

I,

it

Rrlv®]= 3 (3 nRLO+RI®)dvO=hr®),  vpH)=0
6.2) F=o =t
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on 0, )X,  (cf. [L6),
(6.3) v(0)=v,, @:0)(0)=v, in Q

where R%,=(R%#Y), RI,=(RLI%%), RI=(R[**) are mXm matrices depending on ¢
and x (cf. Remark 1.1, Sect. 1). In the present Section we assume that the
indices satisfy the relations

6.4 I, J=0,-,n, i,7=1,-,n, a,b=1, -, m, V{2, I'}.
The functions

(6.5) hy="(h}, -+, hi), ve="(W, -+, VFY), k=0, 1

are given vector functions and v=*@?, ---, v™) is the unknown one.

We assume that for all indices satisfying the relations and arbitrary
te[——Th Tl], TIE(O) TO])

(a.6.0) R () =R O)=h&(t)=0 if acM, (cf. (L5,

R =R+ R%, RI,=RI5+RI5, R/=RI*+R* where
(a.6.1) R%7, RIy, RF>=BX-'([—T,, T.], 2)

R?s, R}, RPPFcYX-2Y ([T, T.], 2)
(a.6.2)  R$='R9, ‘RU+RI=0, —RIf*=R%* if acMy (cf.

R&@#)=0d,] (I denotes the mXm unit matrix),

@63 — 3

1

(RSB, duw)+ 23 CREDIaw, w) 28w i—ull w3

1

for some positive constants &,, 0., 0, and arbitrary we H3(Q2),

(a.6.4) 3 n(0OREE, =0 for xel,

${ 5 nd®RutReo)(t, x)+2Rut, 0}e-620  for x=I' and
(2.6.5) =

for arbitrary &=*(¢*, ---, &™) such that §&*=0 if ac M),
where R,= é n; R+ RYT .

Let us define the energy norm

66 EROOT=I(RED) P®)li— 33 (REWB(W), dw(t)

+S(R@)v®), v 1+dllv®OIF,
where S;(R(#)) is the bilinear form defined in the formula (2.11) with R=
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(RY, -, RY) and d is a constant determined in the following way. Let S,(R())
be defined by (2.12) with R=(RY, ---, R}) and let M(K, T,) be a constant such
that

o Qoo Q
?_ (IR oo, k1.7, + | R{S | k-2 1. 0-7,. 7,3)

1 0

6.7) + 2 { B URF e or,+ | RE koo coryr)

IR g 2y | RY ko oy mf S MUK, T,

Using (2.8) and (a.6.3) we can prove
ER@)[v® 1+ S(R®)[v®), v(®)]
200l +a:lv@®IF+(d—d) lv®) 15 -
Thus, by and we have
E(R®)[v®)I1z00/10.v@) 1§+, lv® N5+ (d—d) lv@®) 13
(6.9) —CM K, THlv®lllv@® 6= 8oll0.v®) 5+ 0:llv@) 1}
+(d =) lv®) 18— 8,/ llv®) I} — (CM(K, T1))*/ (26 Ilv@®3 .

(6.8)

If we take

(6.10) d=0,+(CM (K, T.))*/(2é,),

then we obtain

(6.11) ER@®))[v®)]z200l0.v®5+@:/2lv@®IF  for vt)eHj(82).

This is the manner of choosing the constant d.
Now, we describe the compatibility conditions for the problem (6.1)-(6.3).
Let vyso=vny4:(x), 0SM<K—3 be defined by the recursive formula (we use the

same notations as in
M
6.12)  REOuirr=@¥ho)O—3(, )G RINOBIOF v 2-s-s1-0-

We shall say that v, v,, ho(t), hp(t) satisfy the compatibility condition of order
K—-3 for (6.1)-(6.3) if

M n n
5 CDE[ 2 @ RDO+GRNO |05 a1} =@t R O,
6.13) k=0 J=ol i=1

for 0SM<K—3, wyp(0)=0 for 0SM<K-—2, on I.

The solvability of the problem (6.1)-(6.3) is described in the following.
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THEOREM 6.1. Assume that (a.6.0)-(a.6.5) are valid and T<=O, T)).
(i) Let

veeHEY(Q), v,cHE2R), ho)cXX->(0, T], 2),
(6.14) hre XE->v2[0, T], I'), 0F*he®)<Lip([0, T], L*(2)),
oF*hr@®)=Lip([0, T, H*(I")),
Vo, V1, ho(t), hr(t) satisfy the compatibility condition
619 of order K—3 for (6.1)-(6.3),
then (6.1)~(6.3) admits a solution v XE-v°([0, T], ) with the property
6.16) MyQ)=vy  for 2<M=<K-—1.

(ii) Let v XE°([0, T], ), ho)=Ro®)[v®)], hrO)=RrBOv®)], then

1D 1= C IO I3+ U hals) 5+ (D10 ds}
(6.17) °

for t=[0, T], C=C(T,, M(K, T,), &y, 61, 03, n, m, I').
(iil) If veXE-+%[0, T1, 2) and hg, hr satisfy (6.14) then
(6.18) E(RE)IE - ®] <" {(ERUNIDE 0@ | 1o+ CHEF (D)}
for t<[0, T], where C=C(T,, M(K, T,), 0o, 61, 65, n, m, I') and
F®O=/(D%=0)(O) I3+ hol%—s.0.t0. - <o 1% s, 1/0. 10,03

+ess supllof-2ho(s)|3+ess supl0K-2h r(s))3/s .
0ss8st 0ssst

6.19)

REMARK 6.1. can be proved exactly in the same way as the
corresponding theorem in Shibata’s paper [19]. The details will be given in
the separate author’s paper. Let us remark only that in Shibata’s approach it
is essential that the coefficients of the operators Ro(t), Rp(f) are defined for
arbitrary t=[—T,, T,12[0, T] and the assumptions (a.6.0)-(a.6.5) are satisfied
for all such %.

The next theorem describes the properties of the linear hyperbolic problems
of the type (4.28), which are used in our iteration scheme.

THEOREM 6.2. Assume that (a.0)-(a.5) are valid and u,, w,, fo, fr are the
same as in Theorem 1.1. Let (v@), wi)=Z and U)=w®), Di(u*@)+w(t))). Let
us consider the linear problem

6.200 3 arst, UNAdsz0=d.foh)—dalt, U®)  in O, X2,

I [
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2(Z nbutt, UO)+bratt, U®)paz@®=0,f r)—art, U®),
zp®)=0 on (O, TYXI,
(6.22) z(0)=u,, 0:2)(0)=1u, in 2,

where the notations (4.2), (4.4) are used. Then.

(i) There existsa T,<=(0, T,] depending only on K, B, Ay, Ag, such that for
any T, T,) the problem (6.20)-(6.22) admits a unique solution z(t) <
XE-+%[0, T, 2) with the property

(6.23) @¥2)0)=ur+: for 0SM<K—1.
(ii) If z:()=X3%([0, T], ), k=1, 2 satisfy (6.20)-(6.22) then z,({)= z,()
for t=[0, T].

