THE HOCHSCHILD COCYCLE CORRESPONDING TO A LONG EXACT SEQUENCE

Dedicated to Hiroyuki Tachikawa on his 60th birthday

By

Vlastimil DLAB and Claus Michael RINGEL

1. Let k be a field, and A an associative k-algebra with 1. Let M, N be right A-modules. We denote by H the Hochschild cohomology of A. It is well-known that there is a natural isomorphism

$$\eta_{MN}: \operatorname{Ext}_A^t(M, N) \longrightarrow H^t(A, \operatorname{Hom}_k(M, N))$$

see Cartan-Eilenberg [CE], Corollary IX. 4.4. For $t \ge 1$, the elements of $\operatorname{Ext}_A^t(M, N)$ may be considered as equivalence classes of long exact sequences, see Mac Lane [M], chapter III. Let

$$E = (0 \longleftarrow M \stackrel{g_0}{\longleftarrow} Y_1 \stackrel{g_1}{\longleftarrow} Y_2 \longleftarrow \cdots \longleftarrow Y_t \stackrel{g_t}{\longleftarrow} N \longleftarrow 0)$$

be an exact sequence. We want to derive a recipe for obtaining a corresponding cocycle $A^{\otimes (t+2)} \to \operatorname{Hom}_k(M, N)$.

For $0 \le i \le t+1$, let Z_i be right A-modules, and for $0 \le i \le t$, let $\beta_i : Z_i \to Z_{i+1}$ be k-linear maps. With $\beta = (\beta_0, \dots, \beta_t)$ we associate a map

$$Q_{\beta}: A^{\otimes (t+2)} \longrightarrow \operatorname{Hom}_{k}(Z_{0}, Z_{t+1})$$

defined by

$$(a_0, \cdots, a_{t+1})\Omega_{\beta} = \bar{a}_0\beta_0\bar{a}_1\beta_1\cdots\bar{a}_t\beta_t\bar{a}_{t+1}$$
,

for $a_0, \dots, a_{t+1} \in A$, where \bar{a}_i denotes the scalar multiplication by a_i (on Z_i); note that all maps will be written on the right of the argument, thus the composition of $\beta_0: Z_0 \to Z_1$, and $\beta_1: Z_1 \to Z_2$ is denoted by $\beta_0 \beta_1$.

Given the exact sequence E exhibited above, it clearly splits as a sequence of k-spaces, thus there are k-linear maps

$$M \xrightarrow{\gamma_0} Y_1 \xrightarrow{\gamma_1} Y_2 \longrightarrow \cdots \longrightarrow Y_t \xrightarrow{\gamma_t} N$$

such that

$$\gamma_{i-1}\gamma_i=0$$
, $g_{i-1}\gamma_{i-1}+\gamma_ig_i=1_{Y_i}$, for $1 \le i \le t$,

Received December 4, 1989.

and

$$\gamma_0 g_0 = 1_M$$
, $g_t \gamma_t = 1_N$,

(see section 2).

Theorem. The map $\Omega_{\tau}: A^{\otimes (t+2)} \to \operatorname{Hom}_{k}(M, N)$ is a cocycle, and the cohomology classes $[\Omega_{\tau}]$ and $\eta([E])$ in $H^{t}(A, \operatorname{Hom}_{k}(M, N))$ are equal up to sign.

One reason for our interest in this problem is the following: Consider the case t=2. Given any bimodule ${}_{A}T_{A}$, the elements of $H^{2}(A, T)$ index the various "Hochschild extensions" \tilde{A} of A by T (here, \tilde{A} is a k-algebra with a square zero ideal I such that $\tilde{A}/I=A$, and such that I, as an A-A-bimodule, is isomorphic to T; note that the multiplication of \tilde{A} can be recovered from A and T using the corresponding 2-cocycle, see [H] or [CE], XIV. 2). There is a recursive construction for quasi-hereditary algebras due to Parshall and Scott ([PS], Theorem 4.6) which uses Hochschild extensions of quasi-hereditary algebras A by bimodules of the form $\operatorname{Hom}_k(M, N)$, so we have to deal with 2cocycles $A^{\otimes (4)} \to \operatorname{Hom}_k(M, N)$. Our presentation of such 2-cocycles using long exact sequences should help to understand these algebras. Also, we remark that the Hochschild cohomology groups with values in $\operatorname{Hom}_k(DA, A)$, where $DA = \operatorname{Hom}_k(A, k)$, play a prominent role in Tachikawa's discussion of the Nakayama conjecture [T].

