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A COMBINATORIAL PROOF FOR ARTIN’S
PRESENTATION OF THE BRAID GROUP
B, AND SOME CYCLIC ANALOGUE

By
Jun MoRiTA
1. Artin’s presentation.
For each n=1, let S, be the symmetric group on n letters {1, 2, ---, n},

and B, the geometric braid group with »n strings.

n——l n

Ko

There is a natural homomorphism, called X,, of B, onto S,. As usual, S,-:

—-1n

and B,_, are regarded as subgroups of S, and B, respectively, and then the
restriction of X, to B,_, coinsides with X,_,. Put B3=X3'(S,-,). Then B,_,
is a subgroup of BJ.

Let ﬁn be the group presented by the generators:

Gy, Ggy ', Op—1
and the defining relations:
{ 0,0;0;=0;0,0; if |i—j|=1;
0:0;=0;0; if |z—71+0,1.

Put

Ti=0nk, " OTH0i0 41 Oy for 1=i<n-—2,

Tn1=0%_;.
Let BY be the subgroup of B, generated by ¢, -, Gns, 71, ***, Tn-;. Then

there is a natural homomorphism of ﬁn_l into l§2.
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Taking o; to the /-th fundamental braid:

1 i 141 n

®
1 2 : i+l n

for 1</<n—1, we obtain a homomorphism, called ¢,, of ﬁn onto B,. Then
the following result is well-known.

ARTIN’S THEOREM. ¢, is an isomorphism.

PROOF. We proceed by induction on n. The result is trivial if n=1, 2.
Suppose n=3, and that ¢,-, is an isomorphism. Forgetting the n-th string,
we obtain a homomorphism, called #, of B} onto B,_,. Hence, B)=B,_ X
Ker 0, and Ker §=F,_.,, where F,_, is the free group of rank n—1. This fact
implies that ﬁ;{ is isomorphic to B under ¢,. Let p=a,0, - ¢,_;, and put

X=ByUBlpuU - UBlp"1.
Then §n=<§2, p>, and Xisa subgroup since

PO ;=0 i+ 0 (1§Z§n_2),

PO, 2=07 s - 03'07'0",  P’0n-2=0103 " Cn_sTnp,
PTi=0,0; -+ G;_,0307L, - 03'07'p (Aign—2),
PTn-x:TxP ’

P"=(010; - Cp-2)" "Tn-1Tn-2 " TsT1,

~ ~

Therefore, X=58,, and the group index [En: ﬁ%] is at most n, which implies
[EnzBi’.]:n. Hence, ¢, is an isomorphism. |

2. Some cyclic analogue.

Here we consider the braid group B,:,=<a,, d;, -, 6,> wWith n=3 and a
certain subgroup. Put

0=0720105 " Gn-30,-103%3 -+ G3'01'a5,
T=0,0y " Cp_0%

and set C3,,=<0,, -, Gn_1, )CBrs;. Then B, 1=<{Cs, n>. Let C¥,, be the
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group presented by the generators:

ﬁl, ﬁz; - ‘Bn

and the defining relations:
{ BiBiBi=BiB:B;  if li—jl=1,n—1

and Z the infinite cyclic group generated by . We construct the semi-direct
product, called B¥,;=ZxC¥,, of Z and C¥,, with EBL ' =B 1=Zitn—1)
and {B,L7'=B,. Then there is a homomorphism ¢, of B¥%,, onto BY,; with

B, — g, (1£i<n—1);
Oy ﬁn —>0;
 —orm.
On the other hand, there is a homomorphism ¢, of Bj., onto B¥,, with
g;— B, (1<i<n—1);
¢2'{ ro—7, (Sisw),
where B, =<0y, «+, Opn-y, T1, =, Top =B, X% F, and
Te=PBit - B3 BT Bt - BB

Then one can see both ¢,¢,=7d. and ¢.¢p,=id. Hence we obtain the following.
THEOREM. Bj,,=B%., and Cj.,=C}...

Therefore, the group Cj., may be called a braid covering of the affine
Weyl group W,(S,) associated with S,. We can describe this fact more pre-
cisely as follows. Let f, be the canonical gradation homomorphism of F,=
{ti, *, Tny onto Z, and put E£,=Ker f,. Then C),,=B,xE, and E, is the
normal subgroup of F, generated by

TiT2's ToTs 'y 5 TnoaTh' -
Hence, we obtain a homomorphism v,,, of C%,,=B,X E, onto

SaXEL/[F,, F,]l=S,xZ"'=W,(S,).

The (C3+i1, vas1) gives the above braid covering of W,(S,). Put Q,..,=Kery,,,.
Then Qu..=P,x[F,, F,], where P, is the kernel of X, and called the pure
braid group with n strings.

We refer to [1], [2] for braid groups, and for affine Weyl groups.
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