(iii) Let (@), w))=Z.. Then there exist T and Ay depending only on K
and B such that the solution z(t) of (6.20)-(6.22) satisfies the estimate

(6.24) |Z|K—1,o,[o,1'3§/11{-

We shall prove using [Theorem 6.1. In this purpose we have
to extend the operators from (6.20)-(6.22) to a wider interval (cf. Remark 6.1).
From the theorem Ap. 6 it follows the existence of functions V@)Y X-°(R, 2),
WY -22(R, 2) such that

@)=V, w®)=Ww@)  for t<[0, T],
1Vl en0 2= CUO 10l kn0.r0. 03+ 3 1GFO -1}
(6.25) <CK){Aa+C\(K, B)},
W Ik 0.0. 22 CUD{ 0] ko .00 09+ 5, 1@F0)O) -1

where the relations (3.4), (4.22), (4.23) are used. Since the function (V(?),
Di(u®)+W(@))) must be substituted into nonlinear functions defined on
{U: |U|<U,}, let us choose T,>0 depending only on K, B, Ay, Ag, such that

(6.26) 1(V(@t), Diu’®O+WEON w1 SU+(T)Co(K, B, An, An)<U,

for t=[—T,, T.], where U,, U, are the same as in [7.4), below, (cf. the
argument leading to [7.4), [7.6)). Let us also introduce the following notations

Ut)=w(®), Dz(u’®)+w®))), Uty=V®), D ®O+WwWe)),
R =a,,t, U'®), RL®O=but U'®),
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(6.27) RY®=br,@¢, U’'(), with indices as in [6.4),
Vo=1uy, Vi=Us, ho()=0.fo(t)—ao, U®),
hr®)=0.frit)—ar, U®).
One can check that the coefficients (6.27) satisfy the hypotheses (a.6.0)-(a.6.5).

More precisely, we have the following

LEMMA 6.3. Assume that (a.0)-(a.5) are valid and u,, u,, fo, fr are the same
as in Theorem 1.1. Let (v®), w®)=Z and let RE (), RL, (), RE() be defined by
(6.27). Then the present R%,(t), RL,®), R5(t) satisfy (a.6.0) and (a.6.2)-(a.6.5).
Furthermore, if we put (for indices as in (6.4))

RZr®=a1st,0),  RHO=(a:E U'®),
(6.28) RIF®)=bis(t, 0),  REO)=(bi)(t, U'®),

Ri=t)=br;t, 0),  RFE®O=0bron, U'®),
then (a.6.1) 7s valid and

3, | R oo -1, 7,+ | R  k—2.1.0-7,. 7,2
I,0=0
(6.29) + S BRI lo kv 2, | RE ko tor, 1)

+ | RS o seos. 1, | RF a6, 2,0} S Co(K, B, Ay, Ap)

PRrROOF. Since (6.26) is valid (a.6.k) follows from (a.k) for £=0, 2, 3, 4, 5.

Applying Ap. 3 to we obtain [(6.29) and (a.6.1).
Now we shall show that the data wv,, v,, hg, Ar, defined in (6.27) satisfy
the hypotheses of [Theorem 6.1

LEMMA 6.4. Let the assumption (a.l) be valid and wu., u., fo, fr, be the
same as in Theorem 1.1. If (v(®), w®))=Z and v,, vy, hg, hr are defined by (6.27)
then v HE'(Q), v, HE*(Q), hot)e XX->°([0, T], ), hr@) = XE-*1%([0, T],
I') and (6.14), (6.15) are valid. Furthermore, if vy is defined by (6.12) then

(6.30) V=Wt for 2<M<K-—-1.
PROOF OF LEMMA 6.4. By and we have vo=u,=HE- ()

and v,=u,= H§*(2). From it follows also that to obtain the needed
regularity of hgp, hp it is sufficient to prove that (cf. (4.2)-(4.4))

(6.31) aot, U)eY*>lo, T1, D), art, UGHeY*>([0, T], D).
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Since (v(?), wt)Z we have U{)<Y ¥-21([0, T], 2). Applying [Theorem Ap. 3
we obtain (0,aQ)t, U®)<Y X-%([0, T], 2). Applying (Ap. 1) and the relations
0;v(), 0;0;(u’@®+w@)=Y X-2°0, T], 2) we can check that the first relation
(6.31) is satisfied. The second part follows from the relation v({f)e
YE-24[0, T], 2) if we use again Ap. 3 and (Ap. 1).

Now we shall prove and (6.15). We have

0,3 arst, DUt NI B0+ aglt, Du(t) )
I1,J=0

R%,(1)0:0,0,u°(t)+aat, D'u’®t)),

0

(6.33) 1.
at(

= 3 ( 2 nRLO+RI® 0,800+ a r(t, Du®),

2

3

| neat, D'w®)+artt, D))

-
I

where R&®)=a,,¢, Du’®), RI,t)=b,s(t, D'u’®), RTE)=br,(t, D'u’t)). Using
the fact that from (4.22) and for 0 M < K—3 the following equalities follow :

(6.34) oMU (0)=0X¥U0)=0¥ (v, Dz(u’+w))0)=C(us+1, Diuy),
we have

6.35 (0¥ R,)(0)=(3¥ R$,)(0), @Y RL))(0)=(©@X RL))(0),
.35)
ag’(aV(ty U(t))|l=0:a{”(a"(ty Dluo(t)) Il=0r
for indices satisfying [6.4). If we compare the equation (6.12) where hp=0a,fq

—dgo with the equation written in the following way
a0o(0, D'u(0) s 2= f)(0)—0¥**(ant, D'u’(®)) =0
(3.3) M+1
— (Mot @, DO 1D st ss-s-s1-00, IEMAIS K—2
and using (6.33), (6.35) we obtain [(6.30).
Differentiating both sides of the second part of (6.33) M-times with respect
to ¢, putting t=0 and using [(6.34), (6.35). [(6.30) and [3.1), (3.5), we can check
that (6.13) is valid and in the consequence (6.15) is true. The proof of

6.4 is finished.

