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Introduction

Let $M_{s}^{m}(c)$ be an m-dimensional connected semi-Riemannian manifold of index
$s$ and of constant curvature $c$ , which is called an indefinite space form of index
$s$ or simply a space form according as $s>0$ or $s=0$ . An m-dimensional space
form of constant curvature $c$ is only denoted by $M^{m}(c)$ . The study of hyper-
surfaces with constant mean curvature of $M^{n+1}(c)$ was initiated by Nomizu and
Smyth [13], who proved some excellent results.

It is seen that a complete space-like hypersurface of a Minkowski space
$R_{1}^{n+1}$ possesses a remarkable Bernstein property in the maximal case by Calabi
[3] and Cheng and Yau [5]. As a generalization of the Bernstein type problem
a complete space-like maximal submanifold $M$ of $M_{\nu}^{n+p}(c)$ was recetly charac-
terized by Ishihara [9] under a certain condition. In particular, it is proved that
if $c$ is non-negative, then $M$ it totally geodesic.

On the other hand, it is pointed out by Marsden and Tipler [10] that
space-like hypersurfaces with constant mean curvature of arbitrary spacetimes
have interest in relativity theory. An entire space-like hypersurface with con-
stant mean curvature of a Minkowski space is investigated by Goddard [8] and
Treibergs [19]. It is well known as standard models of space-like hypersurfaces

with constant mean curvature of a Minkowski space $R_{1}^{n+1}$ (resp. a de Sitter
space $S_{1}^{n+1}(c))$ that we have hyperboloids $H^{k}(c)\times R^{n-k}$ (resp. $H^{k}(c_{1})\times S^{n- k}(c_{2})$

and $R^{n}$ ), where $k=0,1,$ $\cdots,$ $n$ . After some perturbations conserving constant
mean curvatures, Goddard [8] conjectured the following two results: the only

space-like hypersurfaces with constant mean curvature of $R_{1}^{4}$ are the hyper-
boloids and three classes of space-like hypersurfaces $S^{3}(c_{2}),$ $R^{3}$ and $H^{3}(c_{1})$ are
the only complete space-like hypersurfaces with constant mean curvature which
exist in $S_{1}^{4}(c)$ . Stumbles [18] and Treibergs [19] however constructed many
entire such hypersurfaces of $R_{1}^{n+1}$ different from the hyperboloids.
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The Bernstein-type property was also generalized by Nishikawa [12] from
the different point of view, and K. Milnor [11] and Yamada [20] gave a
characterization of the hyperbolic cylinder of $R_{1}^{3}$ . Complete space-like hyper-
surfaces with constant mean curvature of a de Sitter space $S_{1}^{n+1}$ are also studied
by many authors [1], [2], [4], [17] and so on. Under this situation it seems
to be interesting to investigate whether or not there exist examples of such
hypersurfaces of a de Sitter space different from hyperboloids.

In this paper, a class of complete space-like hypersurfaces with constant
mean curvature of a de Sitter space is considered. The purpose of this paper
has different two directions. One is to generalize the Bernstein-type property
in this version, that is, to classify such hypersurfaces of non-negative curvature
in the case where a multiplicity of each principal curvature is greater than one.
The other is to show that there exist infinitely many space-like hypersurfaces
with constant mean curvatures of a de Sitter space.

In the first section, we will simply recall the theory of space-like hyper-
surfaces of an indefinite Riemannian manifold and in \S 2, some standard models
of complete space-like hypersurfaces of a de Sitter space whose mean curvatures
are constant are introduced. The following main theorem is proved in \S 3.

MAIN THEOREM. Let $M$ be an $n(\geqq 3)$-dimensional complete $s$pace-like hyper-
surface with constant mean curvature of a de Sitter space $S_{1}^{n+1}(c)$ . If the sectional
curvature is of non-negative and if a multiplicity $\dot{0}f$ each principal curvature is
greater than one, then $M$ is isometric to $a$ Euclidean space $R^{n}$ or a sphere
$S^{n}(c_{1}),$ $0<c_{1}<c$ .

In the last section Goddard’s second conjecture for a de Sitter space will
be treated and infinitely many complete space-like hypersurfaces with constant
mean curvature of a Sitter space are given.

l.Preliminaries

Let $(M^{\prime}, g^{\prime})$ be an m-dimensional indefinite Riemannian manifold of index
$s(>0)$ . Throughout this paper, manifolds are always assumed to be connected
and geometric objects are assumed to be of class $C^{\infty}$ . We choose a local field
of orthonormal frames $e_{1},$ $\cdots,$ $e_{m}$ adapted to the indefinite-Riemannian metric in
$M^{\prime}$ and let $\omega_{1},$

$\cdots$ , $\omega_{m}$ denote the dual coframe. Suppose that we have
$g^{\prime}(e_{A}, e_{B})=\epsilon_{A}\delta_{AB},$ $\epsilon_{A}=\pm 1$ for $A,$ $B$ , $-=1,$ $\cdots,$ $m$ . The connection forms $\{\omega_{AB}\}$

of $M^{\prime}$ are characterized by the equations
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$d\omega_{A}+\Sigma\epsilon_{B}\omega_{AB}\wedge\omega_{B}=0$ , $\omega_{AB}+\omega_{BA}=0$ ,

(1.1) $d\omega_{AB}+\Sigma\epsilon_{C}\omega_{AC}\wedge\omega_{CB}=\Omega_{AB}$ ,

$\Omega_{AB}=(-1/2)\sum\epsilon_{C}\epsilon_{D}R_{ABCD}^{\prime}\omega_{C}\bigwedge_{\backslash }\omega_{D}$ ,

where $\Omega_{AB}$ (resp. $R_{ABCD}^{\prime}$) denotes the indefinite Riemannian curvature form
(resp. components of the indefinite Riemannian curvature tensor $R^{\prime}$ ) of $M^{\prime}$ .
The components of the Ricci curvature tensor $Ric^{\prime}$ and the scalar curvature $r^{\prime}$

are defined by respectively by

$R_{AB}^{\prime}=R_{BA}^{\prime}=\sum\epsilon_{C}R_{\acute{C}ABC}$ ,
(1.2)

$r^{\prime}=\sum\epsilon_{A}R_{AA}^{\prime}=\sum\epsilon_{A}\epsilon_{C}R_{CAAC}^{\prime}$ .

An indefinite Riemannian manifold $M^{\prime}$ of constant sectional curvature is called
an indefinite space form of index $s$ if $M^{\prime}$ is of index $s$ . By $M_{s}^{m}(c)$ an m-
dimensional indefinite space form of index $s$ and of constant curvature $c$ is
denoted. Then the components $R_{ABCD}^{\prime}$ of the indefinite Riemannian curvature
tensor $R^{\prime}$ for an indefinite space form $M_{s}^{m}(c)$ are given by

(1.3) $R_{ABCD}^{\prime}=c\epsilon_{A}\epsilon_{B}(\delta_{AB}\delta_{BC}-\delta_{AC}\delta_{BD})$ .

Therefore the Ricci curvature tensor $Ric^{\prime}$ and the scalar curvature $r^{\prime}$ are also
given by

(1.4) $R_{AB}^{\prime}=(m-1)c\epsilon_{A}\delta_{AB}$ , $r^{\prime}=m(m-1)c$ .
In particular, $M_{1}^{m}(c)$ is called a Lorentz space form and it is called a Minkowski
space provided that $c=0$ .

