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THE JORDAN-HOLDER CHAIN CONDITION AND
ANNIHILATORS IN FINITE LATTICES

By

Juhani NIEMINEN

Abstract The Jordan-Holder chain condition is characterized by
means of prime annihilators in finite lattices. The intersection
property of prime annihilators is considered.

1. Introduction and basic concepts

Ideals play a very important role in the analysis of lattices. Mandelker
introduced in the notion of the (relative) annihilator : this concept generalizes
the notion of ideal as well as that of relative pseudocomplement. Mandelker
characterized the distributivity and modularity of a lattice by means of an-
nihilators, and later on, annihilators were used for obtaining other characteriza-
tions in lattices, see e.g. [2] and [7]. All these characterizations used the
relative pseudocomplement aspect of annihilators, and the first paper, where
the ideal aspect of annihilators was used, was [3], where the modularity of
finite lattices is characterized by means of prime annihilators. This paper con-
tinues the line of [3], and shows how one can replace ideals by annihilatiors
in finite lattices in order to obtain new results on semimodularity and the
Jordan-Holder chain condition.

In this paper we consider finite lattices only. Let L be a lattice. The set
{a, b)>={x|xANa=b} is an annihilator of L, and its dual <a, bDs={x|xVa=b}
is a dual annihilator. One can easily show that <a, b>=<a, a/A\b>, and
dually, that <c, f>s=<Xc, ¢V f)a. If a<bh, then xANa=b for every x=L, and
thus <a, b>=L. If 1 is the gratest element of L, then <1, a>=(a]l={x|xZa}.
An annihilator <a, b)>+ L is called prime, if

<a7 b>U<by a>d:L and <a, a/\b>ﬂ<a/\b, a>d:® .

One can show that in a distributive lattice every prime annihilator is a prime
ideal and vice versa [3]. It should be emphasised that the primeness of <a, b>
depends upon the elements ¢ and b rather than the set <a, b>: in a three-
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element chain 0<a<1, we have <1, 0>={0}=<a, 0> while <a, 0> is prime but
<1, 0> is not.

As usually, an element a covers an element b, in symbols a>b, if a>b
and if a=c=b implies either a=c or b=c. Note that if an annihilator <{a, b)>
is prime in a lattice L, then a>>b by [3].

2. The Jordan-Hélder chain condition

Let L be a finite lattice and G the undirected Hasse diagram graph of L.
The length of a shortest a—b path in the graph G, is the distance d(a, b)
between the elements ¢ and & in L. In graph theory, a shortest path is
frequently called a geodesic. The set [a, b1, is called a geodetic annihilator,
briefly a g-annihilator, if la, b1,={x|b is on an x—a geodesic in G, x%a if
a>b, and x<£a if a<b}. A g-annihilator [a, b1, is called prime if

[a, b1,Ulb, al,=L and T[a, b1 ,N[b, al,=D.

In finite distributive lattices the two annihilator concepts have a connection as

shown in

THEOREM 1. Let L be a finite distributive lattice. Then the equality T'a, b],
=<a, bpN<a, by holds for every pair a, b L.

PROOF. Let x| a, b]:=<a, bd>N\<{a, bpa={z|zAaZb}N{z|zVa=b}={z|zA
a=b=z\Va}. Thus aANx<b<ZaVx. Because L is distributive, one u—v geodesic
goes through uAv and another through u\/v for any pair u, v& L, and hence
some x—a geodesic goes through xAa. The relation x A\ a=<b implies that
xANa=xNA\b=<x, and further that xAa<a/Nb<bh. Now, the part x\b—xANa—
bANa of an x—a geodesic through xAa can be substituted by an xAb—bAa
geodesic through the element (x AbD)V(OAa)=bAN(xVa)=b. Thus an x—a
geodesic also goes through the element b, and, consequently, x<[a, b1, and
La, blC[a, bl,. Let x<[a, bl,, whence b is on some a—x geodesic in G;.
The well known results on medians in finite distributive lattices imply now
that xAa<b<xVa, and thus [a, b1,Cla, b]. Accordingly, [a, bl,=|a, b],
and the theorem follows.

The following theorem characterizes the Jordan-Hoélder chain condition.