The splitting for E over k. In order to work with the sequence E, it will be convenient to use the notation: $Y_{-1}=0$, $Y_0=M$, $Y_{t+1}=N$, $Y_{t+2}=0$, and to deal also with the zero maps $g_{-1}: Y_0 \rightarrow Y_{-1}$, $\gamma_{-1}: Y_{-1} \rightarrow Y_0$, $g_{t+1}: Y_{t+2} \rightarrow Y_{t+1}$, $\gamma_{t+1}: Y_{t+1} \rightarrow Y_{t+2}$; so that the conditions mentioned above can be rewritten in the form

$$\gamma_{i-1}\gamma_i=0$$
, $g_{i-1}\gamma_{i-1}+\gamma_ig_i=1_{Y_i}$, for $0 \le i \le t+1$.

Let X_i be the image of g_i , thus we have short exact sequences

$$0 \longleftarrow X_{i-1} \stackrel{h_{i-1}}{\longleftarrow} Y_i \stackrel{f_i}{\longleftarrow} X_i \longleftarrow 0$$

for $1 \le i \le t$, with $g_0 = h_0$, $g_i = h_i f_i$ for $1 \le i \le t - 1$, and $g_t = f_t$. These sequences split over k, thus we obtain k-linear maps $\varphi_i: Y_i \to X_i$, $\eta_{i-1}: X_{i-1} \to Y_i$ such that $\eta_{i-1}\varphi_i = 0$, $f_i\varphi_i = 1_{X_i}$, $\eta_{i-1}h_{i-1} = 1_{X_{i-1}}$ and $h_{i-1}\eta_{i-1} + \varphi_i f_i = 1_{Y_i}$ for all i. Now, take $\gamma_i = \varphi_i \eta_i : Y_i \rightarrow Y_{i+1}$, in this way we obtain a splitting of E over k.

3. Preparation for the proof. Let $A^e = A^{op} \otimes A$ be the enveloping algebra

490

of A, where A^{op} is the opposite algebra of A. The A-A-bimodules are just the (right) A^e -modules, in particular, A itself is in a canonical way an A^e -module. For $n \ge 0$, let $S_n = A^{\otimes (n+2)}$, and let $\nabla_n : S_{n+1} \to S_n$ be defined by

$$(a_0 \otimes a_1 \otimes \cdots \otimes a_{n+2}) \nabla_n = \sum_{i=0}^{n+1} (-1)^i a_0 \otimes \cdots \otimes (a_i a_{i+1}) \otimes \cdots \otimes a_{n+2}.$$

Also, let $\nabla_{-1}: S_0 \rightarrow A$ be defined by

$$(a_0 \otimes a_1) \nabla_{-1} = a_0 a_1$$
.

The S_n are A-A-bimodules, or, equivalently A^e -modules, the scalar multiplication of $a_0 \otimes a_1 \otimes \cdots \otimes a_{n+1} \in S_n$ by $a \otimes a' \in A^{op} \bigotimes_k A = A^e$ yields $(aa_0) \otimes a_1 \otimes \cdots \otimes (a_{n+1}a')$. Note that for all $n \geq -1$, the maps ∇_i are A^e -linear, in fact

$$A \stackrel{\nabla_{-1}}{\longleftarrow} S_0 \stackrel{\nabla_0}{\longleftarrow} S_1 \longleftarrow \cdots$$

is a projective resolution of A as a right A^e -module, it is called the *standard* resolution of A, see [CE], IX. 6. We can use this resolution in order to calculate $H^t(A, \operatorname{Hom}_k(M, N)) = \operatorname{Ext}_{A^e}^t(A, \operatorname{Hom}_k(M, N))$.