Standard models of complete Lorentz space forms are given as follows. In
an $(n+p)$-dimensional Euclidean space $R^{n+p}$ with a standard basis, a scalar
product $\langle, \rangle$ is defined by

$\langle x, y\rangle=-\sum_{i=1}^{s}x_{i}y_{i}+\sum_{s+1}^{n+p}x_{j}y_{j}$ ,

where $x=(x_{1}, \cdots , x_{n+p})$ and $y=(y_{1}, \cdots , y_{n+p})$ are in $R^{n+p}$ . This is a scalar
product of index $p$ and the space $(R^{n+p}, \langle, \rangle)$ is an indefinite Euclidean space,
which is simply denoted by $R_{s}^{n+p}$ . Let $S_{1}^{n+1}(c)$ be a hypersurface of $R_{1}^{n+2}$ defined
by

$\langle x, x\rangle=r^{2}=1/c$ .

Then $S_{1}^{n+1}(c)$ inherits a Lorentz metric from the ambient space $R_{1}^{n+2}$ with con-
stant curvature $c$ , which is called a de Sitter space. On the other hand, let
$H_{1}^{n+1}(c)$ be a hypersurface of $R_{2}^{n+2}$ defined by

$\langle x, x\rangle=-r^{2}=1/c$ .
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Then $H_{1}^{n+1}(c)$ induces a Lorentz metric from the ambient space $R_{2}^{n+2}$ with
negative constant curvature $c$ , which is called an anti-de Sitter space. For
indefinite Riemannian manifolds, refer to O’Neill [15].

From now on, let $M^{\prime}=M_{1}^{n+1}(c)$ be an $(n+1)$-dimensional Lorontz space form of
index 1 and of constant curvature $c$ and let $M$ be a positive definite hyper-
surface of $M_{1}^{n+1}(c)$ , which is said to be space-like. In the sequel, the following
convention on the range of indices are used, unless otherwise stated:
$A,$ $B,$ $\cdots=0,1,$ $\cdots$ , $n;i,$ $j,$ $\cdots=1,$ $\cdots,$ $n$ . By restricting the canonical forms $\omega_{A}$

and the connection forms $\omega_{AB}$ to the hypersurface $M$, they are denoted by the
same symbol, respectively. Then we have

(1.5) $\omega_{0}=0$ ,

and the metric on $M$ induced from the indefinite-Riemannian metric $g^{\prime}$ on the
ambient space $M^{\prime}$ under the immersion is given by $g=\sum\omega_{i}\otimes\omega_{i}$ . Then
$\{e_{1}, \cdots, e_{n}\}$ becomes a field of orthonormal frames on $M$ with respect to this
metric and $\{\omega_{1}, \cdots, \omega_{n}\}$ is a field of dual frames on $M$. From (1.1), (1.2) and

Cartan’s lemma it follows that we have

(1.6) $\omega_{0i}=\Sigma h_{ij}\omega_{j}$ , $h_{ij}=h_{ji}$ .

The quadratic form $\alpha=\sum\epsilon h_{ij}\omega_{i}\omega_{j}e_{0}$ with valued in the normal bundle is called
the second fundamental form on $M$, where we put $\epsilon=\epsilon_{0}$ . That is,

(1.7) $\alpha(e_{i}, e_{j})=\epsilon h_{ij}e_{0}$ ,

and the scalar $H=\sum h_{jj}/n$ is called the mean curvature of the hypersurface $M$.
The connection forms $\{\omega_{ij}\}$ of $M$ are characterized by the structure equations

$d\omega_{i}+\sum\omega_{ij}\wedge\omega_{j}=0$ , $\omega_{ij}+\omega_{ji}=0$ ,

(1.8) $d\omega_{ij}+\sum\omega_{ik}\wedge\omega_{ki}=\Omega_{ij}$ ,

$\Omega_{ij}=(-1/2)\Sigma R_{ijkl}\omega_{k}\wedge\omega_{l}$ ,

where $\Omega_{ij}$ (resp. $R_{ijkl}$ ) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor $R$ ) of $M$. For the semi-Riemannian
curvature tensors $R^{\prime}$ and $R$ of $M^{\prime}$ and $M$ respectively, it follows from (1.1)

and (1.8) that we have the Gauss equation

(1.9) $R_{ijkl}=c(\delta_{il}\delta_{jk}-\delta_{ik}\delta_{jl})+\epsilon(h_{il}h_{jk}-h_{ik}h_{jl})$ .

The components of the Ricci curvature tensor $Ric$ and the scalar curvature $r$

are given by

(1.10) $R_{jk}=c(n-1)\delta_{jk}+\epsilon hh_{jk}-(h_{jk})^{2}$ ,
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(1.11) $r=n(n-1)c+\epsilon h^{2}-h_{2}$ ,

where $h=\Sigma h_{jj},$ $(h_{jk})^{2}=\Sigma\epsilon h_{ir}h_{rk}$ and $h_{2}=\Sigma(h_{jj})^{2}$ .
Now, the covariant derivative $\nabla\alpha$ of the second fundamental form $\alpha$ of $M$

with components $h_{ijk}$ is given by

(1.12) $\Sigma h_{ijk}\omega_{k}=dh_{ij}-\Sigma h_{kj}\omega_{ki}-\Sigma h_{ik}\omega_{kj}$ .
Then, differentiating (1.6) exteriorly and making use of the structure equations

we have
$\sum h_{ijk}\omega_{j}\wedge\omega_{k}=0$ .

Thus we have the Codazzi equation

(1.13) $h_{ijk}=h_{ikj}$ .
Similarly the covariant derivative $\nabla^{2}\alpha$ of $\nabla\alpha$ with components $h_{ijkl}$ is given by

$\Sigma h_{ijkl}\omega_{l}=dh_{ijk}-\Sigma h_{ljk}\omega_{li}-\Sigma h_{ilk}\omega_{kj}-h_{ijl}\omega_{lk}$ .
Next, differentiating (1.12) exteriorly and using again the structure equations
and the above relationship, we obtain

$\sum(2h_{ijkl}+h_{rj}R_{rikl}+h_{ir}R_{rjkl})\omega_{k}\wedge\omega_{l}=0$ .
Thus we get

(1.14) $h_{ijkl}-h_{ijlk}=-\sum h_{rj}R_{rikl}-\sum h_{ir}R_{rjkl}$ ,

which is called the Ricci formula for the second fundamental form.
Making use of this relationship repeatly and taking account of the Codazzi

equation (1.13), the Gauss equation (1.7) and the first Bianchi identity, one can
compute $h_{ijkl}$ as follows:

$h_{ijkl}=h_{klij}+c(h_{ij}\delta_{kl}-h_{ij}\delta_{jk}-h_{kl}\delta_{ij}+h_{jl}\delta_{ik}-h_{il}\delta_{jk}+h_{ik}\delta_{jl})$

$+(h_{ij})^{2}h_{k\iota}-(h_{il})^{2}h_{jk}-(h_{kl})^{2}h_{ij}+(h_{jl})^{2}h_{ik}-(h_{il})^{2}h_{jk}+(h_{ik})^{2}h_{jl}$ .