THEOREM 2. Let L be a finite lattice. The lattice L satisfies the Jordan-
Holder chain condition if and only if the condition (i) below holds:
(i) A g-annihilator I'a, b, is prime if and only if a>b or b>-a.
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PrROOF. Let L satisfy the Jordan-Holder chain condition. The cycle
{ao, ai, -, a,} of a graph G is a collection of elements (points) of G such
that (a,, a.), (ai, a@s), -, (@n-1, a,) are edges in G and a;#a; for 7, j=0, ---,
n, i+ 7, with the exception a,=a,. A cycle is even, if the number » of edges
on the cycle is even. In the latter part of this proof we use the fact that the
cycles of a graph are ordered by set inclusion. One can show that all cycles
in the graph G, of a finite lattice L satisfying the Jordan-Holder chain condi-
tion are even (the converse does not hold). Now let a>b. If there is an
element ¢ such that c&[a, b1,\U[b, al,, then either 1) or 2) or 3) holds, where:
1) d(a, ¢)=d(b, ¢); 2) a<c and b is on an a—c geodesic; 3) c<b and a is on
a b—c geodesic. If 1) holds, then the edge (a, b) and the c¢—a and c—b
geodesics constitute an odd cycle (or they contain an odd cycle as a proper
subset); a contradiction. In the case 2) there are two b—c¢ chains of unequal
lengths, which is absurd; a similar contradiction is obtained in the case 3).
Hence [a, b1,Ulb, al,=L. If c<[a, b1,NTb, al,, then some c—b geodesic
goes through a and some c—a geodesic through b, and thus we have the
equations d(c, b)=1+d(a, ¢) and d(c, a)=1+d(b, c¢). These two equations imply
that 2=0, which is absurd. Hence [a, b1,N[b, al,=@, and thus the g-an-
nihilator [a, b1, is prime in L.

Let [a, b7, be a prime g-annihilator. If neither a covers & nor b covers a,
there is at least one element ¢ on a b—a geodesic, c#a, b. Clearly c&Jla, bl,
and c¢&[b, al,, whence [a, b], cannot be prime; a contradiction. Thus a>b
or b>a, and the first part of the proof follows.

Let, conversely, [a, b], be prime if and only if a>>b or b>~a. If there is
an odd cycle in G;, there is also an odd minimal cycle, and let us consider it.
Select a and b from this cycle (a>>b), and because it is odd and minimal, there
is an element ¢ such that d(c, a)=d(c, b). This implies c&[a, b, and ¢c&
[b, a],, whence the g-annihilator [a, b], is not prime although a>b; a con-
tradiction. Hence every cycle in G is even. Assume now that p and g, p>g,
are two elements of L with two maximal p—gq chains C(p, ¢) and C'(p, ¢q) of
unequal lengths. We may certainly choose the pair p, ¢ minimal such that for
all other pairs u, v with »>v and d(u, v)<d(p, ¢), any two maximal u—v
chains are of equal lengths. Let C(p, g¢) be the longer chain, and choose the
elements a and b from C(p, g) such that a=q and b>>a. Now, p should belong
to [b, al, by the distance condition, but because p>b, p&[b, al,. The mini-
mality of p and ¢ and the distance condition imply now that pé¢la, bl,, and
thus [b, al, is not prime although b>>a; a contradiction. Hence every pair of
maximal p—g chains are of the same length, and the validity of the Jordan-
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Holder chain condition in L follows.

The end of the first part of the proof shows that the condition a>b or
b>>-a is necessary for the primeness of [a, b1, in a finite lattice.

The Jordan-Hoélder chain condition implies an interesting intersection property
given in

THEOREM 3. In a finite lattice L satisfying the Jordan-Holder chain condi-
tion, every g-annihilator is an intersection of prime g-annihilators.