4. Besides $\gamma = (\gamma_0, \dots, \gamma_t)$, we also will need for $0 \le r \le t$, the sequences $\gamma(r) = (\gamma_0, \dots, \gamma_r)$, so that $\gamma(0) = (\gamma_0)$, $\gamma(t) = \gamma$. According to section 1, there is defined $\Omega_{\gamma(r)} : S_r \to \operatorname{Hom}_k(Y_0, Y_{r+1})$. In addition, by abuse of language, we also define $\Omega_{\gamma(-1)} : A \to \operatorname{Hom}_k(Y_0, Y_0)$ by $a\Omega_{\gamma(-1)} = \bar{a}$, for $a \in A$.

LEMMA. For
$$0 \le r \le t$$
, we have $\nabla_{r-1} \Omega_{\gamma(r-1)} = (-1)^r \Omega_{\gamma(r)} \operatorname{Hom}(1, g_r)$.

PROOF. We introduce the following notation: let $\sigma_i = \gamma_i \bar{a}_i$, $\tau_i = \bar{a}_i \gamma_i : Y_i \rightarrow Y_{i+1}$ for $0 \le i \le t-1$, and let $\sigma_{ij} = \sigma_i \sigma_{i+1} \cdots \sigma_j$, $\tau_{ij} = \tau_i \tau_{i+1} \cdots \tau_j$ for $0 \le i \le j \le t-1$; by abuse of language, let $\sigma_{i+1,i} = 1_{Y_i}$, and $\tau_{i+1,i} = 1_{Y_{i+1}}$. Recall that

$$(a_{-1} \otimes \cdots \otimes a_r) \nabla_{r-1} = \sum_{i=0}^r (-1)^i a_{-1} \otimes \cdots \otimes (a_{i-1}a_i) \otimes \cdots \otimes a_r,$$

thus

$$\begin{split} (a_{-1} \otimes \cdots \otimes a_r) \nabla_{r-1} \mathcal{Q}_{\gamma(r-1)} &= \sum_{i=0}^r (-1)^i \bar{a}_{-1} \sigma_{0, i-1} \tau_{i, r-1} \bar{a}_r \\ &= \sum_{i=0}^r (-1)^i \bar{a}_{-1} \sigma_{0, i-1} (g_{i-1} \gamma_{i-1} + \gamma_i g_i) \tau_{i, r-1} \bar{a}_r \,, \end{split}$$

where we have inserted $1_{Y_i} = g_{i-1}\gamma_{i-1} + \gamma_i g_i$. Note that for $0 \le i \le r-1$, we have

$$\sigma_{0, i-1} \gamma_i g_i \tau_{i, r-1} = \sigma_{0, i-1} \gamma_i g_i \bar{a}_i \gamma_i \tau_{i+1, r-1}$$

$$= \sigma_{0, i-1} \gamma_i \bar{a}_i g_i \gamma_i \tau_{i+1, r-1}$$

$$= \sigma_{0, i} g_i \gamma_i \tau_{i+1, r-1},$$

since g_i is A-linear. As a consequence, the last term of the summand with index i and the first term of the summand with index i+1 are equal up to sign, so they cancel. In addition, the first term of the summand with index i=0 involves $g_{-1}=0$, thus vanishes. It remains

$$(a_{-1} \otimes \cdots \otimes a_{\tau}) \nabla_{\tau-1} \Omega_{\tau(\tau-1)} = (-1)^{\tau} \bar{a}_{-1} \sigma_{0, \tau-1} \gamma_{\tau} g_{\tau} \bar{a}_{\tau}$$

$$= (-1)^{\tau} \bar{a}_{-1} \sigma_{0, \tau} g_{\tau}$$

$$= (-1)^{\tau} (a_{-1} \otimes \cdots \otimes a_{\tau}) \Omega_{\tau(\tau)} - g_{\tau}$$

$$= (-1)^{\tau} (a_{-1} \otimes \cdots \otimes a_{\tau}) \Omega_{\tau(\tau)} \operatorname{Hom}(1, g_{\tau}).$$

This finishes the proof.