Accordingly a Laplacian of the second fundamental form is given by

(1.15) $\Delta h_{ij}=\sum h_{ijkk}=\sum h_{kkij}+c(nh_{ij}-h\delta_{ij})+h(h_{ij})^{2}-h_{2}h_{ij}$ .
The Laplacian of the function $h_{2}$ may be computed by using (1.9), (1.10) and
(1.15):

(1.16) $(1/2)\Delta h_{2}=\epsilon\Sigma h_{ijk}h_{ijk}+\epsilon\Sigma h_{ij}h_{kkij}+c(nh_{2}-\epsilon h^{2})+\epsilon hh_{3}-h_{2}^{2}$ ,

where $h_{3}=\Sigma h_{ij}(h_{ij})^{2}$ .
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2. Standard models

In this section, some standard models of complete space-like hypersurfaces
with constant mean curvature of $R_{1}^{n+1}$ and $S_{1}^{n+1}(c)$ are given. In particular, we
take examples of hypersurfaces whose sectional curvature are non-negative.
An $(n+1)$-dimensional Minkowski space $R_{1}^{n+1}$ can first be regarded as a product
manifold of $R_{1}^{k+1}$ and $R^{n-k}$ . With respect to the standard orthonormal basis of
$R_{1}^{n+1}$ a class of space-like hypersurfaces $H^{k}(c_{1})\times R^{n-k}$ of $R_{1}^{n+1}$ is defined by

$H^{k}(c_{1})\times R^{n- k}=\{(x, y)\in R_{1}^{n+1}=R_{1}^{k+1}\times R^{n- k} : |x|^{2}=-1/c_{1}>0\}$ ,

where $k=0,1,$ $\cdots,$ $n$ and $|$ $|$ denotes the norm determined by the scalar product
on $R_{1}^{k+1}$ which is given by $\langle x, x\rangle=-x_{0}^{2}+\sum_{j=1}^{k}x_{j}^{2}$ . When $k=0$ , this is a family
of totally geodesic Euclidean spaces. In particular, if $k=1$ , then $H^{1}(c_{1})$ is a part
$\gamma$ of the hyperbolic curve in $R_{1}^{2}$ and $\gamma\times R^{n-1}$ is a class of space-like hyper-
surfaces of $R_{1}^{n+1}$ . A number of distinct principal curvatures of each hyper-
surface in this family are exactly two, say $\pm(c-c_{1})^{1/2}$ and $0$ , with muliplicities
1 and $n-1$ , respectively.

We next define a family of space-like hypersurfaces $H^{k}(c_{1})\times S^{n-k}(c_{2})$ of
$S_{1}^{n+1}(c)$ by

$H^{k}(c_{1})\times S^{n- k}(c_{2})$

$=\{(x, y)\in S_{1}^{n+1}(c)\subset R_{1}^{n+2}=R_{1}^{k+1}\times R^{n-k+1} : |x|^{2}=-1/c_{1}, |y|^{2}=1/c_{2}\}$ ,

where $c_{1}<0,$ $c_{2}>0,1/c_{1}+1/c_{2}=1/c$ and $k=0,1,$ $\cdots,$ $n$ . When $k=0$ , it is a family

of spheres of constant curvature $c_{2}$ , which are totally umbilical. In particular,
if $k=1$ , then $H^{1}(c_{1})$ is a part $\gamma$ of th hyperbolic curve in $R_{1}^{2}$ and $\gamma\times S^{n-1}(c_{2})$ is
a class of space-like hypersurfaces of $S_{1}^{n+1}(c)$ and the number of distinct
principal curvatures of each hypersurface in this family are exactly two and
they are constant. A principal curvature is equal to $\pm(c-c_{1})^{1/2}$ with multi-
plicity 1 and the other is equal to $\pm(c-c_{2})^{1/2}$ with multiplicity $n-1$ .

Another family of space-like hypersurfaces $M(s)$ of $S_{1}^{n+1}(c)$ given. For any
positive number $s$ the hypersurface $M(s)$ is defined by

$M(s)=\{x\in S_{1}^{n+1}(c)\subset R_{1}^{n+2} ; x_{0}=x_{n+1}+s\}$ .

Then it is totally umbilical and moreover it is flat. That is, it is a Euclidean
space.

3. Hypersurfaces of non-negative curvature

In this section the main theorem mentioned in the introduction is proved.
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Let $M^{\prime}$ be an $(n+1)$-dimensional de Sitter space of constant curvature $c$ and
let $M$ be a complete space-like hypersurface with constant mean curvature of
$M^{\prime}$ . Assume that the sectional curvature of $M$ is of non-negative. For any
point $p$ in $M$ we can choose a frame field $e_{1},$ $\cdots,$ $e_{n}$ on $M$ so that the matrix
$(h_{jk})$ is diagonalized at that point, say

(3.1) $h_{jk}=\lambda_{j}\delta_{jk}$ .

Under such frame field at $p$ we have

$h=\sum\lambda_{j}$ , $h_{2}=-\sum\lambda_{j}^{2}$ , $h_{3}=-\sum\lambda_{j}^{3}$ ,

because $M$ is space-like and hence the normal vector is time-like. Accordingly,
we get

$c(nh_{2}-\epsilon h^{2})+\epsilon hh_{3}-h_{2}^{2}=c\{n(-\sum\lambda_{j}^{2})+(\sum\lambda_{j})^{2}\}+\sum\lambda_{i}\sum\lambda_{j}^{3}-(\sum\lambda_{j}^{2})^{2}$

$=(1/2)\sum(-c+\lambda_{i}\lambda_{j})(\lambda_{i}-\lambda_{j})^{2}$ ,

from which together with (1.16) it turns out that

(3.2) $\Delta h_{2}=-\Sigma(c-\lambda_{i}\lambda_{j})(\lambda_{i}-\lambda_{j})^{2}-2|\nabla\alpha|^{2}$ ,

where $|\nabla\alpha|$ denotes the norm of the covariant derivative $\nabla\alpha$ of the second
fundamental form $\alpha$ .

In order to prove the main theorem, we need a fundamental property for
the following generalized maximal principle due to Omori [14] and Yau [21].

THEOREM. Let $M$ be a complete Riemannian manifold whose Ricci curvature
is bounded from below. Let $f$ be a $C^{2}$-function which is bounded from below on
M. Then for any positive number $\epsilon$ there exists a point $q$ at which it satisfies
(3.3) $|gradf|(q)<\epsilon$ , $\Delta f(q)>\epsilon$ , $ f(q)<\inf f+\epsilon$ .