PrROOF. Let L be a finite lattice satisfying the Jordan-Hoélder chain condi-
tion, [b, al, a given g-annihilator and ¢ an element, ¢&[lb, al,. If we can
show the existence of a prime g-annihilator [e, f1, such that b, al,CTe, f1,
and cé&fle, f1,, then the asserted intersection property follows. Note that the
intersection of any two g-annihilators in L need not be an g-annihilator. If
a>-b or b>-a holds, then [b, a7, is the desired prime g-annihilator by
2. Hence we assume now that every a—b geodesic of G, contains elements
distinct from @ and b, and let one a—b geodesic be a=a,, a,, a,, -+, ap=b,
where a;>-a;., or a;,,>>a; for i=0,1, ---, n—1. Assume that c&[ai+1, a;1, for
some 7, 0<7/<n—1. If t=[b, al,, then a lies on a t—b geodesic which also
goes through a; and a;;,. Then some t—a,,, geodesic goes through a;, and
thus tela;, a;1,. Accordingly, [b, al,C[ai+:, ail,, and so [@;+1, a;] is the
desired prime g-annihilator. Assume now that c¢&laqy,, a;l, for all 7, 0</=<
n—1, and let d(c, b)=d(c, a,). Because c€[an, an-i1,, the point a,-; is on a
c—a, geodesic, and thus d(c, a.)=d(c, an-,)+1. Similarly we see that
d(c, an-1)=d(c, an-2)+1, d(c, an-2)2d(c, an-3)+1, ---, d(c, a;)=d(c, ao)+1. By
combining these results we obtain d(c, b)=d(c, a,)=d(c, as)+n=d(c, a)+n,
which implies that ¢=Tb, a’,. This is absurd, and hence c&[a;+1, a;| for some
7, 0<:7<n—1, and the theorem follows.

3. Weak semimodularity

In the following we examine the effect of substituting annihilators by g-
annihilators: The set of ideals which are g-annihilators is not sufficiently dense
in a finite lattice satisfying the Jordan-Hoélder chain condition, but it is dense
enough in finite semimordular lattices and the condition of semimodularity can
be weakened, as will be shown.

We first show a connection between ideals and g-annihilators.

THEOREM 4. In a finite lattice L satisfying the Jordan-Hélder chain condition,
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every ideal is a g-annihilator.

PROOF. Let I be an ideal, and because L is finite, /=(a] for some a< L.
We prove that [1, al,=(a]. If x<a, then x<[1l, a7, because of the Jordan-
Holder chain condition. Thus (aJC[1, al,. Assume now that [1, a], contains
an element x&(a]. Then the x—1 geodesic through a consists of the follow-
ing pieces of chains: x=s,\,s1,"Ss\***Sn-1\S2 (0T X=50,75:\,S2,”"*_"Sn-1\\Sn),
where s,=<a. Let ¢ be an element such that s,-,=t>s,. Now, t<a, because
if £=<a, a minimum length ¢t—1 path is the chain from ¢ to 1, and then the
point s, is not on the x—1 geodesic, which is absurd. There are now two
sp,—1 chains: one through ¢ and another through a, both of which are of the
same length because of the Jordan-Holder chain condition. But this contradicts
the assumption that a 7—1 geodesic goes through the elements s, and a, and
hence [1, a],C(a]. Accordingly, [1, al,=(a], and the theorem follows.

A finite lattice L is weakly semimodular if, when aAb<a, b then either
a, b<a\/b or the conditions (1)-(3) below hold:

(1) all maximal a Ab—a\/b chains are of the same length;

(2) if aNb<c<aVvb and aAb<c, then every e>-c satisfies the relation
aNb<eZaVb;

(3) if anb<c<e<aVb, then there are at least two elements A, £, a\b<
h, k<a\/b, covering c.

The definiton of the weak semimodularity shows that every semimodular
lattice is weakly semimodular. A lattice L with the chains 0<a<g<1; 0<
a<h<1; 0<b<i<1 and 0<b<j<1 is weakly semimodular but not semimodular.
The next theorem gives a connection between weak semimodularity and the
Jordan-Holder chain condition.

THFOREM 5. A finite weakly semimodular lattice L satisfies the Jordan-Holder
chain condition.

PROOF. Let C={a,, -, ax}, 0=0a<a,<a,<--<a,=1, be a maximal chain
of length n in L. We prove that any other 0—1 chain is also of length n by
induction on n (cf. the proof of [4, Theorem IV. 2.1]). If n=1, then the
theorem holds obviously, and so we assume that the theorem holds for all
lengths [<n. Let C'={b,, by, -+, ba}, 0=b,<b,<--<b, =1, be another maximal
0—1 chain in L. If a,=b,, then the induction assumption implies the equality
n=m. If a,#b,, then let C” be a maximal chain in [a,\Vb;) of length k.
Because of the weak semimodularity (0=a,Ab,<a,, b;), the length of the a,—
a,Vb, chain is t=1 as well as the length of the b,—a,\Vb, chain. The lengths
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of the maximal chains in [a,) are equal by the induction assumption, and thus
n—1=*~k-4¢. Similarly we see that m—1=Fk-+¢, and accordingly, n=m. This
completes the proof.