5. An injective coresolution of the A-A-bimodule $\operatorname{Hom}_k(M, N)$. We choose a projective resolution

$$0 \longleftarrow M \stackrel{\not D_{-1}}{\longleftarrow} P_0 \stackrel{\not D_0}{\longleftarrow} P_1 \longleftarrow \cdots$$

of the A-module M, and an injective coresolution

$$0 \longrightarrow N \stackrel{q^{-1}}{\longrightarrow} Q^0 \stackrel{q^0}{\longrightarrow} Q^1 \longrightarrow \cdots$$

of the A-module N. For $t \ge 0$, let $L^t = \bigoplus_{i=0}^t \operatorname{Hom}_k(P_i, Q^{t-i})$, this is an A - A-bimodule, or, equivalently a right A^e -module. For $t \ge 0$, define an A^e -linear map $\Delta^t : L^t \to L^{t+1}$ by

$$(\varphi_0, \cdots, \varphi_t) \Delta^t = (\varphi_0 q^t, (-1)^{t+1} p_0 \varphi_0 + \varphi_1 q^{t-1}, \cdots, (-1)^{t+1} p_{t-1} \varphi_{t-1} + \varphi_t q^0, (-1)^{t+1} p_t \varphi_t),$$

where $\varphi_i \in \operatorname{Hom}_k(P_i, Q^{t-i})$, and define $\Delta^{-1} : \operatorname{Hom}_k(M, N) \to L^0$ by $\Delta^{-1} = \operatorname{Hom}(p_{-1}, q^{-1})$. We obtain a sequence

$$0 \longrightarrow \operatorname{Hom}_{k}(M, N) \xrightarrow{\Delta^{-1}} L^{0} \xrightarrow{\Delta^{0}} L^{1} \longrightarrow \cdots,$$

which is an injective coresolution, see [CE], IX, Cor. 2.7a.

In order to relate the given sequence E with the injective coresolution Q := (Q, q), we define $u_{-1}=1_N$, and, inductively, we find $u_i: Y_{t-i} \to Q^i$ such that $g_{t-i}u_i=u_{t-1}q^{t-1}$, for $0 \le i \le t$.

We are going to reformulate the previous lemma using the maps Δ^i and u_i . For $0 \le r \le t-1$, let

$$\Omega_r': S_r \longrightarrow L^{t-r-1}$$

be defined by

$$(a_0 \otimes \cdots \otimes a_{r+1}) \Omega'_r = (p_{-1} \cdot (a_0 \otimes \cdots \otimes a_{r+1}) \Omega'_{r(r)} \cdot u_{t-r-1}, 0, \cdots, 0),$$

and similarly, let

$$\Omega'_{-1}: A \longrightarrow L^t$$

be defined by

$$(a)\Omega'_{-1} = (p_{-1}\bar{a}u_t, 0, \dots, 0).$$

PROPOSITION. For $0 \le r \le t-1$, we have $\nabla_{r-1} \Omega'_{r-1} = (-1)^r \Omega'_r \Delta^{t-r-1}$. For r=t, we have $\nabla_{t-1} \Omega'_{r-1} = (-1)^t \Omega_r \Delta^{-1}$.