PrROOF OF THEOREM 6.2. Using lemmas 6.3 and 6.4 we can check that
[Theorem 6.2(i) follows from [Theorem 6.1(i) for T=\0, T,). Similary The-
orem 6.2 (ii) follows from [Theorem 6.1 (ii). To prove [Theorem 6.2 (iii) we first
check that the following estimate is valid



On Some Class of Initial Boundary Value Problems 471

|Z|2K—1,o,[o,T]§65(Ky B)+T;5Cy(K, B, Ay, Ag)

(6.36) "

+T°Cs(K, B, Ay, Ap)|z|%-1,0,t0.13, 0<6<[7]+1—%-

If we obtain (6.36), then choosing T and /1 so that

T:CAK, B, Ay, AD)<1, TCyK, B, Au, A<,

(6.37)
(Au)*=2{Cs(K, B)+1},
we get [(6.24). In the proof of (6.36) we shall assume that (W), w(@®)=Z,. Let
us note that the constant M(K, T,) from the estimate 1s in the present
case equal to the constant C.(K, B, Ay, Ag) from the estimate and that
T, depends only on K, B, Ay, Ag (cf. (6.26)).
Applying the energy inequality to the problem (6.20)-(6.22) we obtain

ER®)[0F*z@t)]<(exp C) {E(R@)[F22®)] =0
+C.TY?(lae®t, U®) | k=200, 73+ 1@ r@ U®)| k-2,1,t0, 71+ B?}

where C,=C (K, B, Ay, Az), [=6, 7 and where Ap. 4a is used. Re-
peating the argument leading to (6.31) we can prove that

(6.38

(6.39)  1d@o®, U k-2.0.0.m3F [@rt, UD)  k-2.1.00 m=Cs(K, B, Ag, Ag).
In (6.39) and in the sequel we use the fact that
(6.40) \Ulk-s.1.001=Co(K, B+ Ay+Ag,  (cf. 4.7), 4.23)).
If we substitute (6.39) into (6.38) and use (6.6), (6.8) we get
0oll0F 2(®)II5+0:10F *2() 11 (exp Cet) | (R00(0))*/2(@K ~*2)(0) |3

O LS horalaE 0l ex CYC T CL B,
where
Lt)=d {(exp Cet)||0F22(0)[I5— |0F ~2z(®) |3},
L,()=S:,(R®))[0F *2(t), 0K *2(1)],
(6.42) I =(exp Cat){ *% (RE()D,0E-22(0), 3,55 *2(0))

+SI(R(O))[85{_ZZ(O)) ag{-—zz(o)] ’
d:52+(CM(K; Tl))z/(zal):CQ(K’ By AH) AE); cf. '

We shall estimate all terms of the right hand side of (6.41). First let us note
that
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(exp Cot)|(RE0)'*@F 2 O)§= 1+ CsT (exp C,T))
(6.43)
X I(R§® )2 @F )OI Mi(K, B)+TMy(K, B, An, Ar)

Here and hereafter we use the letter M, (resp. M,) to denote various constants

depending only on K, B, (resp. K, B, Ay, Ag). Using the inequality

I(DE-22) @) 13— | (DX -*2)O) 3] < | ST? I(DX-%)(s)l3d s |
(6.44) oas

<T|zl%-10.r0.73

and the estimate

(6.45) [(DX-12)(0)||2< Co(K, B),  cf. and Lemma 3.1, we have
1,(ty=d {(exp Cet—D0f ~*20)II5— ([0F 22@) I§— 195 ~*2(0)ID)}
S Co{CsT(exp CeDNFF22(0)IF+T |21 %-1.0.00.73} -

(6.46)

If we choose T so that
CG(Ky By -AH’ AE)CQ(K, B; AHy AE)Tély
CG(K’ By AH; AE)T-<_—1;

(6(47)

then we obtain

(6.48) IL(OSM,+M,T |z\%_1,0.t0,73-
From (6.44) and (6.45) it follows also the inequality
(6.49) |21k -2 0.c0.r1=EM+T|2zl%k-1,0.00.73-

To evaluate I, let us note that R{(®)=bp;t, U®)) for t=[0, T], cf. (6.27)
and that the inequality with R*=RZ holds true. Since [|RY(#)—RI(0)]ew. 1<
M,{T+T¢*} as follows from Ap. 7 and since [|RL(0)|w, .=b6r:0, u,,
Diulleo <M, we have |RI()|w <M, +M,T¢, (note that 0<T <1, cf. [4.25)).
Substituting this estimate into and using we obtain
(6.50) 1)< (0,/2) |08 22|13+ M+ T* M, 2% -1, 0. co.72+T** M,

with ¢ as in (6.36), (we may assume additionally that ¢<1/2).
To evaluate the term I, it is sufficient to note that R%(0)=a;(0, u,, Diu,),

RE0Y=br;0, u,, Diu,) and to apply [1.16), (2.13), (6.45), (6.47). In consequence,
we obtain

(6.51) LM, .
Combining (6.41), (6.43), [(6.48), [6.50) and [6.5T) we get
(6.52)  Gollof 'z i+ (0,/2N0 Pz = Mi+T Mo+ T M| 2] % -1, 0.00.73-
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Now we shall evaluate [[0#z()||x-,-» for 0SM<K-—3, using the elliptic
estimate (5.14). In this purpose let us rewrite (6.20), (6.21) in the form

(6.53) é a0, uy, Diug)00;z2()+ pz(®)=0,fo)+pz@)+Ho(t) in £,

i 1

65 (B nba: s Dud+bri0, s, Diuy Prz®)=0f rO+Hr(@),
zp®)=0 on I,

for t<[0, T], where p¢ is a constant determined below and

Ho®)=—aqo(t, U®)—Ho\(t)— Haox(®),
HQl(t):E”aIJ(O’ Ui, D;uo)alan(t)) cf. (4'3);

Ho®= 3 (1ot UB)—ars0, UONIL,(0),

I 0
(6.55) Hr)y=—art, Ut)—Hr.()—Hr,®),
H['l(t):bo(o) uly D‘zl:uo)alz(t)’ Cf' ,

n

Hra®= 33{ 3 nubuslt, U®)—bus(0, UOY

J=0

+(bratt, U@)—brsO, UO)}s20).

If we define ¢% and ¢% as in (5.20) and if we put ¢?=¢l,+1=¢5+1=0 for indices
satisfying (5.4), then we can see that [6.53), (6.54) has the form (5.1). Using
and one cah check that is valid in the present
case with K replaced by K—1 and go()=0.fo(®)+pz(t)+Ho(®), gr)=0.fr®+
Hp(t). Thus we have

10 2Ol ke -1-5e EMANIOY fo@Oll k -0- + 40U rDD k-512-1
(6.56) 0¥ z(O) )| x -s-2+ 0¥ 0@, U & -s-u+ 108 r@, U) | x-2-n

+ 33 (10 Hos®l -s-se+ 10X H s ) e-2-00))

We shall show that the following estimates are true:

“afldg(l‘, U(t))”K—a—Mngf‘TMz ’

(6.57)
N0¥art, Ut)llg-2-u <M+TM,,

0¥ Ho, ()l x—s-se S M {0 2| x -2-2+ 0¥ +22() )| x ~s-n},

(6.58)
10¥H ()| g —o-u M OF 2O | gk -2-21
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“angoz(t)“K—s—M§M1+TM2|Z|K—1,0,E0,TJ;
(6.59)

||a€lH1‘2(t)”K—2—M§M1+TM2|Z|K—1,o,[o,m~
To prove (6.57) let us remark that [[0¥ao(t, U)|lk-s-»#=10¥ @0, UO) | x-s-»+
g:uagfﬂag(s, U(s)lx-s-nds. Using (6.39), Ap. 3 and the relation (Ap.

