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0. Introduction

A compact connected metric space is called a continuum. Let $X$ be a con-
tinuum and $d$ be a metric of $X$. A. Lelek [6], [7] defined the span, semispan,
surjective span and surjective semispan by the following formulas (the map $\pi_{j}$

denotes the projection map from $X\times X$ onto the i-th factor).

$\tau=\sigma,$ $\sigma_{0},$
$\sigma^{*},$ $\sigma_{0}^{*}$ .

$\tau=\sup\{c\geqq 0|_{d(x,y)\geqq cforeach(x,y)\in Z}^{thereexistsacontinuumZ\subset X\times X}Zsatisfiesthecondition\tau)and$

such

$that\}$ .

Where the condition $\tau$ ) is
$\pi_{1}(Z)=\pi_{2}(Z)$ if $\tau=\sigma$

$\pi_{1}(Z)\supset\pi_{2}(Z)$ if $\tau=\sigma_{0}$

$\pi_{1}(Z)=\pi_{2}(Z)=X$ if $\sigma=\sigma^{*}$

$\pi_{1}(Z)=X$ if $\tau=\sigma_{0^{*}}$

The property of having zero span (semispan, surjective span, surjective
semispan resp.) does not depend on the choice of metrics of $X$.

A continuum is said to be arc-like if it is represented as the limit of an inverse
sequence of arcs. It is known that each arc-like continuum has span zero. But
it is not known whether the converse implication is true or not. A continuum
$X$ is said to be hereditarily indecomposable if each subcontinuum $Y$ of $X$ cannot be
represented as the union of two proper subcontinua of $Y$ . Hereditarily inde-
composable arc-like continuum is topologically unique. It is called the pseudo-

arc and denoted by $P$ in this paper. It is known to be a homogeneous plane

continuum and is also important in span theory. For example, each span zero
continuum is a continuous image of the pseudo-arc ([11] and [2]).
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The purpose of this paper is to study some roles of the pseudo-arc in span
theory. The paper is divided into three parts. In section 1, a uniformization
theorem of maps from the pseudo-arc onto span zero continua is proved. As
an application, we obtain a method of constructing maps from the pseudo-arc
onto span zero continua. In section 2 and 3, we study the (weak) confluency

of product maps. Using these results, we have an equivalent condition that a
map preserves the property of having zero span in terms of (weak) confluency

of product maps (cf. [10]). In section 4, we prove fixed point theorems for
span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of 0versteegen [10] and
Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, $Q$ denoted the Hilbert cube with a fixed metric.
Let $f,$ $g:X\rightarrow Y$ be maps and $\epsilon>0$ . We say that $f$ and $g$ are $\epsilon$ -near (denoted

by $f=_{\text{\’{e}}}g$ ) if $\sup\{d(f(x), g(x))|x\in X\}<\epsilon$ . The map $f\triangle g:X\rightarrow Y\times X$ is defined

by $f\triangle g(x)=(f(x), g(x))$ .
A collection $w=\{W_{1}, \cdots, W_{n}\}$ is called a weak chain if $ W_{i}\cap W_{i+1}\neq\emptyset$ for

each $1\leqq i\leqq n-1$ . Let $v=\{U_{1}, \cdots, U_{m}\}$ be another weak chain and $f:\{1, \cdots , m\}$

$\rightarrow\{1, \cdots, n\}$ be a pattern ( $i$ . $e$ . $|f(i)-f(i+1)|\leqq 1$ for each $i$). Then $cU$ is said to

follow $f$ in $cW$ if $U_{i}\subset W_{f(i)}$ for each $1\leqq i\leqq m$ . A continuum $W$ is called weakly
chainable if there exists a sequence $(q\mu_{n})$ of weak chain covers of $W$ such that
mesh $\subset W_{n}\rightarrow 0$ as $ n\rightarrow\infty$ , and for each $n,$ $W_{n+1}$ follows a pattern in $cW_{n}$ .

A continuum is weakly chainable if and only if it is a continuous image of
the pseudo-arc ([5]).

Let $f:X\rightarrow Y$ be an onto map between continua, The map $f$ is called con-
fluent (weakly confluent resp.) if for each subcontinuum $K$ of $Y$ , each (some

resp.) component $C$ of $f^{-1}(K)$ satisfies $f(C)=K$.

1. Uniformizations

The following proposition is proved by the same way as [11] Theorem 1
and [12] Lemma 6. We give an outline of the proof (cf. [10] Lemma 2).

PROPOSITION 1. Let $X\subset Q$ be a continum and suppose that $\sigma_{0}X\leqq c(c\geqq 0)$ .
Let $Z$ be a subcontinuum of $X$.

1) For each $\epsilon>0$ , there exists a $\delta>0$ such that for each pair of maps $h,$ $k:I$

$\rightarrow Q$ satisfying $d_{H}(h(I), Z),$ $ d_{H}(k(I), Z)<\delta$ , there exist onto maps $a,$
$b:I\rightarrow I$ such
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that $ h\circ a=kobc+\epsilon$

2) Suppose that $X$ is hereditarily indecomposable and $z\in Z$. If the maps
$h,$ $k:I\rightarrow Q$ in 1) further satisfy $d(h(O), z),$ $ d(k(O), z)<\delta$ , then the maps $a$ and $b$

can be chosen so that $a(O)=b(O)=0$ .