Since $M$ in space-like, the Ricci curvature tensor $R_{ij}$ is given by

$R_{ij}=(n-1)c\delta_{ij}-hh_{ij}-(h_{ij})^{2}$

by (1.10). Let $\lambda_{1},$

$\cdots,$
$\lambda_{n}$ be principal curvatures of $M$. Then the Ricci cur-

vature tensor becomes

$R_{ij}=\{(n-1)c-h\lambda_{i}+\lambda_{i}^{2}\}\delta_{ij}$ ,

which yields that the Ricci curvature of $M$ is bounded from below by a con-
stant $(n-1)c-h^{2}/4$ . Given any positive number $a$ , a function $f$ is defined by
$1/(a-h_{2})^{1/2}$ . Then it is smooth and positive on $M$ because $h_{2}$ is non-positive.
Moreover, since the function $f$ is bounded from below, we can apply the the-
orem due to Omori and Yau to the function $f$. So, given any point $p$ in $M$
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and any positive number $\epsilon$ there exists a point $q$ at which $f$ satisfies the
property (3.3) in the theorem. Consequently the following relationship

(3.4) $(1/2)f(q)^{4}\Delta h_{2}(q)>f(q)\epsilon-3\epsilon^{2}$

can be derived by the simple and direct calculation. For a convergent sequence
$\{\epsilon_{m}\}$ such that $\epsilon_{m}>0$ and $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ there exists a point sequence $\{q_{m}\}$ so
that the sequence $\{f(q_{m})\}$ converges to $f_{0}$ by taking a subsequence, if necessary.
From the definition of the infimun we have $f_{0}=inff$ and hence the definition
of $f$ gives rise to

(3.5) $h_{2}(q_{m})-\inf h_{2}$ $(m\rightarrow\infty)$ .
On the other hand, it follows from (3.4) that we have

(3.6) $(1/2)f(q_{m})^{4}\Delta h_{2}(q_{m})>f(q_{m})\epsilon_{m}-3\epsilon_{m}^{2}$ ,

and the right hand side converges to $0$ because the function $f$ is bounded.
Since the sectional curvature $K(e_{j}, e_{k})$ of the plane section spanned by $e_{i}$ and
$e_{k}$ is given by $K(e_{j}, e_{k})=c-\lambda_{j}\lambda_{k}$ and since it is assumed to be non-negative,
we have $c-\lambda_{j}\lambda_{k}\geqq 0$ for any distinct indices $j$ and $k$ . Accordingly (3.2) means
that

(3.7) $\Delta h_{2}(q_{m})\leqq-\sum(c-\lambda_{j}\lambda_{k})(\lambda_{j}-\lambda_{k})^{2}\leqq 0$ ,

where principal curvatures are continuous. Accordingly, for any positive number
$\epsilon(<2)$ there is a sufficiently large integer $m_{0}$ for which we have

(3.8) $ f(q_{m})^{4}\Delta h_{2}(q_{m})>-\epsilon$ for $m>m_{0}$ .
On the other hand, it is seen that the sequence $\{f(q_{m})\}$ is bounded from below
by a positive constant. In fact, we have

$-h_{2}h_{4}-(-h_{3})^{2}=\Sigma\lambda_{j}^{2}\lambda_{k}^{2}(\lambda_{j}-\lambda_{k})^{2}\geqq 0$ ,

$h_{4}-(-h_{2})^{2}=-\Sigma_{j\neq k}(\lambda_{j}\lambda_{k})\leqq 0$ ,

and hence we get $-(-h_{2})^{3/2}\leqq h_{3}\leqq(-h_{2})^{3/2}$ , from which together with (1.6) it
follows that

$(1/2)\Delta h_{2}\leqq c(h_{2}+h^{2})+|h|(-h_{2})^{3/2}-(-h_{2})^{2}$ .
This relationship and (3.8) yield the inequality

$(2-\epsilon)h_{2}(q_{m})^{2}-2|h|(-h_{2})^{3/2}(q_{m})+2(a\epsilon-nc)h_{2}(q_{m})-)\epsilon\alpha^{2}\neq 2ch^{2})<0$ ,

which implies that $\{h_{2}(q_{m})\}$ is bounded from below. This means that the
sequence $\{f(q_{m})\}$ is bounded from below by a positive constant. By means of
(3.6), (3.7) and the above fact, we get
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(3.9) $\Delta h_{2}(q_{m})-0$ $(m\rightarrow\infty)$ .
Thus (3.7) and (3.9) give rise to

(3.10) $(c-\lambda_{j}\lambda_{k})(\lambda_{j}-\lambda_{k})^{2}(q_{m})\rightarrow 0$ $(m\rightarrow\infty)$

for any distinct indices $j$ and $k$ .
Now, the following facts will be proved by (3.10):

(a) Any sequence $\{\lambda_{j}(q_{m})\}$ is bounded for any $j$ ;
(b) For any distinct indices $j$ and $k$ there is a subsequence $\{q_{mi}\}$ of the

sequence $\{q_{m}\}$ such that

$(c-\lambda_{j}\lambda_{k})(q_{mi})-0$ $(i\rightarrow\infty)$ or
(3.11)

$(\lambda_{j}-\lambda_{k})(q_{mi})-0$ $(i\rightarrow\infty)$ .
(c) For any distinct indices $j$ and $k$ there is a subsequence $\{q_{mi}\}$ of the

sequence $\{q_{m}\}$ such that

$(\lambda_{j}-\lambda_{k})(q_{mi})-0$ $(i\rightarrow\infty)$ .
The assertion (a) is first proved. Suppose that there is an index $j$ such

that $\{\lambda_{j}(q_{m})\}$ is not bounded. Without loss of generality, we may suppose that
$\lambda_{j}(q_{m})\rightarrow\infty(m\rightarrow\infty)$ . Since the mean curvature $H=h/n$ is constant, there is
another sequence $\{\lambda_{k}(q_{m})\}$ such that $\lambda_{k}(q_{m})\rightarrow-\infty(m\rightarrow\infty)$ and hence

$\lambda_{j}\lambda_{k}(q_{m})--\infty$ and $(\lambda_{j}-\lambda_{k})(q_{m})\rightarrow\infty$ $(m\rightarrow\infty)$ .
This is a contradiction to (3.10).

Next, in order to prove the assertion (b), we put $a_{m}=(c-\lambda_{j}\lambda_{k})(q_{m})$ and
$b_{m}=(\lambda_{f}-\lambda_{k})^{2}(q_{m})$ . For two sequences $\{a_{m}\}$ and $\{b_{m}\}$ these are both bounded by

the assertion (a) and (3.10) means that a sequence $\{a_{m}b_{m}\}$ converges to $0$ as $m$

tends to infinity. Suppose that there is a subsequence $\{a_{mj}\}$ such that $a_{mj}\rightarrow a\neq 0$

and $|b_{m}|\leqq B$ . Because of $a_{mj}b_{mj}=b_{mj}(a_{mj}-a)+ab_{mj}$, we have

$|a_{mj}b_{mj}|+|b_{mj}(a_{mj}-a)|\geqq|ab_{mj}|$ .
Since $\{a_{mj}b_{mj}\}$ is also converges to $0$ , there is a positive integer $N$ for any
positive number $\epsilon$ such that $|a_{mj}b_{mj}|<\epsilon$ and $|a_{mj}-a|<\epsilon$ for $j>N$, which yields

that $|ab_{mj}|\leqq\epsilon(1+B)$ and hence $b_{mj}\rightarrow 0(j-\rightarrow\infty)$ . This leads to $a_{mj}\rightarrow 0(J^{\rightarrow\infty})$ or
$b_{mj}\rightarrow 0(J^{\rightarrow\infty})$ , that is, the proof of (b) is complete.