1) we can obtain the first part of (6.57). The second one can be proved in a
similar way. If I or /=0, using Theorems Ap. 1, Ap. 3, we obtain

”(01.7)1(0; U1, D3ue)0;0,0¥z(t)lix-s-u < 1(ars)i(0, uy, Diug)lix-»

X 10,0,0% 2zt | k ~s-m+s1+50 S M O¥ 2() | k2~ + ML [|0¥ *22() || k -5-m

(6.60)

and similary
lars0, 0)0;0,082(t) |k -s-u <M, |O¥ ' 2(t)| k-2~
+M 0¥ 2O k-s-n -

(6.61)

Thus the first part of (6.58) is proved. Similary we prove the second one.
Using (Ap. 3A), (Ap. 3B) and the relations [6.40), (1.17) we have

10¥[(arst, UB)—ars(0, U0)))0:0,2®) 1l -3-u
(6.62) <(arst, U)—ars0, U0))0:0,2(t)| k-3,0.c0.13
SM+M:T|z|k-1,0.t0.73
and similary using (Ap. 2)
10¥ [ny(best, U®)—b:s(0, U0)))0s2(t) ]Il x-2-u
SM+M,T |zl g-1,0.t0,73-

(6.63)

In an analogous manner the remaining terms of Hr,(!) can be estimated. Thus
all relations (6.57)-(6.59) hold true. Substituting (6.57)-(6.59) into (6.56) and
using [(6.40) we obtain

0¥zl k-1-a S M +M {[10¥ *2() | k —s-u+ 0¥ 2(8) || k —2-n}
+TM,+TM;|z| k-1,0.t0.73 for 0SM<K-3.

(6.64)

Repeated application of (6.64) gives

(6.65) fg. 10¥ 2% -1-n = M+ M, {|10F 2(t) 154 110F 22() 13}

+T*My+T*M,|z|%-1.0.c0.r1  for 0OSM=<K-3.
Substituting (6.52) into (6.65) we obtain
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K-1
(6.66) ME=0 [aglzlg.K—l-M,[o,T]§M1+TEM2lzl.zl{—l.o,to,TJ‘Jf‘TeMz .

Since in the present case z(H)=XX-%[0, T], ), then the left hand side of
is equal to the square of the norm |z|x-; 0073, (cf. [2.3). If we note
that M,=C(K, B), M,=C(K, B, Ay, Ag), then we can see that implies
(6.36) and in a consequence [6.24). The proof of is complete.

7. The convergence of the iteration procedure.

To show that the iteration procedure defined with the use of (4.28)-(4.31)
is convergent we shall prove that there exist constants Ay, Ag, ¢z and T such

that the following conditions are satisfied.

The set Z. of the pairs of functions (v(¢), w(t)) satisfying

(7.1)
the conditions (4.23), (4.24), [(4.26) is not empty
(7.2) @P(t), wPtHeZ, for p=1, 2, ---,
[vP—v? 1 o ro. 1+ | WP — WP g 2,10, 13
(7.3)

1
S‘é‘ {lvP =P oo rH WP —wP %14 2. r0, 73} -

First we prove (7.1). From the assumption we have (u,, Diu)cHE(Q)
with K—1=[n/2]4+2>n/2+1. From the Sobolev imbedding theorem it follows
that | DX(uy(x), Diuy(x))|—0 as | x|—0. Thus from the asusmption[1.16) it follows
the existence of a positive constant UU,<U, such that

(7.4) (U1, Dzsho)lleo, 1= U5

Let (v(t), w(t)) satisfy the conditions (4.22), (4.23) and U({)=(v(t), D:(u°(t)+w(@))).
Applying Ap. 7 with F(t, x, U)=U and the relations (6.40) we

obtain
7.5 NU@)leo, 1= 1(st1y, Disho)lloo, 1 +CTU | g-2.1.10. 77
' SU,+CTH(CyK, B)+ Ay+Ag), te[0, T]

with some e=(0, [n/2]+1—n/2). Let U, be a constant such that U,<U,<U,
and choose T so that
(7.6) U,+CTCy(K, B)+Ap+A45)<U,.

For such T we have the second part of the relation (4.24). The first one can
be proved in an analogous way. Since [0,u°|k-1 0r0.7:=Cs(K, B), ct. (4.7), 1f
Ay is chosen so that
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(7'7) C2<K’ B)gAH;

then (0,u(?), 0)=Z.. Thus the proof of (7.1) is complete.

Now let us review the way of determining the constants Ay, Ag, ez and
T. First we choose Ay so that [7.7)and (6.37), are valid. It is clear that Ay
depends on K and B only. Second, let 4z be chosen so that holds true.
Thus, Az depends only on K, B. Third, we choose T, so that (6.26) is valid.
T, depends only on K and B. Fourth ez and T are chosen so that 0<T <T,
and [4.25), [(5.37), [(5.41), [(5.42), (6.37),, (6.47), (7.6) hold true. Since Ay, Ag depend
only on K, B, ¢z, T have also this property.

Using Theorems B.3, 6.2, we can show that if (v?~'(¢), w?'(¢))Z. then
WP@), wP(t))eZ,. Thus (7.2) is proved. It remains to check that the presented
iteration procedure satisfies the condition (7.3). Let us introduce the following
notations: v? P (H)=vP(t)—vP (1), wP P ({t)=wPt)—w? '(t), UP(t)="(t), Dz(u’(?)
+w?(t))). In the first step of the proof of (7.3) we shall show that

(7.8) [0 21 oS MT {{vP " P2 o romaH WP P72 0 0 co. 72} -

Here and in the sequel M denotes various constants depending on K, B, Ay, Ag.
Since Ay, Az depend on K and B only, M also depends on K, B only.

Subtracting side by side the equations (4.28) taken for p and p—1, we
obtain

(7.9) 3} anslt, UPORA0™ - (=h%(t)  in (0, TIXR,

I 0

33 (35 nibeslt, UP= (@) +brs(t, UP=E) )o,v™ P O=hiK1),
(7.10) J=oNist
v P (D=0 on (0, XTI,
(7.11) v? P1(0)=0, 0w P} (0)=0 in 2,
where

hip(t)y=—(ae(t, UP'®)—aqet, UP~*W))

— 31 (@rst, UP )= ars(t, UP00)3:050° (1),
(712)  REO=—(ar@ UPO)—ar(, U0)
— 5 {2 nlbustt, UP )= bastt, UP0))
+brstt, UP-®)—brs(t, UP-*)}0,077 ().