If L is a lattice of two disjoint 0—1 chains 0<a,<a,<--<a,<1 and 0<
b <b,<<---<b, <1, n=3, there is no ideal J, which is prime as a g-annihilator,
separating the ideal /=(a,] and the point a,. Clearly, this lattice L satisfies
the Jordan-Holder chain condition, and thus a stronger structural condition is
needed for this kind of separation. The next theorem shows that weak semi-
modularity is sufficient.

THEOREM 6. In a finite weakly seminodular lattice L, there is for any ideal
I and any element ué I an ideal ], which is prime as a g-annihilator, separating
I and u.

ProOOF. Let I be an ideal in the weakly semimodular lattice L not con-
taining the element u, and let (b] be an ideal containing / and maximal with
respect to not containing u. The maximality of (b] implies that b<{u\/b, and
further, that u\/b is the only element covering b. Indeed, if there is an element
c+u\Vb, b<c, then c and u\/b have two disjoint maximal lower bounds, namely
b and g=u, which is absurd. Because weak semimodularity implies the Jordan-
Hélder chain condition and because b<u b, the g-annihilator [«\V#b, b1, is prime
by Theorem 2. Obviously, (b]JC[u\Vb, b1,, and thus it remains to show that
fuvb, bl,c(b]. Assume that [u\/b, b], contains an element x&(b]. Then the
x—b\u geodesic through b consists of the following pieces of chains: x=s,\,
$1,Se N\ Sn-1\Sa (Or X=50,75:\\S2,”**Sn-1\\Sn), Where s,<b. Let ¢t be an
element such that s,.,=t<s,. Obviously, t<£b, and because t is on the x—bV u
geodesic, t€[bVu, bl,. Let s,=c¢<c:<c;<-*<cn=>b be a b—s, chain. Now,
co=<cy, t. If ¢y, t<<c,VVt, we continue by considering the elements c¢,, ¢,Vi>c;.
If ¢,, t4c,Vt, then by weak semimodularity there is an integer » such that
cp=<<c;Vi=c,\Vt=---=c,\Vt. Moreover, there are elements t,, {;, --- , {, such that
t=t,<t,<-<tp<cpVt=c,Vt. In this case we continue by considering the
elements ¢, V¢, cpei-Cp. In both cases, the essential thing is that the ¢o—c,\V¢
chains (one through ¢, and another through t) are of the same length. When
c,<cs, t\Vc,, we have two cases: ¢;, tVa,<tVciVe:=tVcy Or ¢z, t\V e KtVes,
where the latter case needs the same special rules of weak semimodularity as
the case of c,, t£c,\vt above. Similarly, when c¢,<cp+, t\V¢p, We have two
Cases: Cp41, LV Cp<EVCpVCpr1=t\VCps1 OF Cpi1, 1V Cp KtV Cps1, Where the latter
case needs the special rules of weak semimodularity. We can continue the
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process of joining f to the elements of the chain ¢,, ¢y, -+, ¢, and obtain another
chaint, t\/cy, t\es, -+, t\VCcm, Where two consecutive elements may coincide but
where the lengths of the c,—cn, and t—¢\¢,, chains are equal. Because £ b=
Cm, We have t\V ¢, >b.

If t\/cm=b\ u, then the t—b\Vu geodesic does not contain b, whence ¢
[uvb, bl,; a contradiction. Thus [bVu, b],C(b] in this case, and we are
done. The another possible case is t\VVcn>b\Vu. Let t\Vc, be an element such
that t\/¢,>>¢, and t\Vce,=tVem-1=tVecn. By the assumption, bV u<tVcn,
and thus »r=m—1. Because ¢,<c¢,+;, t\V¢,, the element t\/c¢, is reached from
¢-+; and tVc, by the special rules of weak semimodularity. Now, ¢,<b<bV
u<t\Vcr, and then, by (3), b has at least two covering elements, which is
absurd, because b\ u was the only element covering b. Hence the case b\ u<<
tVcen is impossible, and the theorem follows.

There are two interesting open problems we have not been able to solve:

1) Does the intersection property of [Theorem 3 imply the Jordan-Holder
chain condition? and

2) does the separation property of imply weak semimodularity?
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