$0uTLINE$ OF PROOF. We give an outline of the case 2). Give any subcon-
tinuum $Z$ and any $\epsilon>0$ . For each pair of maps $h,$ $k:I\rightarrow Q$ , we define

$N(h, k;\epsilon)=\{(x, y)\in I\times I|d(h(x), k(y))<c+\epsilon\}$ .
As in the proof of [11] Theorem 1 and [12] Lemma 6, we have

a) there exists an $\epsilon>0$ which satisfies the following condition:
Let $h,$ $k:I\rightarrow Q$ be any pair of maps satisfying

$ d_{H}(h(I), Z)<\delta$ , $ d_{H}(k(I), Z)<\delta$

$ d(h(O), z)<\delta$ and $ d(k(O), z)<\delta$ .
Then each continuum $K\subset I\times I$ with $K\cap I\times 0\neq\emptyset\neq K\cap O\times I$ intersects
$N(h, k:\epsilon)$ .

This $\delta$ is the required number. To prove this, we take maps $h,$ $k:I\rightarrow Q$

as in the hypothesis. Then as in [12] Lemma 6 again,
b) there exists a component $C(\epsilon)$ of $N(h, k;\epsilon)$ such that each continuum

$K\subset I\times I$ satisfying $K\cap I\times 0\neq\emptyset\neq K\cap O\times I$ intersects $C(\epsilon)$ .
Let $p_{i}$ be the projection map from $I\times I$ to the i-th factor. It is easy to see
that $(0, O)\in C(\epsilon)$ and

$p_{1}(C(\epsilon))=I$ or $p_{2}(C(\epsilon))=I$ .
Assume that $p_{1}(C(\epsilon))=I$. By the similar argument of [11] Theorem 1, we see
that there exists a component $D(\epsilon)$ of $N(h, k;\epsilon)$ such that $p_{2}(D(\epsilon))=I$. But
clearly, $ C(\epsilon)\cap D(\epsilon)\neq\emptyset$ so, $C(\epsilon)=D(\epsilon)$ .

Take a graph $G\subset C(\epsilon)$ such that $(0, O)\in G$ and $p_{i}(G)=Ii=1,2$ . Let $f:I\rightarrow G$

be an onto map such that $f(O)=(O, 0)$ . Then $a=p_{1}\circ f$ and $b=p_{2^{Q}}f$ are the re-
quired.

Let $X_{i}$ be continua and $d_{i}$ be a metric of $X_{\dot{l}}(i=1,2)$ . In this paper, the
metric of $X_{1}\times X_{2}$ is defined by $d((x_{1}, x_{2}),$

$(y_{1}, y_{2}))=\max_{i=1.2}d_{i}(x_{i}, y_{i})$ .
Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove

the following.

PROPOSITION 1.2. Let $X_{i}$ be continua in $Q$ such that $\sigma_{0^{*}}X_{i}\leqq c(c\leqq 0)i=1,2$ .
Then each pair of onto maps $f_{i}$ : $Y_{i}\rightarrow X_{i}(i=12)$ satisfies the following condition.
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For each subcontinuum $K\subset X\times X$ satisfying $\pi_{i^{X}}(K)=X_{i}(i=1,2)$ , there exists
a continuum $L\subset Y_{1}\times Y_{2}$ such that $\pi_{i^{Y}}(L)=Y_{i},$ $i=1,2$ and
$d_{H}((f_{1}\times f_{2})(L), K)\leqq c$ , where, the map $\pi_{i^{X}}$ denotes the projection $X_{i}\times X_{2}$ to
the i-th factor etc.

REMARK. In the proof of [10] Theorem 3, the weak conluency of each
factor of the product map is used. The map $f_{i}$ in the above proposition need
not be weakly confluent, but the same proof works in our situation.

THEOREM 1.3. Let $X\subset Q$ be a continuum such that $\sigma_{0^{*}}X\leqq c(c\geqq 0)$ .
1) For each pair of onto maps $f,$ $g:Y\rightarrow X$, there exists a continuum $Z$ and

onto maps $\alpha,$ $\beta:Z\rightarrow Y$ such that $ f\circ\alpha=2cg\circ\beta$ .
2) In particular, if $Y=P$, then for each $\epsilon>0$ , there exists a homeomorphism

$h:P\rightarrow P$ such that $f_{2c}=_{+\epsilon}g\circ h$ .

PROOF. 1) Consider the map $f\times g:Y\times Y\rightarrow X\times X$ and the diagonal set $\Delta X$

of $X$. By Proposition 1.2, there exists a continuum $Z\subset Y\times Y$ such that $\pi_{1}(Z)=$

$\pi_{2}(Z)=Y$ and $d_{H}(fXg(Z), X)\leqq c$ . Let $\alpha=\pi_{1}|Z$ and $\beta=\pi_{2}|Z:Z\rightarrow Y$ , then $\alpha$ and
$\beta$ are onto maps. For each $(x, y)\in Z$, there exists a point $(p, p)\in\Delta X$ such that
$d(f(x), p),$ $d(g(y), p)\leqq c$ . Hence $d(f(x), g(y))\leqq 2c$ . This means $ f\circ\alpha_{2}=_{c}g\circ\beta$ .