Let us extend the coefficients of the operators in [7.9), (7.10) to the interval
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[T, T.] as in the proof of theorem 6.2, cf. [6.25]. Applying the energy
estimate (6.17) we obtain
(7.13) lvp’p—lll,o,EO,TjéMT{lhlf)|o,0,[0,T]+lhz;’lo,l,to,T]} .
Using (Ap. 1) and (Ap. 5) we can prove
(7.14) lav(, UP-)—ay(t, UP2@) s
S=M{vP" P2 oo, ra WP P24 5 10, 71}

where

1 if v=I,
(7.15) JV)= ,

0 it V=Q.

Similary, using (Ap. 6) we can check that the norms:

(@ s, UP~H)010,07 7 @) —ars(t, UP~2())010,07 )0,

1or (¢, UP1@)0 0P~ @) —br @, UP2($))0,07 D)1,

[n:(bis(t, UP~H0)0s0P () —byy (¢, UP2()A 0P D),
can be estimated by the right hand side of [7.14). In consequence, we have
(7.16)  [h%lo0,co, st 1A% o1 co,ra =M {10P 2 P72y o o, 2+ [ WP P72 |4 5 ro. 73} -

Combining and (7.16), we get [(7.8).

In the second step of the proof of the relation (7.3) we shall show that

(7.17) [w? P~ o 0o 1SMA{VP P o re, 71+ (T Her) lwP " P2 o 5 ro, 72}

In this purpose let us subtract side by side the relations (4.30), (4.31) taken
for p and p—1. We obtain w%?-'(#)=0 on /" and

prilw? PO ]=[Gvi@, vP®)—Gvi(@, vP~'(®)]
(7.18) 3
+ 2 [Gre@, 07 (@), wPHB)—=Grvalt, 0771 O, wP* ()] on V
Using the elliptic estimate with L=2 we get
(7.19) [w> P OLEM 3 Laa®+ ra@),

where

Iy (O=|IGy, (&, v2))—Gyi(t, VP D) lsery, cf. [7.15),
Iy e O=1Gyr (@, v?®), wP ' @) — Gy, P71, WP 2oy, k=2, 3.

(7.20)

Let us note that if we get the estimates
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(7.21) Iy (=M PP~ 0.1, c0.73,
(7.22) Iras @ SMAT w2 P2®) |o,2,c0. 73+ [ V7 P71 (D) |0, 1. (0, 1}
(7.23) Iys@) S Meg{lw? " P 2() | o2, c0.73+ VP P (B |1, 0,00, 72} 5

then substituting (7.21)-(7.23) into we obtain (7.17).

One can check that follows from (Ap. 5). To prove let us
estimate separately all terms of Iy, cf. (7.20), (4.16), (4.19). Using (Ap. 10)
we obtain

|3 dars0, UO)DIwr- 858y (w1~ (D—tts-s1-09)

0

-D;wp-2<t>a;’as"<u%:’1’""<t>—uz-wm”oé

C(K, B)(ID‘éwp—l'p_z(t)‘O.I.EO.T]T $= 103105 (w314 (1)

I, 0

(7.24) —Us_s1-37)] K-2,000T1F |D;1zwp_2(t) l K-3,1,00,T)

L3

X 33 1040% uh T (D —ub T Oloo.co.2)

SMAT | wP="P2 () o0, co.rateelv” P D 10013}
where
(7.25) ui=0o.?, 000U }=0,0:up=0,7, uy=u’.
Applying (Ap. 7B), we get

304

[da,s(¢, v?(t), Diu'@®)—dars 0, UO)]IDiw~ (H81'6% uz=*'=*'®

I, 0

[darst, vP (), Diu®)—da; 0, UN0)IDLw? 2 (t)asay us=si- ”m]l
(7.26)
<M{|D1wp l(t)lo K-2,(0, TJ 2 |aslas./(u2 -s1- ”(t)“u 31 ”(t))|o 0,00, T]

+TIDiw? P72 (t) 0,1, c0. 73+ IDiwP=2() ], k-2.00,711VP P (D) o, x,[o,TJ}

SM {107 P ) 1o, co. ree+ T 1w P72 (@) lo,2. 00,73}
Using (Ap. 7A), we can check that
Ild an(, vP(®), Diu'®)—daa©, UO)]IDzw (1)
—[dag, v*~'(t), Diu#)—daa©, UO)NIDzw?*®)l,
(7.27) SMAT|Diw?= " P72 (®) o1, 00,11 F 1 DzwP* @ o, k-2, 00,71
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X NP PO Lo, v ro. b EMAT WP P72 (@) |0, 2. 1o, 71
+egv? P Do 1, c0. 23} -

In the same way, we obtain the analogous estimates for I,,(7). Applying (Ap.
7B) we obtain

|3, (@ult, o7 (@), Diu @)= a0, U 03?0

— (@t v774®), Din(B)— a0, U°O)ddw? O}

(7.28) n :
=M X {T10:0;w?"P*®) |0, 0.co.r1H V" P @) |1, 0,00, 73

i, j=1

X 0:0;wP* () | k-3, 0.c0. 77} SMAT WP P2®) |0, 2,00, 73
+eg|v? P M) |1, 0,00, 73} -

Combining (7.24)-(7.28), we get [7.22).

From the relation: |U?10)| :<ClUP(0)|x-1<M, where the notation U”(#)
=@?{®), Diw*@®)+0wP*(¥)) 1s used and from (Ap. 8A), (Ap. 8B) with A=eg
follows [7.23). As a consequence of (7.21)-(7.23), we obtain (7.17). Combining
and (7.17), we get

[P P~ o o, I WP P g 5, o, 77

(7.29)
SCo0THvP P2 o to.m1HCu(THen) |w?P~" P20 5 0,715

where C;=C (K, B, Ay, Ag), (=10, 11. If we choose T and ¢z so that

(730)  CulK, B, Au, ADTS 5,  CulK, B, Au, AT +en=

[a—y

7;
then we obtain (7.3).

Using (7.2), (7.3), one can prove the existence of a pair (@), wi®))=sZ
satisfying (4.1), 4.5). In fact, from (7.3) it follows that the sequences {v?}
and {w?} are Cauchy ones in X5°([0, T1, 2) and X%3*([0, T], 2), respectively.
Applying the interpolation inequality, cf. [20], Lemma 7.1

|DMD325(wp—wpl)[0,0,[0,T]§C |Dg(wp_wp') l(ll,_oifl[/o(,l}"fs) | Di(w?—w?") ]%igl{o_%t))m
(7.31)

SCIDi(wP—w?) |5 M 57% 2 A" 1K=, 0=M<K-3,
we can see that {w?} is a Cauchy sequence in XE-**(0, T], 2). In the same
way one can prove that {v?} is a Cauchy sequence in XX-%°([0, 7], 2). In con-
sequence, there exist v()=XE-2°([0, T], ) and w@)=XE-*2%([0, T], 2) such
that
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(7.32) m v’ —vlg-2 0.0, r3=IM| WP —w| g3 10, 7:=0.