Now, for principal curvatures $\lambda_{1}$ and $\lambda_{2}$ we can regard the subsequence
$\{q_{mi}\}$ in the assertion (b) as a sequence $\{q_{m}\}$ . Suppose anew $\lambda_{1}\lambda_{2}(q_{m})\rightarrow c(m\rightarrow\infty)$ .
Since $\{\lambda_{I}(q_{m})\}$ is bounded, it converges to $\lambda_{10}$ by taking the subsequence $\{q_{mj}\}$

if necessary. Suppose that $\lambda_{10}=0$ . Then we have $|\lambda_{1}\lambda_{2}(q_{mj})|\leqq\Lambda_{2}|\lambda_{1}(q_{mj})|$ ,
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where $\Lambda_{2}$ denotes the upper bound of $\{\lambda_{2}(q_{m})\}$ , which implies that
$\lambda_{1}\lambda_{2}(q_{mj})\rightarrow 0\neq c(j\rightarrow\infty)$ , a contradiction. Thus $\lambda_{10}\neq 0$ and hence we have

$|\lambda_{10}||\lambda_{2}(q_{mj})-c/\lambda_{10}|\leqq|\lambda_{2}(q_{mj})||\lambda_{1}(q_{mj})-\lambda_{10}|+|\lambda_{1}\lambda_{2}(q_{mj})-c|$ ,

from which it follows that $\lambda_{2}(q_{mj})\rightarrow c/\lambda_{10}=\lambda_{20}$ . Consequently two limits have
the same sign, which shows that, without loss of generality we may suppose
that they are positive. The assumption that a multiplicity of all principal

curvatures is greater than one and the condition of the sectional curvatures

give us the fact $c-\lambda_{1}(q_{mj})^{2}\geqq 0$ and $c-\lambda_{2}(q_{mj})^{2}\geqq 0$ and therefore $0<\lambda_{10},$ $\lambda_{20}\leqq\sqrt{c}$ .
This coupled with (3.11) yields that $\lambda_{1}(q_{mj})\rightarrow\sqrt{c}$ and $\lambda_{2}(q_{mj})\rightarrow\sqrt{c}(]^{\rightarrow\infty})$ , which
means that $\lambda_{10}=\lambda_{20}=\sqrt{c}$ , that is, $(\lambda_{1}-\lambda_{2})(q_{mj})\rightarrow 0(j\rightarrow\infty)$ , by taking the sub-
sequence if necessary, Similarly, for principal curvatures $\lambda_{1}$ and $\lambda_{3}$ there is a
subsequence $\{q_{mk}\}$ of $\{q_{mj}\}$ such that $(\lambda_{1}-\lambda_{3})(q_{mk})\rightarrow 0(k\rightarrow\infty)$ , by taking the
subsequenc if necessary. Since the sequence $\{(\lambda_{1}-\lambda_{2})(q_{mj})\}$ converges to zero,
it is see that the subsequence $\{(\lambda_{1}-\lambda_{2})(q_{mk})\}$ converges also to zero as $k$ tends
to infinity, which implies that there is a point subsequence $\{q_{mk}\}$ of $\{q_{mj}\}$ so
that two sequences $\{(\lambda_{1}-\lambda_{2})(q_{mk})\}$ and $\{(\lambda_{1}-\lambda_{3})(q_{mk})\}$ converges both to zero as
$k$ tends to infinity. This means that the assertion (c) is inductively proved.

Thus, for any distinct indices $j$ and $k$ we have $\lambda_{j0}=\lambda_{k0}$ or $\lambda_{j0}\lambda_{k0}=c$ and

hence we get $\lambda_{j0}=\lambda_{h0}=\sqrt{c}$ because of $0<\lambda_{j0}\leqq\sqrt{c}$ Furthermore, because of
$-nh_{2}-h^{2}=\sum(\lambda_{j}-\lambda_{k})^{2}\geqq 0$, the function $h^{2}$ is bounded from above by the constant
$-h^{2}/n$ and on the other hand the sequence $\{h_{2}(q_{m})\}$ converges to $-h^{2}/n$ . It
means that we obtain $h_{2}(q_{m})\rightarrow-h^{2}/n=\sup h_{2}$ , from which together (3.5) it
follows that $\sup h_{2}=\inf h_{2}$ , namely, the function $h_{2}$ is constant on $M$. Accord-
ingly (3.2) means that the second fundamental form is parallel and therefore
the simple algebraic calculation implies that all principal curvatures are constant
on $M$ and the number of distinct principal curvatures are at most 2. By means
of the congruence theorem of Abe, Koike an Yamaguchi [1] it completes the
proof of Main theorem stated in the introduction.

REMAR 3.1. By the hyperbolic cylinder $\gamma\times S^{n-1}(c_{2})$ , where $\gamma$ denotes the
space-like curve in $R_{1}^{2}$ , it is seen that the assumtion of the multiplicities of
principal curvatures in Main theorem can not be omitted.

The case where the ambient space is an anti-de Sitter space shall be con-
sidered. Let $M$ be a space-like hypersurface of an anti-de Sitter space $H_{1}^{n+1}(c)$ ,

whose mean curvature is constant. If $M$ is of non-negative curvature, then the
process of the proof of the main theorem in this section holds to the fact that
all sequences $\{\lambda_{j}(q_{m})\}$ are convergent as $m$ tends to infinity. Suppose that $M$
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is of non-negative curvature. Then it is easily seen by the simple algebraic
consideration that the number of distinct limits of these sequences $\{\lambda_{j}(q_{m})\}$ is
at most two, say $\lambda_{10}$ and $\lambda_{20}$ , and $c-\lambda_{10}\lambda_{20}\geqq 0$ . It turns out that one is positive
and the other is negative. Then we may suppose, without loss of generality,
that the multiplicity of $\lambda_{10}$ is greater than one, because of $n\geqq 3$ . Then, for a
sufficiently large $m_{2}$ there are distinct indices $j$ and $k$ such that the sequences
$\{\lambda_{j}(q_{m})\}$ and $\{\lambda_{k}(q_{m})\}$ convergent to $\lambda_{10}$ , and $\lambda_{j}(q_{m})$ and $\lambda_{k}(q_{m})$ are positive for
any integer $m>m_{2}$ . Therefore the sectional curvature of the plane at $q_{m}$

spanned by principal vectors corresponding to $\lambda_{j}(q_{m})$ and $\lambda_{k}(q_{m})$ is given by
$c-\lambda_{j}(q_{m})\lambda_{k}(q_{m})$ , which is negative. Thus one finds

PROPOSITION 3.1. Let $M$ be an $n(\geqq 3)$-dimensional space-like hypersurface of
an anti-de Sitter space $H_{1}^{n+1}(c)$ whose mean curvature is constant. Then $M$ is not
of non-negative curvature.

REMARK 3.2. In the case where the ambient space is a Minkowski one, it
is trivial that a space-like hypersurface $M$ of non-negative curvature is totally
geodesic, if $M$ is of constant mean curvature and if a mnltiplicity of each
principal curvature is greater than one. The last assumption can not be
omitted. In fact, a hyperbolic cylinder $\gamma\times R^{n-1}$ in $R_{1}^{n+1}$ defined by { $x\in R_{1}^{n+1}$ :
$-x_{1}^{2}+x_{2}^{2}=-b^{2}\}$ , where $b$ is a positive constant and hence $\gamma$ is a space-like curve
in $R_{1}^{2}$ , is a complete flat space-like hypersurface of $R_{1}^{n+1}$ one of whose distinct
principal curvatures is $0$ with its multiplicity $n-1$ the other is a non-zero
constant.