PROOF. For $0 \le r \le t$, and $a_0, \dots, a_{r+1} \in A$, we have

$$(a_{0} \otimes \cdots \otimes a_{r+1}) \nabla_{r-1} \Omega'_{r-1} = (p_{-1}(a_{0} \otimes \cdots \otimes a_{r+1}) \nabla_{r-1} \Omega_{r(r-1)} u_{t-r}, 0, \cdots, 0)$$

$$= (-1)^{r} (p_{-1}(a_{0} \otimes \cdots \otimes a_{r+1}) \Omega_{r(r)} g_{r} u_{t-r}, 0', \cdots, 0)$$

$$= (-1)^{r} (p_{-1}(a_{0} \otimes \cdots \otimes a_{r+1}) \Omega_{r(r)} u_{t-r-1} q^{t-r-1}, 0, \cdots, 0),$$

using the definition of Ω'_{r-1} , the lemma, and the defining condition for u_{t-r} . On the other hand, for $0 \le r \le t-1$, we have

$$(a_0 \otimes \cdots \otimes a_{r+1}) \Omega'_r \Delta^{t-r-1} = (p_{-1}(a_0 \otimes \cdots \otimes a_{r+1}) \Omega_r u_{t-r-1}, 0, \cdots, 0) \Delta^{t-r-1}$$
$$= (p_{-1}(a_0 \otimes \cdots \otimes a_{r+1}) \Omega_r u_{t-r-1} q^{t-r-1}, 0, \cdots, 0)$$

using the definitions of Ω'_r , Δ^{t-r-1} , and the fact that $p_0p_{-1}=0$. Similarly, for r=t, we have

$$(a_0 \otimes \cdots \otimes a_{t+1}) \Omega_{\gamma} \Delta^{-1} = p_{-1}(a_0 \otimes \cdots \otimes a_{t+1}) \Omega_{\gamma} q^{-1}$$
$$= p_{-1}(a_0 \otimes \cdots \otimes a_{t+1}) \Omega_{\gamma(t)} u_{-1} q^{-1},$$

since $\Omega_{\gamma} = \Omega_{\gamma(t)}$ and $u_{-1} = 1$.

6. Some homological algebra. We will need some basic result of homological algebra which we want to review. We have chosen already a projective resolution of M, and an injective coresolution of N. In order to calculate $\operatorname{Ext}^t(M,N)$ we may use one of these sequences, or else the double complex $\operatorname{Hom}_A(P_i,Q^j)$. So let $R^t = \bigoplus_{i=0}^t \operatorname{Hom}_A(P_i,Q^{t-i})$, this is a subset of $L^t = \bigoplus_{i=0}^t \operatorname{Hom}_k(P_i,Q^{t-i})$, and let $\delta^t : R^t \to R^{t+1}$ be the restriction of Δ^t to R^t , similarly, let $\delta^{-1} : \operatorname{Hom}_A(M,N) \to L^0$ be the restriction of $\Delta^{-1} = \operatorname{Hom}(p_{-1},q^{-1})$ to $\operatorname{Hom}_A(M,N)$. So we obtain a complex

$$R := (R^0 \xrightarrow{\delta^0} R^1 \xrightarrow{\delta^1} R^2 \longrightarrow \cdots)$$

which we want to compare with the complexes

$$\operatorname{Hom}_A(P, N)$$
 and $\operatorname{Hom}_A(M, Q)$.

Note that there are maps

$$\operatorname{Hom}(1, q^{-1}) : \operatorname{Hom}_{A}(P_{\cdot}, N) \longrightarrow R^{\cdot},$$

 $\operatorname{Hom}(p_{-1}, 1) : \operatorname{Hom}_{A}(M, Q^{\cdot}) \longrightarrow R^{\cdot}.$

and they are quasi-isomorphisms: they induce isomorphisms when passing to the cohomology ([B], § 5.2).

Consider now the given exact sequence E. Its equivalence class [E] in $\operatorname{Ext}_A^t(M, N) = H^t(\operatorname{Hom}_A(P, N))$ is given by the cocycle $u_t : M \to Q_t$. Under the map $\operatorname{Hom}(p_{-1}, 1) : \operatorname{Hom}_A(M, Q) \to R$, the cocycle u_t is mapped onto the cocycle $(p_{-1}u_t, 0, \dots, 0) \in \bigoplus_{i=0}^t \operatorname{Hom}_A(P_i, Q^{t-i}) = R^t$.