Do -

Let us recall that the sequences {v?}, {w?} are bounded in the spaces
YE-+90, T], ) and YE-22([0, T], 2), respectively, i.e.

(7.33) WP [ k-10r0.m1= Ap, 1WP k-2 2.0 = Ae, [WP k5200 11=¢E
for p=1, 2, ---. Using (7.32), (7.33) and repeating the standard argument, cf.

[20], Lemma 7.2, one can prove that the obtained limits v, w satisfy the rela-
tions (4.21) and (4.23). Since (4.22) is valid for every ¢? and w?, from it
follows that the limit functions v, w also satisfy this condition. Since (4.24)
follows from (4.22), (4.23) and [7.6), we have proved that the pair (), w(?))
satisfies all conditions (4.21)-(4.24), i.e. (v(f), w(®))eZ. Letting p— oo in (4.28),
(4.30) and using [7.32), (Ap. 5), (Ap. 6), (Ap. 7), (Ap. 8), we can check that the
present v(f), w(t) satisfy (4.1) and (4.11). If we put u(@)=u’(t)+w(), from the
manner of deriving (4.11) from (4.5) we see that v(¢) and u(¢) satisfy (4.1), 4.5).

Now let us check that the present functions u(?), v(¢) satisfy the relation
o,u(®)=v(t) for t=[0, T]. From the relation (4.21) we have U@)=(t), Diu(®))
=YE-21[0, T], £). Applying Ap. 3 we see that (depending on U (¥))
coefficients of the equation (4.1), belong to the space Y¥-2°(0, T], 2)C
XX-29[0, T], £) and the coefficients of (4.1), belong to Y%-2Y[0, T], QC
XE-*4[0, T], 2). The inequality K—3=[n/2]=1 shows that we can dif-
ferentiate (4.5), with respect to ¢. Subtracting the obtained equation and
equation (4.1), side by side and putting z(#)=0d,u(t)—v(f) we obtain

T

(7.34) ,% ast, U<z>>a,.a,-z(t)+’g a¥t, Ut)diz(t)+az(t)=0 in Q,

1
where we have posed

at@, U)0iz@t)=bai(t, U)0:1z(t)+ 2" a1, U())a,2(t)
(739 XY u=t 1=+ () 4 ]2= aut, U@)3iz(t)9:d;u().
Similar considerations on the boundary give

7.36) (5 nbalt, UD)+brit, U®))aiz®=0, zp)=0  on I'.

Since z()eHZ(Q) for t=[0, T], then multiplying by z(f) and integrating
by parts we obtain, that the left hand side of the inequality with by,
replaced by a¥ is equel to zero. Thus [z()[2=0 for t=[0, T], which implies
d.u(®)=v() for t=[0, T]. If we substitute the last relation into (4.5) we see
that u(?) satisfies (1.1)-(1.3).
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In the final step of the proof we shall show that u(®)eX5 ([0, T], 2).
Let us observe that the function v(#) may be regarded as a solution in
X%%[0, T, £) to the linear problem (6.20)-(6.22). Applying we
see that since (v(¥), w(®))<=Z, the solution v(¢) belongs to the space X§~*°([0, 7],
Q). Since du@®)=v{), to get u(t)=X& ([0, T], ) it suffices to prove that
u@®eCY[0, T], HE(Q)). In this purpose let ¢, s be two different elements of
[0, T]. Let us put U®)=@w®, DLu®), V(0)=0U)+(1—8)U(s) and apply some
elementary calculations to (1.1) and Taylor formula to [1.2). We obtain

(7.37) 2, 800, —u(s) +pw®—u(sN=he  in 2
@38 3| BounctabwO-u)=hr, @O—uE)p=0 on I
where

ho=fot)— fo(s)+pu®) —uls) +1+1z,

Li=—3"a,,(s, U($)0H05 w1~/ () —u*=*1=%7(s)),

Li=— 3 (a0t UO)—ausls, UsNI0rdsu)
(7.39) —(aot, U®)—aq(s, U(s))),

hr=frt)—fr(s)—bys, UsHw®—v(s)+1s+1s,

]3:—S;d2( él nia¢+ar)(s, V(D w@®—uls)), D' (u®)—u(s))dao,

L=— 3 nat, UO)—ads, UON—(art, UO)»=ar(s, UG,
=405, ¢E=d+d5E, ¢ir=aus, 0),

gir=by(s, 0),  ¢io=bris, 0), ¢F=(ay)i(s, U()),

@ 3=, UGS)),  ¢*=brns, U(s)).

The problem [7.37), (7.38) is a special case of (5.1) (with ¢f=0). Applying
Ap. 3 we can check that the coefficients given by satisfy the
condition

3RS S ol RN 171 P B ([P PSR 1 PO
(740) veR, i, j=1 j=1

<Cw(K, B, Ay, 4A5) for ¢, s<[0, T].

Thus in the present case the constants 7., 7x in the inequalities [(5.9), (5.13)
are of the form
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(7'41) TK:CIZ(Ky B; AII) AE)’ rm:Cw(K; Br AII; AE))

and are independent of ¢, s€[0, T]. Hence, there exists a u depending only on
K, B, Ay, Ag and independent of ¢, s=[0, T] such that the inequality
with L=K and with w replaced by u(f)—u(s) holds true:

(7.42) lu@—u()lx =M{llhallk-2+{hrYx-s2  for t,s€[0, T].

Let us estimate the right hand side of (7.42). Using (Ap. 1), we see that
il g2 M0l @) —v(s))l|k-.. Applying (Ap. 1), the mean-value theorem
and Ap. 3, we get [ x-.=M{|t—s|+ v —v(S) k- +Nu@®—uls)llg-1}-
Combining Ap. 1 and the estimate (Ap. 1) we can check that ||/]lx-»

=\t nactarns, VOYD@O—us), D'a®—us)as| < MID'@®-
u(S)HNk-2 < M{llu@—u(s)|%-1+ lv@®)—v(s)|%-2}. Finally, from the mean-value

theorem we obtain ||/,||x-.<M|t—s|. Substituting the obtained estimates into
(7.42) we get

lu@—uS) e ML fo)— folS k-2 r®—F r($))x-ss
(7.43) +t—s|+ éﬂ 181 (W® — ()N g -2+ 0@ —v() | & -2+ 1) — () | k-

+lv@®—v(S) k-2 +lu@)—u(s)k-1}, for s, te[0, T1,

with a constant M independent of s and ¢. Recall that we have checked that
v e XE-Y([0, T], 2) and u@®YE-22([0, T1, 2)c C%([0, T], HE*(Q)). Using
the hypotheses we can see that from (7.43) it follows that u ()< C°([0, T'],
HE2). The proof of is complete.