REMARK 3.3. A hypersurface of a Minkowski space $R_{1}^{n+1}$ is said to be
entire if it is the graph of a function over the whole $R^{n}$ . It is seen by Cheng
and Yau [5] that in the entire space-like hyersurface $M$ with constant mean
curvature of $R_{1}^{n+1}$ the Ricci curvature of $M$ is non-positive. According to
Stumbles and Treibergs’ theorem [18] and [19] there are many entire space-
like hypersurfaces with constant mean curvature of $R_{1}^{n+1}$ which are different
from the hyperboloids. It means that entire space-like surfaces with non-positive
Gauss curvature and constant mean curvature exist in $R_{1}^{3}$ and hence we cannot
expect to classify space-like hypersurfaces with constant mean curvature and of
non-positive sectional curvature.

By the similar method to the proof of the main theorem, we can verify
following fact, which is a complete version of a part of Nomizu and Smyth’s

theorem [13]. A complete simply connected Riemannian manifold of negative
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constant curvature is said to be hyperbolic.

THEOREM 3.2. Let $M$ be an $n(\geqq 3)$-dimensional complete hypersurface with
constant mean curvature of a hyperbolic space. If the sectional curvature is non-
negative and if a muliplicity of each principal curvature is greater than one,

then $M$ is isometric to $a$ Euclidean space or a sphere.

4. Goddard’s second conjecture

This section is devoted to the investigation about examples of complete

space-like hypersurfaces with constant mean curvature of a de Sitter space
$S_{1}^{n+1}(c)$ , which are different from standard models. By taking account of the
main theorem, it is seen that at least one principal curvatures ought to be

simple. In fact, as we remarked in the last of \S 3, it suffices to consider
hypersurfaces with distinct two principal curvatures one of which is simple of
$S_{1}^{n+1}(c)$ . Such hypersurfaces are conformally flat.

Let $M$ be a space-like hypersurface of $S_{1}^{n+1}(c),$ $n\geqq 3$ , and assume that the
principal curvatures $\lambda_{j}\prime s$ on $M$ satisfy

$\lambda_{1}=\cdots=\lambda_{n-1}=\lambda\neq 0$ ,
(4.1)

$\lambda_{n}=\mu$ ,

such that $\lambda\neq\mu$ . Without loss of generality, we may suppose that $\lambda>0$ . As is

well known, the distribution $D$ of the space of principal vectors at any point

corresponding to the principal curvature $\lambda$ is completely integrable, because the
multiplicity of each principal curvature is constant. Now, since $\lambda$ and $\mu$ are
smooth functions on $M$ and since the second fundamental form is given by
$/\iota_{jk}=\lambda_{j}\delta_{jk},$ $i$ . $e.,$ $h_{aa}=\lambda,$ $ h_{nn}=\mu$ and $h_{jk}=0(]\neq k)$ , we have, by the definition
of the covariant derivative $\nabla\alpha$ with components $h_{ijk}$ ,

(4.2) $d\lambda=h_{aaa}\omega_{a}+\sum_{b\neq a}h_{aab}\omega_{b}+h_{aan}\omega_{n}$ ,

where indices $a,$ $b,$ $\cdots$ run over the range $\{1, \cdots, n-1\}$ . Because of $\omega_{0a}=\lambda\omega_{a}$ ,

we have

$d\omega_{0a}=d\lambda\wedge\omega_{a}+\lambda d\omega_{a}$

$=d\lambda\wedge\omega_{a}+\lambda(-\Sigma_{b}\omega_{ab}\wedge\omega_{b}-\omega_{an}\wedge\omega_{n})$ ,

while the restriction of the structure equation for the ambient space to the
hypersurface $M$ yields

$d\omega_{oa}=-\Sigma_{k}\omega_{0k}\wedge\omega_{ka}+\Omega_{0a}$
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$=-\lambda\sum_{b}\omega_{b}\wedge\omega_{ba}-\mu\omega_{n}\wedge\omega_{na}$ ,

because the ambient space is a constant curvature and $\omega_{0n}=\mu\omega_{n}$ . Combining
together with above two equations, we have

(4.3) $\Sigma_{b}\lambda,$ $b\omega_{b}\wedge\omega_{a}+\{(\mu-\lambda)\omega_{an}-\lambda,\omega\}\wedge\omega_{n}=0$

for any index $a$ , where $d\lambda=\Sigma_{b}\lambda,$ $b\omega_{b}+\lambda,$ $n\omega_{n}$ . Since 2-forms $\omega_{j}\wedge\omega_{k}(J<k)$ are
linearly independent, this implies

$\lambda,$ $a=0$ ,
(4.4)

$(\mu-\lambda)\omega_{an}-\lambda,$ $n\omega_{a}=f_{a}\omega_{n}$

for any index $a$ , where $f_{a}$ is a function on $M$. By the second equation of (4.4)

we have $d\omega_{n}=\{f_{a}/(\mu-\lambda)\}\omega_{n}\wedge\omega_{a}$ , which inplies that $d\omega_{n}\equiv 0(mod.\omega_{n})$ . This
yields that the distribution $D$ is completely integrable because $D$ is defined by
$\omega_{n}=0$ . From (4.2) and the first equation of (4.4) it follows that we have

$ h_{aaa}\omega_{a}+\Sigma_{b\neq a}h_{aab}\omega_{b}+h_{aan}\omega_{n}=\lambda,\omega$ ,
and hence

(4.5) $h_{aaa}=0$ , $h_{aab}=0(b\neq a)$ , $h_{aan}=\lambda,$
$n$ .

Similarly, for the other principal curvature $\mu$ one has

$d\mu=\Sigma_{b}h_{nnb}\omega_{b}+h_{nnn}\omega_{n}$ .
Because of $\omega_{0n}=\mu\omega_{n}$ , by the same argument as that of $\lambda$ we have

$d\omega_{on}=-\lambda\Sigma_{b}\omega_{nb}\wedge\omega_{b}=d\mu\wedge\omega_{n}-\mu\Sigma_{b}\omega_{nb}\wedge\omega_{b}$ ,

and hence
$d\mu\wedge\omega_{n}+(\lambda-\mu)\Sigma_{b}\omega_{nb}\wedge\omega_{b}=0$ .

We set $ d\mu=\sum_{b\mu,b}\omega_{b^{\perp}}\mu,\omega$ . This together with (4.4) implies

(4.6) $\mu,$ $a^{=f_{a}}$ for any index $a$ .

By definition, we have

(4.7) $h_{nna}=\mu,$
$\alpha$ ’

$h_{nnn}=\mu,$ $n$ .
On the other hand, for distinct indices $a$ and $b$ , one has

(4.8) $h_{abk}=0$ for any index $k$ ,

In particular, let $M$ be a space-like hypersurface of $S_{1}^{n+1}(c)$ whose mean
curvature is non-zero constant. Then principal curvatures $\lambda\mu$ and satisfy
$ h=(n-1)\lambda+\mu$ and hence $(n-1)\lambda,$ $k+\mu,$ $k=0$ for any index $k$ . Moreover, by

(4.4), (4.6) and (4.7) we have
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(4.9) $\lambda,$

$a=\mu,$ $a=h_{ann}=0$ , $f_{a}=0$

for any index $a$ . Thus, the principal curvature $\lambda$ is constant along each integral

submanifold of the corresponding distribution. By (4.4) we have

(4.10) $\omega_{na}=\lambda,$ $n(n\lambda-h)^{-1}\omega_{a}$ , $-(n-1)\lambda,$ $n=\mu,$ $n=h_{nnn}$ .
Consequently, in order for $M$ to satisfy that the mean curvature is constant,

their principal curvatures $\lambda$ and $\mu$ must satisfy (4.9) and (4.10). Moreover, by

the second equation of (4.4) and (4.9) we have $d\omega_{n}=0$ , which shows that we
may put