7. Proof of the theorem. We apply the previous considerations to the ring A^e (instead of A), and the A^e -modules A and $\operatorname{Hom}_k(M, N)$. For A, we use the standard resolution $S.=(S., \nabla.)$, for $\operatorname{Hom}_k(M, N)$, we use the injective coresolution $L^{\cdot}=(L^{\cdot}, \Delta^{\cdot})$. We form $C^t=\bigoplus_{i=0}^t \operatorname{Hom}_{A^e}(S_i, L^{t-i})$, with differential $D^t: C^t \to C^{t+1}$ given by

$$(\Phi_{0}, \dots, \Phi_{t})D^{t} = (\Phi_{0}\Delta^{t}, (-1)^{t+1}\nabla_{0}\Phi_{0} + \Phi_{1}\Delta^{t-1}, \dots, (-1)^{t+1}\nabla_{t-1}\Phi_{t-1} + \Phi_{t}\Delta^{0}, (-1)^{t+1}\nabla_{t}\Phi_{t}),$$

for $\Phi_i \in \operatorname{Hom}_{Ae}(S_i, L^{t-i})$. The maps

$$\operatorname{Hom}(1, \Delta^{-1}): \operatorname{Hom}_{Ae}(S_{\cdot}, \operatorname{Hom}_{k}(M, N)) \longrightarrow C^{\cdot}$$

and

$$\operatorname{Hom}(\nabla_{-1}, 1) : \operatorname{Hom}_{Ae}(A, L^{\cdot}) \longrightarrow C^{\cdot}$$

are quasi-isomorphisms. Clearly, we have an isomorphism

$$\rho: \operatorname{Hom}_{Ae}(A, L^{\cdot}) \longrightarrow R^{\cdot},$$

since for A-modules X, Y, the bimodule maps $\Sigma : A \to \operatorname{Hom}_k(X, Y)$ correspond bijectively to the elements of $\operatorname{Hom}_A(X, Y)$, with $(\Sigma)\rho = (1)\Sigma$.

It remains to chase elements via the various quasi-isomorphisms

$$\operatorname{Hom}_{Ae}(S., \operatorname{Hom}_k(M, N)) \xrightarrow{\operatorname{Hom}(1, \Delta^{-1})} C \xrightarrow{\operatorname{Hom}(\nabla_{-1}, L)} \operatorname{Hom}_{Ae}(A, L^{\cdot}),$$

and

$$\operatorname{Hom}_{A}(M, Q^{\cdot}) \xrightarrow{\operatorname{Hom}(p_{-1}, 1)} R^{\cdot} \cong \operatorname{Hom}_{Ae}(A, L^{\cdot}).$$

The last map $\operatorname{Hom}(p_{-1}, 1)$ sends the cocycle u_t onto the element $(p_{-1}u_t, 0, \dots, 0)$ $\in \mathbb{R}^t$, thus to Ω'_{-1} in $\operatorname{Hom}_{Ae}(A, L^t)$. So it remains to consider the elements

$$Q_{\gamma}\Delta^{-1}=(Q_{\gamma})\operatorname{Hom}(1,\Delta^{-1})$$
 and $\nabla_{-1}Q_{-1}'=(Q_{-1}')\operatorname{Hom}(\nabla_{-1},1)$

in C^t . Let $\varepsilon_{2i} = (-1)^i$, and $\varepsilon_{2i+1} = (-1)^{t+i}$, thus $\varepsilon_j = (-1)^{t+j+1} \varepsilon_{j-1}$, for all j. Let $\Phi_i = \varepsilon_i \Omega_i'$ for $0 \le i \le t-1$, and $(\Psi_0, \dots, \Psi_t) := (\Phi_0, \dots, \Phi_{t-1}) D^{t-1}$. Then