APPENDIX. ESTIMATES OF SOME NONLINEAR TERMS.

In this appendix we present some facts which follow from Sobolev imbed-
ding theorem (cf. for example [1], p. 97) and are frequently used in the text.
We omit the proofs since they are similar to those given in sections 7.2, 7.3 of
the monograph and in the Appendix of the paper [20], (the only exception
is the proof of Ap. 5b).

Let 2 be a n-dimensional domain with a smooth boundary and K>[n/2]43.

THEOREM AP. 1A. If a, B are real numbers and y an integer such that a,
B=r=0 and a+B—7r>(n/2) then the relations u,= H*(Q), u,= H*(Q2) imply u,u,=
H1(2) and ||u,usll; £C(n, Dlluillaluells.

THEOREM AP. 1B. [t ry, -+, 7y, k=2 and S be nonnegative real numbers
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and L a nonnegative integer such that S>n/2, Szr,+-+ry+L and u;c
HS™"3(@), j=1, -, k, then the product u, - u, belongs to HX(Q) and |u,u.llL
<C(k, D)llurlls-r, - llttrlls-r,-

THEOREM AP.2. Let | be an interval of R and L, M integers such that
L, M=0 and L+M>n/2. If u,cZ"(J, D), j=1, -,k and Z=X or Z=Y
then their product u, - u, belongs lo ZLM(J, Q). Furthermore if Z=X then
ID*(uy - up)llw = C(k, L, M)||D*u\lly -+ | DEurlly for t<].

THEOREM AP. 3. Let L, M be as in Theorem Ap. 2. Let F(t, x, u) e
B>(JX 2X {lul<uo}), F(t, x, )=0 for (¢, x)= X2 and ucZ**(J, D), Z=X or
Z=Y, [u® o oZu, for t<jJ. Then F(t, x, ult, x))cZ»¥(], Q). Furthermore,
when Z=X, |D*F(, -, u@®t, Nx=C(L, M, F){1+{D*u@)lls} “+* I D*u®)ll -

REMARK Apr. 1. When uj, u, F do not depend on ¢, Theorems Ap. 2, Ap.
3 are valid if we put L=0 and Z»¥ (], @Q)=HY(2.

In the following estimates we always assume that J=[0, T], G(@, x, w) e
Bo(JX2X {lulSus}), Hx, uye B>(2X {|u| Su,}).

(Ap. 1) Let K, N be nonnegative integers such that K—2<N+M<K-—1.
If uysZ¥M(J, D), v)eZY¥%(J, 2), Z=X or Z=Y and ||u(t)|« .<u, for tc]
then G, u())v(eZ¥-¥(J, ). Furthermore, when Z=X, [|[DY¥(G(, u®))v(®))|lsx
<CWM, N){IDVG(E, 0)lleo, s+ DY (G, u@®)—G (&, 0)la} 1DV 0(@®)]lar-

(AP. 2) Let u(eXE-21(J, @) be such that |[u(®)]e <u, for t=J and v(t) =
XE-2¥(] @), N=0,1. Put I¢t)={G(, -, u®)—G(, -, u(@)}v@®. Then I
XE-2N(], ) and

11|K—2.N,J§C(K, lu|K-z,1,J>{T|UlK—2.N,J+IUIK—a,x,J} .

(Ap. 3A) If u(®), I(¢) are the same as in (Ap. 2) and v()eXX-%°(J, Q) then
IeX®-%0(] ) and

I“K—s,o,J§C(K; B, lu|K—2,1,J)T|'U|K—3,o_J-

(AP. 3B) If w(?), I(f) are the same as in (Ap. 2) and v XX-2°(J, 2) then
IHeXx-2(], Q) and

1 k5,0, 0 SC&K, Ul g0, DT 0] k2,00 +CK, IDX2uO) ) |v]x-50,7-

(AP. 4) Let u(?) and v(f) be the same as in (Ap. 2). Put I@®)=G({, -, u(®))
Xv(v(t). Then IeXE-2N(], Q) and
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[k -oon s SCK, Nulg-s . DV k-2 v 010 k=510
(AP. 5) Let N=0 or 1, H(x, )=0. If u;cHX%Q), |u,le o<us j=1,2
then |H(-, u)—H(, u)In<C(K, lusllx-2r llttall x-2) 61— t4s]| n -

(AP. 6) Let N=0 or 1. If u;, v,;€EHX2(2) and ||u;]ew o= u,, 7=1, 2 then
TH (-, udvi—H (-, u)vallw < CK, uillk-a, Nteallx—2) {lvi—vall v + 0ol x —oll i — usll v} -

(AP. 7a) Let N=0 or 1 and u,(t)c X%-2'(J, Q), v,(H)eXK-2¥(] 0), j=1, 2.
Assume that [u;ll. <u, for t= ], j=1, 2 and u,(0)=u,0). Put IH=I1,0)v,()—
L,(®v,(t) where L;()=G(, -, u;())—G(O, -, u;0). Then |I]oy s<CK, |U|x-2,

1.J |u2|K—2,1,J){Tlvl_U2|0,N,J+ lvzlo,K-3+N,J|u1—u2|o,1,J}-

(Ap. 7B) Let u;(t), I;(¥) be as in (Ap. 7A) and v;(¢t), w,;(t)cX¥-2°(J, Q) for
7=1,2. Put It)=1,)v,Ow,@®)—,@vs(Ows(t). Then [I]e,s,=<C(K, |t|x-0.1.7,
|u2|K—2,1,J’ lelK-z,o,J; |w2|K—2.o,J) {Ivllo,K—z,lel — w2|o,o,J+T|U1 - Uzlo.l,J +

|U2|0,K—2,J|u1"u2|o,1,J}-

(Ap. 8A) If uy;, v,;€eHE-2(), |ujlle o<u,and |jv;llx-.<A<1 for j=1, 2, then
IHC, udviwy—HC, uo)vaws | v S CK, Nl k-2, (el x—o) XA{uy— el w+llvi—vsll v} -
(Ap. 8B) If additionally w;eH¥%X-%(2), then
IH(, w)vwaw,—H(, ug)vavaws| v S C K, luillk-20 sl -2, [vallk-2) XA
X s —usll v +llvi—vall v+ lwi—wsll v} -

(AP. 9) Let u(heXX>(J, @), |u(®)|wZu, for teJ. Then |G, -, u{)llwo
<Ci+C:T|ulk-s, s for te], where C,=sup{|G{, x, u)|: (, x)e]X.@, lu| <
uﬂ}; C2zsup{|atc(t5 xyu)|+|dc(ty xy u)l : (t’ x)ejxgi Iuléuﬂ}'

(Ap. 10) If u;, v,e XK-2°(], ), j=1, 2 then [u,(®)v,:())—u,[Dve(B)llo <

CENur—uslor, s T V1| k=200t [Ual k=31, 7 [V1—V2l0,0.}
THEOREM AP. 4A. There exists a constant C=C(")>0 such that
(udye<Cllull,  for all uesH (D).
THEOREM AP. 4B. For any >0 there exists a constant C(e, I') such that

(ui<elluli+Cle, IMHllully  for usHY().