2) Give any $\epsilon>0$ . There exists a $\delta>0$ such that
for each $x,$ $y\in P$ with $d(x, y)<\delta,$ $d(f(x), f(y))<\epsilon/2$

and $d(g(x), g(y))<\epsilon/2$ .
Consider the continuum $Z$ as in 1). By [14], there exists a homeomorphism
$h:P\rightarrow P$ such that $d_{H}(G(h), Z)<\delta/2$ , where $G(h)=\{x, h(x))|x\in P\}$ , the graph
of $h$ .

For each $p\in P$, there exists a point $(x, y)\in Z$ such that $d(x, p),$ $d(h(p), y)$

$<\delta$ . Since $f(x)_{2}=_{c}g(y)$ , we have that

$d(f(p), g\circ h(p))\leqq d(f(p), f(x))+d(f(x), g(y))+d(g(y), g\circ h(p))$

$<\epsilon/2+2c+\epsilon/2<2c+\epsilon$ .
This completes the proof.

As an application of Theorem 1.3, we obtain a characterization of span zero
continua as follows.

THEOREM 1.4. Let $X\subset Q$ be a tree-like continuum in Q. Then the follow-
ing are equivalent.

1) $\sigma X=0$ .



Span zero continua and the pseudo-arc 331

2) For each subcontinuum $Z$ of $X$ and for each $\epsilon>0$ , there exists a $\delta>0$

such that

for each pair of maps $f,$ $g:P\rightarrow Q$ satisfying $f(P)\supset g(P)$ and
$ d_{H}(f(P), Z)<\delta$ , there exists a subcontinuum $P_{1}\subset P$ and an (onto)

homeomorphism $h:P_{1}\rightarrow P$ such that $g\circ h=_{\epsilon}f|P_{1}$ .

We need the following lemma for the proof.

LEMMA 1.5. Let $f:P\rightarrow X$ be a map from the pseudo-arc into a weakly chain-
able continuum X. Then there exists an arc-like continuum $P^{*}\supset P$ and an exten-
sion $F:P^{*}\rightarrow X$ of $f$ such that $F(P)=X$.

PROOF. Take a point $p$ of $P$ and let $x=f(p)$ . Take another pseudo-arc
$P^{\prime}$ and an onto map $g:P^{\prime}\rightarrow X$. Fix a point $p^{\prime}\in g^{-1}(x)$ and let $P^{*}$ be the one
point union of $P$ and $P^{\prime}$ identified at $p$ and $p^{\prime}$ . Define $F:P^{*}\rightarrow X$ by $F|P=f$

and $F|P^{\prime}=g$ . For each $\epsilon>0$ , there exist a chain cover $C$ ( $C$ ‘ resp.) of $P(P^{\prime}$

resp.) such that mesh $C$ (mesh $C^{\prime}$ resp.) $<\epsilon$ and $p$ ( $p^{r}$ resp.) is contained in the
first link of $C$ ( $C^{\prime}$ resp.). Using this fact, it is easy to see that $P^{*}$ is arc-like.

PROOF OF THEOREM 1.4.
$1)\rightarrow 2)$ . Notice that $\sigma_{0}X=0$ by [2]. Fix any subcontinum $Z$ and give any

$\epsilon>0$ . As $\sigma_{0}Z=0$ , there exists a $\delta>0$ such that

each continuum $K\subset Q$ with $ d_{H}(K, Z)<\delta$ , satisfies $\sigma_{0}K<\epsilon/4$ .

To prove that this $\delta$ is the required number, take any pair of maps $f,$ $g:P\rightarrow Q$

as in the hypothesis. Then $\sigma_{0}f(P)<\epsilon/4$ by the choice of $\delta$ . By Lemma 1.5,

there exist an arc-like continuum $P^{*}\supset P$ and a surjective extension $G:P^{*}\rightarrow f(P)$

of $g$ . Fix an onto map $k:P\rightarrow P^{*}$ . Applying Theorem 1.3 to $f$ and $ G\circ k:P\rightarrow$

$f(P)$ , there exists a homeomorphism $h^{*}:$ $P\rightarrow P$ such that $f_{\epsilon}=_{/2}G\circ k\circ h^{*}$ .
Since $P^{*}$ is arc-like, it is in class $W(i$ . $e$ . each map onto $P^{*}$ is weakly con-

fluent). Hence there exists a continuum $P_{1}\subset P$ such that $k\circ h^{*}(P_{1})=P$. Define
$h^{\prime}=k\circ h^{*}|P_{1}$ : $P_{1}\rightarrow P$. Each onto map from $P_{1}$ onto $P$ is a near-homeomorphism
by [14]. A homeomorphism $h:P_{1}\rightarrow P$ which is sufficiently close to $h^{\prime}$ satisfies
the required condition.