(4.11) $\omega_{n}=dv$ .
Thus we have

(4.12) $\omega_{na}=\lambda^{\prime}(n\lambda-h)^{-1}\omega_{a}$ ,

where the prime denotes the derivative with respect to the parameter $v$ . (4.12)

shows that the integral submanifold $M^{n-1}(v)$ corresponding to $\lambda$ and $v$ is
umbilical in $M$ and in $S_{1}^{n+1}(c)$ . Substituting the above equation into the struc-
ture equation

$d\omega_{na}+\Sigma_{b}\omega_{nb}\wedge\omega_{ba}=(c-\lambda\mu)\omega_{n}\wedge\omega_{a}$ ,

we have

$d(\lambda^{\prime}(n\lambda-h)^{-1}\omega_{a})=-\lambda^{\prime}(n\lambda-h)^{-1}\Sigma_{b}\omega_{b}\wedge\omega_{ba}+(c-\lambda\mu)\omega_{n}\wedge\omega_{a}$ .

Since the left hand side is reduced to

$\{(n\lambda-h)^{-1}\lambda^{\prime}\}^{\prime}\omega_{n}\wedge\omega_{a}+(n\lambda-h)^{-1}\lambda^{\prime}(+\Sigma_{b}\omega_{ab}\wedge\omega_{b}+\omega_{an}\wedge\omega_{n})$ ,

we get

(4.13) $\{(n\lambda-h)^{-1}\lambda^{\prime}\}^{\prime}-\{(n\lambda-h)^{-1}\lambda^{\prime}\}^{2}-\{c-h\lambda+(n-1)\lambda^{2}\}=0$ ,

which is reformed to

(4.14) $(n\lambda-h)\lambda^{\prime\prime}-(n+1)\lambda^{\prime 2}-\{c-h\lambda+(n-1)\lambda^{2}\}(n\lambda-h)^{2}=0$ ,

Putting $\sigma=(\lambda-h/n)^{-1/n},$ $(4.14)$ can be replaced by

$\sigma^{\prime\prime}+(n-1)\sigma^{-2n+1}+\{(n-2)h/n\}\sigma^{-n+1}+(c-h^{2}/n^{2})\sigma=0$ .

Integrating the differential equation for $\sigma$ of degree 2, we obtain

(4.15) $\sigma^{\prime 2}-\sigma^{-2n+1}-2h/n\sigma^{-n+2}+(c-h^{2}/n^{2})\sigma_{\iota}=c_{1}$ ,

where $c_{1}$ is the integral constant. Hence, we have the different situation
compared with the case of no simple roots. Hence we have many hyper-
surfaces of $S_{1}^{n+1}(c)$ whose mean curvature is constant corresponding to the values
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of the constant $c_{1}$ .
In the sequel, we suppose that $c=1$ and $S_{1}^{n+1}(1)$ is an $(n+1)$-dimensional de

Sitter space $S_{1}^{n+1}$ of constant curvature 1 in $R_{1}^{n+2}$ . We may consider the frame
$(e_{0}, e_{1}, \cdots , e_{n}, x)$ in $R_{1}^{n+2}$ such that $x=e_{n+1}$ . Since the second fundamental form

of $S_{1}^{n+1}$ as the hypersurface $R_{1}^{n+2}$ is given by $h_{AB}=-\sum_{B}\epsilon_{B}\delta_{AB}$ , we have

$\omega_{n+10}=0$ , $\omega_{n+1k}=-\omega_{k}$ .

Accordingly, we have the following relations by (4.12),

$de_{a}=-\omega_{0a}e_{0}+\Sigma_{b=a}\omega_{ba}e_{b}+\omega_{na}e_{n}+\omega_{n+1a}e_{n+1}$

$=\sum_{0\neq a}\omega_{ba}e_{b}-\{\lambda e_{0}+(\log\sigma)^{\prime}e_{n}+e_{n+1}\}\omega_{a}$ ,

$d\{\lambda e_{0}+(\log\sigma)^{\prime}e_{n}+e_{n+1}\}$

$=\lambda^{\prime}\omega_{n}e_{0}-\lambda(\lambda\Sigma_{a}\omega_{a}e_{a}+\mu\omega_{n}e_{n})+(\log\sigma)^{\prime\prime}\omega_{n}e_{n}$

$=\{\lambda^{\prime}-\mu(\log\sigma)^{\prime}\}\omega_{n}e_{0}+\{-\lambda\mu+(\log\sigma)^{\prime\prime}+1\}\omega_{n}e_{n}$

$-(\log\sigma)^{\prime}\omega_{n}e_{n+1}$ ($mod$ . $e_{1},$
$\backslash \cdot\cdot$ , $e_{n-1}$ }

$=-(\log\sigma)^{\prime}\{\lambda e_{0}+(\log\sigma)^{\prime}e_{n}+e_{n+1}\}dv$ ,

by means of (4.13). Hence, putting

(4.16) $W=e_{1}\wedge\cdots\wedge e_{n-1}\{\lambda e_{0}+(\log\sigma)^{\prime}e_{n}+e_{n+1}\}$ ,

we get

(4.17) $dW=-(\log\sigma)^{\prime}Wdv$ ,

which shows that the n-vector $W$ in $R_{1}^{n+2}$ is constant along $M^{n-1}(v)$ . Hence
there exists an n-dimensional linear subspace $E_{n}(v)$ in $R_{1}^{n+2}$ containing $M^{n-1}(v)$ .
Since the scalar product $\langle u, u\rangle$ of the vector $u$ defined $\lambda e_{0}+(\log\sigma)^{\prime}e_{n}e_{n+1}$ is
given by

$-\lambda^{2}+\{(\log\sigma)^{\prime}\}^{2}+1=c_{1}(\lambda-h/n)^{2/n}$

by means of (4.15), the vector $u$ is space-like, null or time-like, according as
the integral constant $c_{1}$ is positive, zero or negative. So the linear space $E^{n}(v)$

is space-like if $c_{1}$ is positive. By (4.17) the n-vector field $W$ depends only on
$v$ and by integrating in the equation

$W(v)=\{n\lambda(v)-h\}^{1/n}\{n\lambda(v_{0})-h\}^{-1/n}W(v_{0})$

holds. Hence it is seen that $E_{n}(v)$ is parallel to $E^{n}(v_{0})$ in $R_{1}^{n+2}$ .
The sectional curvature of $M^{n-1}(v)$ is here considered. Since $M^{n-I}(v)$ is

regarded as the submanifold of $S_{1}^{n+1}$ , its sectional curvature is give by
$[-\lambda^{2}+\{(\log\sigma)^{\prime}\}^{2}+1](v)$ because of
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$d\omega_{ab}+\sum_{c}\omega_{ac}\wedge\omega_{cb}=\omega_{a0}\wedge\omega_{0b}-\omega_{an}\wedge\omega_{nb}+\omega_{a}\wedge\omega_{b}$

$=[-\lambda^{2}+\{(\log\sigma)^{\prime}\}^{2}+1]\omega_{a}\wedge\omega_{b}$ .