THEOREM AP. 5A. If uycHX-¥(Q) for 0OSM<K, then there exists a v(l)=
X% %R, ) such that @¥v)0)=uy in & for 0SM<K and
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IDFUOISCUO) 3 luwllsw  Jor t=R.

THEOREM AP. 5B. [f uyc HE () for 0OSM<K, then there exists a u(t)<
XE-2%R, Q) such that @¥u)0)=uy in £ for 0SMZK—2 and

K
lulK—2,2,R§C(K)MZ=0“uM“K—M for teR.

PrROOF. If a¢&Mp, then we define u®(t) as v*(t) where v(¢) is the same func-
tion as in from Ap. 5A. It remains to define the function up(t) (cf. [1.6)).
In this purpose let us consider the elliptic boundary value problem

(%) Aup()=Avp®) in 2, up(®)=0 on [, for teR.

In the same way as we can prove the existence of an unique
up()e X¥-22(R, Q) satisfying (x). Let us note that the functions uyp, 0OS<M=
K—2 satisfy the conditions

(%) Ao¥up(0)=A0Yv,(0) in 2, 0¥up(0)=0 on I,

obtained from (*) by differentiation with respect to ¢ and putting {=0. From
the uniquenes of solutions to the problem (x*) we have 0¥fup(0)=uyp in £ for
0<M<K—2. Using known estimates for Dirichlet problem we can prove that
lup(®) | k-2.2. < C 1 Avp(®) | £ -2,0, < C lvp() | g-2.2. rS C(K) X0l mlix-n- The proof
is complete.

THEOREM AP. 6. Let T>0 and let L and M be nonnegative integers. If
u)sY>X([0, T, Q) then there exist v()eY L M(R, Q) such that v(t)=u(t) for
t=[0, T] and

L-1
20,2 CM, D1l oot 2 108 U@ lzr-x}

THEOREM AP. 7. Let F(t, x, U)eB>([0, T1x2X {|U|<U,}) and let u@t)e
YE-2Y[0, T], Q) be such that |u(®)|e U, for t[0, T]. Then |[F(t, -, u()—
FQO, -, uO) w1 = CK, |ulg-21.c0.7){T+C ()T} for t<[0, T], where ¢ is a
constant in (0, [n/2]+1—n/2). In the special case F=U, |U#t)—U@0)|ew <=
C(K)tslU‘K—B,l.[O,T:I-

References

[1] Adams, R.A., Sobolev Spaces, Acad. Press, New York, 1975,

(2] Agmon, S., Lectures on Elliptic Boundary Value Problems, Van Nostrand, Prince-
ton, 1965.

37 Chen, V.C. and von Wahl, W., Das Rand-Anfangswertproblemen fur quasilineare
Wellengleichungen in Sobolevraumen niedriger Ordnung, J. Reine Angew.



486

(4]
(5]

[6]

Andrzej CHRZESZCZYK

Math., 337 (1982), 77-112.

Chrzeszczyk, A., Initial-Boundary-Value Problems for Equations of Generalized

Thermoelasticity and Elasticity. Math. Meth. Appl. Sci. (to appear.)

Chrzeszczyk, A., Some existence results in dynamical thermoelasticity, Part I,
Nonlinear case, Arch. Mech., 39 (1987), 605-617.

Dafermos, C.M. and Hrusa, W.]., Energy method for quasilinear hyperbolic initial-
boundary value problem, Applications to elastodynamics, Arch. Rational Mech.
Anal., 87 (1985), 267-292.

Green, A.E. and Lindaay, K. A., Thermoelasticity, J. Elasticity, 2 (1972), 1-7.

Ignaczak, J:, Thermoelasticity with finite wave-speeds, Ossolineum, Warsaw, 1989.
(in Polish)

Jiang, S. and Racke, R., On Some Quasilinear Hyperbolic-Parabolic Initial Boundary
Value Problems, Math. Meth. Appl. Sci., 12 (1990), 315-339.

Kato, T., Abstract differential equations and nonlinear mixed problems, lLezioni
Fermiane, Pisa, 1985.

Kato, T., Linear and quasilinear equations of evolution of hyperbolic type, C.LM.E.,
Il Ciclo, Hyperbolicity, 1976, 125-191.

Krzyzanski, M. and Schauder, J., Quasilineare Differentialgleichungen zweiter
Ordnung vom hyperbolischen Typus, Gemischte Randwertanfgaben, Studia
Math. 6 (1936), 162-189.

Milani, A.J., A regularity result for strongly elliptic systems, Boll. de Uni. Math.
Ital. Ser. 2B, 6 (1983), 641-651.

Mizohata, S., The theory of Partial Differential Equations, Cambridge Univ. Press,
London/New York, 1973.

Miller, I., The Coldness, a Universal Function in Thermoelastic Bodies, Arch.
Rational Mech. Anal., 51 (1971), 319-331.

Shibata, Y., On a local existence theorem of Neumann problem for some quasilinear
hyperbolic equations, “Calcul d’operateurs et fronts d’ondes”, ed. ]J. Vailant,
Travaux en cours, Hermann, Paris, 1988, pp. 133-167.

Shibata, Y., On a local existence theorem for some quasilinear hyperbolic-parabolic
coupled system with Neumann type boundary condition, Manuscript.

Shibata, Y., On the Neumann problem for some linear hyperbolic systems of second
order, Tsukuba J. Math., 12 (1988), 149-209.

Shibata, Y., On the Neumann problem for some linear hyperbolic systems of 2nd
order with coefficients in Sobolev spaces, Tsukuba J. Math. 13 (1989), 283-352.

Shibata, Y. and Kikuchi, M., On the Mixed Problem for Some Quasilinear Hyper-
bolic System with Fully Nonlinear Boundary Condition, J. Diff. Egs. 80 (1989),
154-197.

Shibata, Y. and Nakamura, G., On a local existence theorem of Neumann problem
for some quasilinear hyperbolic systems, Math. Z. 202 (1989), 1-64.

Institute of Mathematics
Pedagogical University
ul. Konopnickiej 21
25-406 Kielce, Poland



	ON SOME CLASS OF INITIAL ...
	Introduction.
	1. Formulation of the ...
	THEOREM 1.1. ...

	2. Notations.
	3. Compatibility conditions.
	4. Iteration procedure.
	5. Auxiilary theorems ...
	THEOREM 5.1. ...
	THEOREM 5.2. ...
	THEOREM 5.3. ...

	6. Auxiliary theorems ...
	THEOREM 6.1. ...
	THEOREM 6.2. ...

	7. The convergence of ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP.2. ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP. ...
	THEOREM AP. ...

	References