$2)\rightarrow 1)$ . Suppose that $\sigma X=c>0$ . There exist maps $\alpha,$ $\beta$ : $C\rightarrow X$ from a con-
tinuum $C$ such that $\alpha(C)=\beta(C)$ and $d(\alpha(p), \beta(p))\geqq c$ for each $p\in C$ . We assume
that $C\subset Q$ and let $Z=\alpha(C)=\beta(C)$ and $0<\epsilon<c/4$ . Take $\delta$ for $\epsilon$ as in 2). Let
$X=\lim_{\leftarrow}X_{n}$ be the inverse limit description of $X$ by an inverse sequence of trees.
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We may assume that $X\cup\cup X_{n}\subset Q$ and the projection map $p_{n}$ : $X\rightarrow X_{n}$ is $1/2^{n}-$

translation in $Q$ . Take sufficiently large $n$ , so that $ 1/2^{n}<\delta$ and let $T=p_{n}(Z)$ .
Since $T$ is a tree, $ p_{n}\circ\alpha$ and $ p_{n}\circ\beta$ has extensions $A,$ $B:Q-\rightarrow T$ respectively.

There exists an $\eta>0$ such that

for each $x,$ $y\in Q$ with $d(x, y)<\eta,$ $d(A(x), A(y))<\epsilon/2$

and $d(B(x), B(y))<\epsilon/2$ .
Let $E$ be the set of all end points of $T$. For each $p\in E$ , take $x_{p}\in(p_{n}\circ\alpha)^{-1}(P)$ .
It is easy to find a pseudo-arc $P\subset Q$ such that $ d_{H}(P, C)<\eta$ and $\{x_{p}|p\in E\}\subset P$.
Then $A(P)=T$ .

Applying 2) to $A|P$ and $B|P:P\rightarrow T$ , we can find a subcontinuum $P_{1}\subset P$

and a homeomorphism $h:P_{1}\rightarrow P$ such that $B\circ h=_{e}A|P_{1}$ . There exists a point

$p\in P_{1}$ such that $h(p)=p$ . As $ d_{H}(C, P)<\eta$ , we can find a point $x\in C$ such that
$ d(p, x)<\eta$ . But then,

$d(\alpha(x), \beta(x))=d(A(x), B(x))$

$\leqq d(A(x), A(p))+d(A(p), Boh(p))+d(B(p), B(x))$

$<\epsilon/2+\epsilon+\epsilon/2=2\epsilon<c/2$ ,

which is a contradiction.
This completes the proof.

The following theorem gives a method of constructing maps from $P$ onto

span zero continua.

THEOREM 1.6. Let $X$ be a continuum which is the limit of an inverse sequence
$(X_{n}, p_{nn+1} ; X_{n+1}\rightarrow X_{n})$ . If $\sigma X=0$, then $X$ has the following property.

For each sequence $(a_{n} ; P\rightarrow X_{n})$ of onto maps, there exists a subsequence
$(m_{n})$ and a sequence of homeorphism $(h_{nn+1} ; P\rightarrow P)$ such that the following
diagram is 1/2-commutative.

$P\underline{h_{ij}}P$

$X_{n_{k}}\leftarrow Xp_{n_{k}n_{i}}a_{n_{i}}\downarrow_{n_{i}}\leftarrow^{p_{n_{i}n_{j}}}X_{n_{j}}\downarrow a_{n_{j}}$

$k\leqq i\leqq j$ .

Where, $h_{ij}$ denotes $h_{ii+1}\circ h_{i+1i+2^{\circ}},$
$\cdots,$ $\circ h_{j-1j}$ , etc.

Hence an onto map $a:P\rightarrow X$ is induced [9].
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Again, we can assume that $X\cup\cup X_{n}\subset Q$ and the projection $p_{n}$ : $X\rightarrow X_{n}$ is

an $1/2^{n}$ -translation in $Q$ . For the proof, we need the following lemma.

LEMMA 1.7. Under the above notation, the following condition holds.

For each $i\geqq 1$ and for each $\epsilon>0$ , there exist an integer $N>0$ and a $\delta>0$

such that

for each $n\geqq N$ and for any points $x,$ $y\in X_{n}$ with $ d(x, y)<\delta$ ,

$ d(p_{in}(x), p_{in}(y))<\epsilon$ .

PROOF. Define $\pi:X\cup\bigcup_{n\geq t}X_{n}\rightarrow X_{i}$ by $\pi|x=p_{i}$ and $\pi|x_{n}=p_{in}$ . Then $\pi$ is

continuous. Hence for each $\epsilon>0$ , there exists a $\delta>0$ such that for any points

$x,$ $y\in X\cup\bigcup_{n\geq i}X_{n}$ with $d(x, y)<3\delta,$ $d(\pi(x), \pi(y))<\epsilon/2$ . Take sufficiently large $N$

such that for each $n\geqq N,$ $p_{n}$ is a $\delta$-translation in $Q$ . It is easy to see that $N$

$and_{\iota}^{I}\delta$ are the required numbers.

PROOF OF THEOREM 1.6. Inductively we will construct the desired diagram.

Since $\lim\sigma_{0}X_{n}=\sigma_{0}X=0$ by [8] ((3.1), (3.2)), [4] and [2], taking a subsequence

$if:necessary$ , we may assume that $\sigma_{0}X_{n}<1/2^{n}$ .
$i=1$ ; Let $n_{1}=1,$ $a_{n_{1}}=a_{1}$ , and $\delta_{1}=1/2$ . Choose an $\epsilon_{1}>0$ so that $2(\sigma_{0}X_{n_{1}})$

$+\epsilon_{1}<\delta_{1}$ .
$i=2$ ; Applying Lemma 1.5 to $i=1$ and $\epsilon=1/2^{2}$ , we have an integer $N_{2}>0$

such that $\delta_{2}<1/2^{2}$ and

for each $n\geqq N_{2}$ and for each $x,$ $y\in X_{n}$ with $d(x, y)<\delta_{2}$ ,

$d(p_{1n}(x), p_{1n}(y))<1/2^{2}$ .