Since the vector $u=\lambda e_{0}+(1\rho g\sigma)^{\prime}e_{n}+e_{n+1}$ is space-like, $M^{n-1}(v)$ is the $(n-1)-$

dimensional sphere $M^{n-1}(v)=E^{n}(v)\cap S_{1}^{n+1}$ of constant curvature $|u(v)|^{2}=$

$[-\lambda^{2}+\{(\log\sigma)^{\prime}\}^{2}+1](v)$ and the the center $q(v)$ is given by

$q(v)=x-u(v)/|u(v)|^{2}$ .

Moreover the center lies in a fixed plane $E_{1}^{2}$ through the origin of $R_{1}^{n+2}$ and
orthogonal to $E^{n}(v_{0})$ because the position vector $q$ in $R_{1}^{n+2}$ is orthogonal to the
vectors $e_{a}$ for any $a$ and $u$ . Hence the point $q(v)$ makes a plane curve in $E_{1}^{2}$ .
Thus one find the following

THEOREM 4.1. Let $M$ be an $n(\geqq 3)$-dimensional space-like hypersurface with
constant mean curvature of $S_{1}^{n+1}(c)$ . If it has exactly two distinct principal
curvatures one of which is simple and the other $\lambda$ has no zero points, the follow-
ing assertions are true:

(1) $M$ is a locus of moving ($n-$ l)-dimensional submanifold $M^{n-1}(v)$ along
which the principal curvature $\lambda$ is constant and which is umbilic in $M$ and of
constant curvature { $d/dv(\log\lambda)^{2}+\lambda^{2}+c)$ , where $v$ is the arc length of an orthogonal
trajectory of the family $M^{n-1}(v)$ , and $\lambda=\lambda(v)$ satisfies the ordinary differential
equation (4.14) of order 2.

(2) If $M=S_{1}^{n+1}$ in $R_{1}^{n+2}$ , then $M^{n- 1}(v)$ is contained in an $(n-1)$-dimensional
sphere $S^{n-1}(v)=E^{n}(v)\cap S_{1}^{n+1}$ of the intersection of $S^{n+1}$ and an n-dimensional linear
subspace $E^{n}(v)$ in $R_{1}^{n+2}$ which is parallel to a fixed $E^{n}$ . The center $q$ moves on a
plane curve in a plane $R^{2}$ through the origin of $R_{1}^{n+2}$ and orthogonal to $E^{n}$ .

COROLLARY 4.2. There exist infinitely many space-like hypersurfaces of
$S_{1}^{n+1}(c)$ whose mean curvature is constant, which is not congruent to each other on
$it$ .

This section is essentially related to Otsuki’s theory in [16].

REMARK 4.1. We have no information about the sign of the sectional
curvature of the above examples.

REMARK 4.2. According to the Goddard second conjecture the class of
totally umbilic hypersurfaces is the only complete space-like hypersurface with
constant mean curvature of $S_{1}^{4}$ . This is denied by the existence of hyperbolic
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cylinders, whose principal curvatures are constant. However principal curva-
tures of the above hypersurfaces are not necessarily constant, which that they

are different from the hyperboloids. So they are also conuter-examples of
Goddard’s second conjecture.

REMARK 4.3. In a Minkowski space the existence is to give the entire
solution of the partial differential equation

(4.18) $(1-\Sigma f_{j}^{2})\Sigma f_{kk}+\Sigma f_{j}f_{k}f_{jk}=h(1-\Sigma f_{j}^{2})^{3/2}$ , $1-\Sigma f_{j}^{2}>0$

on $R^{n}$ , where $f_{j}=\partial f/\partial x_{j}$ and $f_{jk}=\partial^{2}f/\partial x_{j}\partial x_{k}$ . Treibergs [19] considered approxi-
mations of entire space-like hypersurfaces with constant mean curvature in
$R_{1}^{n+1}$ by solving a Direchlet problem in an increasing sequence of domains and
obtained many essentially different solutions.

Bibliography

[1] Abe, N., Koike, N. and Yamaguchi, S., Congruence theorems for proper semi-
Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987),

[2] Akutagawa, K., On spacelike hypersurfaces with constant mean curvature in the
de Sitter space, Math. Z. 196 (1987), 1987.

[3] Calabi, E., Examples of Bernstein problems for some nonlinear equations, Poc.
Symp. Pure Appl. Math. 15 (1970), 223-230.

[4] Cheng, Q. M. and Nakagawa, H., Totally umbilic hypersurfaces, To appear in
Hiroshima Math. J.

[5] Cheng, S.Y. and Yau, S. T,, Maximal space-like hypersurfaces in the Lorentz-
Minkowski spaces, Ann. of Math., 104 (1976), 407-419.

[6] Choque-Bruhat, Y., Maximal submanifolds of constant extrinsic curvature, Ann.
Scuola Norm. Sup. Pisa, 3 (1976), 361-376.

[7] Dajczer, M. and Nomizu, K., On flat surfaces in $S_{1}^{3}$ and H’, In: Hano, J., Murakami,
S., Ozeki, H. (eds.) Manifolds and Lie Groups, in honor of Y. Matsushima,
(pp. 71-108) Birkha\"user, Boston, 1981.

[8] Goddard, A. J., Some remarks on the existenxe of spacelike hypersurfaces of con-
stant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489-495.

[9] Ishihara, T., Maximal spacelike submanifolds of pseudohyperbolic space with
second fundamental form of maximal length, Preprint.

[10] Marsden, J. and Tipler, F., Maximal hypersurfaces and foliations of constant mean
curvature in general relativity, Bull. Amer. Phys. Soc. 23 (1978), 23-84.

[11] Milnor, K. T., Harmonic maps and classical surface theory in Minkowski 3-space.
Trans. Amer. Math. Soc. 280 (1983), 161-185.

[12] Nishikawa, S., On maximal spacelike hyperfaces in a Lorentzian manifold, Nagoya
Math. J. 95 (1984), 117-124.

[13] Nomizu, K. and Smyth, B., A formula of Simons’ type and hypersurfaces with
constant mean curvature, J. Differential Geometry, 3 (1969), 367-377.

[14] Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19
(1967), 205-214.

[15] O’Neill, B., Semi-Riemannian Geomeary, Academic Press, New York, London, 1983.



370 Qing-ming CHENG

[16] Otsuki, T., Minimal hypersurfaces in a Riemannian manifold of constant curvature,
Trans. Amer. Math. Soc. 92 (1970), 145-173.

[17] Ramanathan, J., Complete spacelike hypersurfaces of constant mean curvature in
de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-359.

[18] Stumbles, S., Hypersurfaces of constant mean extrinsic curvature, Ann. of Physics
133 (1980), 28-56.

[19] Treibergs, T.E., Entire hypersurfaces of constant mean curvature in Minkowski
3-space, Invent. Math. 66 (1982), 39-56.

[20] Yamada, K., Complete space-like surfaces with constant mean curvature in the
Minkowski 3-space, Tokyo J. Math., 11 (1988), 329-338.

[21] Yau, S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure
and Appl. Math., 28 (1975), 201-228.

Department of Mathematics,
Northeast University of Technology,
Shenyang, China


	COMPLETE SPACE-LIKE HYPERSURFACES ...
	Introduction
	2. Standard models
	3. Hypersurfaces of non-negative ...
	THEOREM. Let ...
	THEOREM 3.2. ...

	4. Goddard's second conjecture
	THEOREM 4.1. ...

	Bibliography