$$\Psi_0 = \Phi_0 \Delta^{t-1} = \varepsilon_0 \Omega'_0 \Delta^{t-1} = \nabla_{-1} \Omega'_{-1}$$

$$\Psi_t = \varepsilon_t \nabla_{t-1} \Phi_{t-1} = \varepsilon_t (-1)^t \Omega_r \Delta^{-1}$$
,

whereas, for $1 \le r \le t-1$,

$$\begin{split} \varPsi_r = & (-1)^t \nabla_{r-1} \varPhi_{r-1} + \varPhi_r \Delta^{t-1-r} \\ = & (-1)^t \varepsilon_{r-1} \nabla_{r-1} \varOmega'_{r-1} + \varepsilon_r \varOmega'_r \Delta^{t-1-r} \\ = & (-1)^t \varepsilon_{r-1} (-1)^r \varOmega'_t \Delta^{t-r-1} + (-1)^{t+r+1} \varepsilon_{r-1} \varOmega'_r \Delta^{t-1-r} = 0 \; , \end{split}$$

always using the proposition. This shows that

$$(\nabla_{-1}\Omega'_{-1}, 0, \dots, 0, (-1)^t \varepsilon_t \Omega_r \Delta^{-1}) = (\Phi_0, \dots, \Phi_{t-1}) D^{t-1}$$

is a coboundary in C, thus $\nabla_{-1}\Omega'_{-1}$ and $(-1)^{t+1}\varepsilon_t\Omega_{\gamma}\Delta^{-1}$ yield the same cohomology class in $H^t(C)$.

Let us summerize: the composition of $H^t(\operatorname{Hom}(p_{-1}, 1))$, $H^t(p^{-1})$, $H^t(\operatorname{Hom}(\nabla_{-1, 1}))$ and $H^t(\operatorname{Ham}(1, \Delta^{-1}))^{-1}$ yields a natural isomorphism

$$\eta_{MN}: \operatorname{Ext}_{A}^{t}(M, N) \longrightarrow H^{t}(A, \operatorname{Hom}_{k}(M, N))$$

and $\eta_{MN}([E]) = (-1)^{t+1} \varepsilon_t [\Omega_r]$, thus $\eta_{MN}([E])$ and $[\Omega_r]$ are equal up to sign. This completes the proof.

REMARK. As the proof shows, the precise relation (under the given identification of $H^t(A, \operatorname{Hom}_k(M, N))$ and $\operatorname{Ext}_A^t(M, N)$) is

$$\eta_{MN}([E]) = (-1)^{i+1} [\Omega_{\gamma}]$$
,

where i is the largest integer with $2i \le t$ (for t=2i, we have the sign $(-1)^{t+1} \varepsilon_{2i} = (-1)^{t+1} = (-1)^{t+1}$, for t=2i+1, we have $(-1)^{t+1} \varepsilon_{2i+1} = (-1)^{t+1} (-1)^{t+1} = (-1)^{t+1}$).

References

- [B] Bourbaki, N., Algèbre, Ch. 10: Algèbre homologique, Masson. Paris 1980.
- [CE] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Math. Series. Princeton 1956.
 - [H] Hochschild, G., On the cohomology groups of an associative algebra, Annals Math. 46 (1945), 58-67.
- [M] MacLane, S., Homology, Grundlehren der math. Wiss. Springer. New York 1967.
- [PS] Parshall, B. and Scott, L., Derived categories, quasi-hereditary algebras, and

algebraic groups, Ottawa-Moosonee-Workshop. Carleton LNM.
[T] Tachikawa, H., Quasi-Frobenius rings and generalisations, Springer LNM 351 (1973).

V. Dlab
Department of Mathematics
Carleton University
Ottawa
Canada

C. M. Ringel
Fakultät für Mathematik
Universität
D-4800 Bielefeld 1
West-Germany