Take an $n_{2}>n_{1},$ $N_{2}$ such that $\sigma_{0}X_{n_{2}}<\delta_{2}/2$ and choose $\epsilon_{2}>0$ such that

$2(\sigma_{0}X_{n_{2}})+\epsilon_{2}<\delta_{2}$ . Applying Theorem 1.3 to $\epsilon_{1},$ $a_{n_{1}}$ , and $p_{n_{1}n_{2}}\circ a_{n_{2}}$ , then we have

a homeomorphism $h_{12}$ : $P\rightarrow P$ such that $a_{n}1_{1/2}^{\circ h_{12}--}-p_{n_{1}n_{2}}\circ a_{n_{2}}$ .

$i=3$ ; Applying Lemma 1.5 to $n_{1}$ and 1/2’, take $N_{3}^{1}>0$ and $\delta_{3}^{1}>0$ . Apply-

ing Lemma 1.5 again to $n_{2}$ and $1/2^{3}$ , take $N_{3}^{2}>0$ and $\delta_{3^{2}}>0$ .

Let $N_{3}>\max(N_{3}^{1}, N_{3}^{2})$ and $0<\delta_{3}<\min(\delta_{3}^{1}, \delta_{3}^{2})$ , and take $n_{3}>n_{2},$ $N_{3}$ such

that $\sigma_{0}X_{n_{3}}<\delta_{3}/2$ . Choose an $\epsilon_{s}>0$ such that $2(\sigma_{0}X_{n_{3}})+\epsilon_{3}<\delta_{3}$ . Apply Theorem

1.3 to $\epsilon_{2},$ $a_{n3}$ and $p_{n_{2}n_{3}}\circ a_{n_{2}}$ . Then, there exists a homeomorphism $h_{23}$ : $P\rightarrow P$

such that $a_{n_{2}}\circ h_{23}=_{2}\delta p_{n_{2}n_{3}}\circ a_{n_{3}}$ . Since $2(\sigma_{0}X)+\epsilon_{2}<\delta_{2}<1/2^{2}$ , we have

$a_{n_{2}}\circ h_{23_{1/}}=_{22}p_{n_{2}n_{3}}\circ a_{n_{3}}$
and

$p_{n_{1}n_{2}}\circ a_{n_{2}}\circ h_{23}=_{2}p_{n_{1}n_{2}}\circ p_{n_{2}n_{3}}\circ a_{n_{3}}1/2$
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Continuing these steps, we have a subsequence $(n_{i})$ and a sequence of
homeomorphisms $(h_{ii+1} : P\rightarrow P)$ such that

for each $k\leqq i\leqq j,$ $p_{n_{ki}}\circ a\circ h=p_{n_{k}}p_{i}\circ a_{n_{i}n_{j}}\circ a_{n_{j}}$ .

This completes the proof.

2. (Weak) Confluency of product maps

PROPOSITION 2.1 (cf. [10] Theorem 3) Let }’ be a continuum such that
$\sigma Y=0$ .

1) For each map $f:X\rightarrow Y$ and for each continum $Z,$ $f\times id_{Z}$ is weakly con-
fluent.

2) In particular, if $Y$ is hereditarily indecomposable, then $f\times id_{Z}$ is confluent.

PROOF. The proof uses the method of [10] Theorem 3. We prove only
the case 2). Let $X=\lim(X_{n}, p_{nn+1} ; X_{n+1}\rightarrow X_{n}),$ $Y=\lim(Y_{n}, q_{nn+1} ; Y_{n+1}-\rightarrow Y_{n})$

and $Z=\lim(Z_{n}, r_{nn+1} ; Z_{n+1}\rightarrow Z_{n})$ be inverse limit descriptions of $X,$ $Y$ and $Z$ re-
spectively. Taking a subsequence if necessary, we may assume that $f$ is in-
duced by the following diagram.

$X_{m}$ $X_{n}$ $X$

$f_{m}$ $C\epsilon_{m}$ $f_{n}$ $C^{\epsilon_{n}}$ $f$

$V_{l}$ $Y_{m}-Y_{n}$ Y.

Where $\epsilon_{n}\rightarrow 0$ as $ n\rightarrow\infty$ .
Further we assume that $X\cup\cup X_{n},$ $Y\cup\cup Y_{n}$ and $Z\cup\cup Z_{n}\subset Q$ and $projectio\acute{n}$ maps
$p_{n}$ : $X\rightarrow X_{n}$ , $q_{n}$ : $Y\rightarrow Y_{n}$ and $r_{n}$ : $Z\rightarrow Z_{n}$ are $1/2^{n}$ -translations in $Q$ . The map
$F:X\cup\cup X_{n}\rightarrow Y\cup\cup Y_{n}$ defined by $F|X=f,$ $F|X_{n}=f_{n}$ is continuous.

To prove that $f\times id_{Z}$ is confluent, we take any continuum $K\subset Y\times Z$ and
choose a point $(x, z)\in(f\times id_{Z})^{-1}(K)$ . It suffices to construct a continuum $ C\subset$

$X\times Z$ such that $f\times id_{Z}(C)=K$ and $(x, z)\in C$ . By an induction, we take a suita-
ble subsequence $(m_{n})$ and a sequence $(C_{n})$ of continua such that

a) $C_{n}\subset X_{m_{n}}\times Z_{m_{n}}$ b) $d_{H}(f_{m_{n}}\times id_{z_{m_{n}}}(C_{n}), K)<1/n$ .
c) $d((x, z),$ $C_{n}$ ) $<1/n$ .

Let $\pi_{Y}$ and $\pi_{Z}$ be the projection from $Y\times Z$ to $Y$ and $Z$ respectively. Define
$K^{Y}=\pi_{Y}(K),$ $K^{Z}=\pi_{Z}(K)$ and $(y, z)=f\times id_{Z}(x, z)$ .
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Let $m_{0}=0$ and $C_{0}=X\times Z$ and assume that $m_{n-1}$ and $C_{n-1}$ have been defined.

Since $Y$ is hereditarily indecomposable and $\sigma Y=0$ , by Proposition 1.1, there
exists a $\delta>0$ such that $0<\delta<1/2n$ and

d) for each pair of maps $h,$ $k:I\rightarrow Q$ which satisfy $ d_{H}(h(I), K^{Y})<\delta$

and $ d_{H}(k(I), K^{Y})<\delta$ , there exist maps $a,$ $b:I\rightarrow Q$ such that

$hoa_{1/}=_{2n}k\circ b$ and $a(O)=b(O)=0$ .

Since $f$ is a confluent map, there exists a continuum $C$ of $X$ such that

e) $x\in C$ and $f(C)=K^{Y}$ .

We use the following notation;

f) $K_{m}=q_{m}\times r_{m}(K)$ , $K_{m^{Y}}=q_{m}(K^{Y})$ , $K_{m^{Z}}=r_{m}(K^{Z})$ ,
$C_{m}^{X}=p_{m}(C)$ , $C_{m^{Z}}=K_{m^{Z}}$ .

Take sufficiently large $m$ such that

g) $m>m_{n-1}$ , $d_{H}(K_{m}, K)<\delta/3$ , $d_{H}(f_{m}(C_{m^{X}}), K_{m^{Y}})<\delta/3$

and $\epsilon_{m}<\delta/3$ .
Now we define maps $\alpha_{1}$ : $I\rightarrow Y_{m},$ $\beta_{1}$ : $I\rightarrow X_{m},$ $\alpha_{2},$ $\beta_{2}$ : $I\rightarrow Z_{m}$ as follows;

h) $ d(\alpha_{1}(0), y)<\delta$ and $d_{H}(\alpha_{1}(I), K_{m^{Y}})<\delta/3$ .
i) $d(\beta_{1}(0), x)<1/n$ , $ d(f_{m}\beta_{1}(0), y)<\delta$ and $d_{H}(f_{m}\beta_{1}(I), K_{m^{Y}})<\delta/3$ .

j) $ d(\alpha_{2}(0), z)<\delta$ and $d_{H}(\alpha_{2}(I), K_{m^{Z}})<\delta/3$ .

k) The map $\alpha=\alpha_{1}\Delta\alpha_{2}$ : $I\rightarrow Y_{m}\times Z_{m}$ satisfies $d_{H}(\alpha(I), K_{m})<1/2n$ .

1) $\beta_{2}=\alpha_{2}$ .
Then by h), i) and d), there exist maps $a_{1},$

$b_{1}$ : $I\rightarrow I$ such that $\alpha_{1}\circ a_{1}=f_{m}\circ\beta_{1}\circ b_{1}1/2n$

and $a_{1}(0)=b_{1}(0)=0$ . Let $\omega=\beta_{1}\circ b_{1}\Delta\alpha_{2}\circ a_{1}$ : $I\rightarrow X_{m}\times Z_{m}$ . Then we have

m) $d(\omega(0), (x, z))<1/n$ .

n) $d(f_{m}\times id_{z_{m}}(\omega(t)), \alpha(a_{1}(t)))<1/n$ .

Let $m_{n}=m$ . As $a_{1}$ is an onto map, we see that $C_{n}=\omega(I)$ is the required

continuum.
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We may assume that $C_{n}$ ) converges to a continuum $C\subset X\times Z$. Then $(x, z)$

$\in C$ and $f\times id_{Z}(C)=K$.

THEOREM 2.2. Let $f:Y\rightarrow Y$ be an onto map between continua. The follow-
ing are equivalent respectively.

1) The map $f\times id_{P}$ : $X\times P\rightarrow Y\times P$ is weakly confluent (confluent resp.).

2) For each continuum $Z$ with $\sigma Z=0$ (for each hereditarily indecomposable
continuum $Z$ with $\sigma Z=0$ resp.), $f\times id_{Z}$ : $X\times Z\rightarrow Y\times Z$ is weakly confluent
(confluent resp.).

3) There exists a hereditarily indecomposable continum $Z$ such that $f\times id_{Z}$

is weakly confluent (confluent resp.).

PROOF. We prove the confluent case. Another case is similarly proved.
$1)\rightarrow 2)$ . Since $Z$ is weakly chainable, there exists an onto map $\varphi:P\rightarrow Z$.

Clearly,
$f\times\varphi=(f\times id_{Z})\circ(id_{X}\times\varphi)$

$=(id_{Y}\times\varphi)\circ(f\times id_{P})$ .
By Theorem 2.1, $ id_{Y}\times\varphi$ is confluent and by the assumption, $f\times id_{P}$ is confluent,
so $ f\times\varphi$ is confluent. Hence $f\times id_{Z}$ is confluent.

$2)\rightarrow 1)\rightarrow 3)$ . These are trivial.
$3)\rightarrow 1)$ . By [1], there exists an onto map $\psi:Z\rightarrow P$. Then $ f\times\psi=(f\times id_{P})\circ$

$(id_{X}\times\psi)=(id_{Y}\times\psi)\circ(f\times id_{Z})$ . The similar argument as above implies the con-
clusion.

3. The preservation of the property of having zero span

LEMMA 3.1. Let $f:X\rightarrow Y$ be an irreducible map ( $i$. $e$ . no proper subcontinuum
of $X$ can be mapped onto $Y$ ). If $f\times id_{P}$ ; $X\times P\rightarrow Y\times P$ is weakly confluent, then
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$f$ has the following property;

$(*)$ for each onto map $\alpha:P\rightarrow Y$ , there exists a continuum $Z\subset X\times P$

such that $\pi_{X}(Z)=X,$ $\pi_{P}(Z)=P$, and $f\circ\pi_{X}|Z=\alpha\circ\pi_{P}|Z$.

Where $\pi_{X}$ and $\pi_{P}$ is the projections from $X\times P$ to $X$ and $P$ respectively.

PROOF. Let $H_{\alpha}=\{(\alpha(p), p)|p\in P\}$ . Then $\pi_{P}(H_{\alpha})=P$ and $\pi_{Y}(H_{\alpha})=Y$ . Since
$f\times id_{P}$ is weakly confluent, there exists a continuum $Z\subset X\times P$ such that $f\times id_{P}(Z)$

$=H_{\alpha}$ . Then $f(\pi_{Y}(Z))=\pi_{Y}(H_{\alpha})=Y$ , so by the irreducibility of $f,$ $\pi_{X}(Z)=X$ . It
is easy to see that $Z$ satisfies the other conditions which are required.

THEOREM 3.2. Let $f:X\rightarrow Y$ be a map which satisfies the following conditions.
1) $f$ satisfies $(*)$ 2) $f\times f:X\times X\rightarrow Y\times Y$ is weakly confluent. If $\sigma X=0$,

then $\sigma^{*}Y=0$ .

PROOF. We first show that
a) for each pair of onto maps $\alpha,$ $\beta:P\rightarrow Y$ from the pseudo-arc, there exists

a point $p\in P$ such that $\alpha(p)=\beta(p)$ .
To prove a), we apply the property $(*)$ to $\alpha$ and $\beta$ respectively. There

exist continua $Z_{\alpha}$ and $Z_{\beta}$ such that $fo\pi_{X^{\alpha}}=\alpha\circ\pi_{P^{\alpha}}$ and $fo\pi_{x^{\beta}}=\beta 0\pi_{p^{\beta}}$ , where
$\pi_{x^{\alpha}}=\pi_{X}|Z_{\alpha}$ etc. By Theorem 1.3, there exist a continuum $W$ and onto maps
$f_{\alpha}$ : $W\rightarrow Z_{\alpha}$ and $f_{\beta}$ : $W\rightarrow Z_{\beta}$ such that $\pi_{p^{\alpha}}\circ f_{\alpha}=\pi_{p^{\beta}}\circ f_{\beta}$ . Since $\pi_{X^{\alpha}}\circ f_{\alpha}$ and
$\pi_{x^{\beta}}\circ f_{\beta}$ : $W\rightarrow X$ are onto maps and $\sigma X=0$ , there exists a point $w\in W$ such that
$\pi_{X^{\alpha}}\circ f_{\alpha}(w)=\pi_{x^{\beta}}\circ f_{\beta}(w)$ . Then we can see that $\alpha\circ\pi_{P^{\alpha}}\circ f_{\alpha}(w)=\beta\circ\pi_{p^{\beta}}\circ f_{\beta}(w)$ . So
$p=\pi_{P^{\alpha}}\circ f_{\alpha}(w)=\pi_{P}^{\beta}\circ f_{\beta}(w)$ satisfies the conclusion of a).

Using a), it is easy to see that
b) for each pair of onto maps $\alpha,$ $\beta:W\rightarrow Y$ from any weakly chainable con-

tinuum $W$ onto $X$, there exists a point $w\in W$ such that $\alpha(w)=\beta(w)$ .
Next we prove that
c) for each subcontinuum $Z\subset Y\times Y$ , there exists a sequence $(W_{n})$ of weakly
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chainable continua such that

$W_{n}\subset Y\times Y$ , Lim $W_{n}=Z$ and $p_{i}(W_{n})=p_{i}(Z)$ ,

where $p_{i}$ denotes projection from $Y\times Y$ to the i-th factor.

To see this, we note that $\sigma X=0$ and hence $X$ is weakly chainable. Take
an onto map $\varphi:P\rightarrow X$, then $\varphi\times\varphi:P\times P\rightarrow X\times X$ is weakly confluent ([10],
Theorem 3). From this fact and condition 2), there exists a continuum $C\subset P\times P$

so that $f\varphi\times f\varphi(C)=Z$. Let $P_{i}=\pi_{P^{i}}(C)i=1,2$ , where each $\pi_{P^{i}}$ denotes projec-
tion from $P\times P$ to the i-th factor. By [14], there exist a sequence of homeo-
morphism $(h_{n} : P_{1}\rightarrow P_{2})_{n\geq 0}$ such that $G(h_{n})s$ , the graphs of $h_{n}\prime s(\subset P\times P)$ , con-
verges to $C$ . Define $W_{n}$ by $W_{n}=f\varphi\times f\varphi(G(h_{n}))$, which is clearly weakly
chainable. Moreover, $W_{n}\rightarrow f\varphi\times f\varphi(C)=Z$, and for $i=1,2$ ,

$p_{i}(W_{n})=f\varphi(\pi_{P^{i}}(G(h_{n})))$

$=f\varphi(P_{i})=p_{i}(f\varphi\times f\varphi)(C)=p_{i}(Z)$ .
This prove c).

Now we prove that $\sigma^{*}Y=0$ . Take any continuum $Z\subset Y\times Y$ satisfying
$p_{i}(Z)=Yi=1,2$ . By c), there exists a sequence $(W_{n})$ of weakly chainable con-
tinua such that $p_{i}(w_{n})=Y$ and $W_{n}\rightarrow Z$. By b), $ W_{n}\cap\Delta Y\neq\emptyset$ for each $n$ . So we
have $ Z\cap\Delta Y\neq\emptyset$ . This completes the proof.

Using Theorem 3.2, we have

THEOREM 3.3 (cf. [10] Theorem 7). Let $f:X\rightarrow Y$ be an onto map between
continua and suppose that $\sigma X=0$ .

1) The following are equivalent.
a) $\sigma Y=0$ .
b) For each subcontinuum $K$ of $X$.

$(f|K)\times id_{P}$ ; $K\times P-f(K)\times P$ and $(f|K)\times id_{Y}$ ; $K\times Y-f(K)\times Y$

are weakly confluent.
2) Suppose that $X$ is hereditarily indecomposable and $f$ is $con|7\wedge,lent$ . Then

the following are equivalent.
a) $\sigma Y=0$ .
b) $f\times id_{Y}$ : $X\times Y\rightarrow X\times Y$ is confluent.
c) $f\times f:X\times X\rightarrow Y\times Y$ is confluent.

PROOF. 1) $a$ ) $\rightarrow b$ ). This follows for [10] Theorem 3.
$b)\rightarrow a)$ . Take any subcontinuum $Z$ in $Y$. There exists a contituum $K\subset X$
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such that $j|K:K-\rightarrow Z$ is an irreducible map. By the assumption and Theorem
2.2, we see that $(f|K)\times id_{X}$ is, and hence $(f|K)\times(f|K)$ is weakly confluent.
Hence by Theorem 3.2 and Lemma 3.1, we have $\sigma^{*}Z=0$ . So $\sigma Y=0$ .

2) $a$ ) $\rightarrow b$ ). This follows from [10] Theorem 3.
$b)\rightarrow c)$ . Since $Y$ is hereditarily indecomposable (Notice that confluent maps

preserve hereditary indecomposability), it follows that $f\times id_{X}$ is confluent by
Theorem 2.2. Then $f\times f=(id_{Y}\times f)o(f\times id_{X})$ is confluent.

$c)\rightarrow a)$ . This follows from [10] Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero con-
tinua, which generalize some results of Rosen [14]. Also in this section, [10]

Theorem 3 is used.
Let $X$ be a continuum. The space of all nonempty compact subsets of $X$

(the space of all nonempty subcontinua of $X$ resp.) with the Hausdorff metric
is denoted by $2^{X}$ ( $C(X)$ resp.). Let $f:X\rightarrow 2^{Y}$ be a (not necessarily continuous)

function. The set $G(f)=\bigcup_{x\in X}\{x\}\times f(x)\subset X\times Y$ is called the graph of $f$. The

image of $f$, denoted by $f(X)$ , is defined by $\bigcup_{x\in X}f(x)$ . A function $f$ is uppersemi-

(lowersemi- resp.) continuous. abbreviated $u$ . $s$ . $c$ . ( $1$ . $s$ . $c$ . resp.), if for each open
set $U$ of $Y,$ $\{x\in X|f(x)\subset U\}$ ( $\{x\in X|f(x)\cap U\neq\emptyset\}$ resp.) is open. A function
$f:X\rightarrow 2^{Y}$ is continuous if and only if $f$ is both upper-and lower-semi-con-
tinuous. We say that $f$ is onto if $f(X)=X$,

THEOREM 4.1 (cf. [13] Theorem 1). Let $f,$ $g:X\rightarrow 2^{Y}$ be $u$ . $s$ . $c$ . functions.
Suppose that

1) $\sigma X=\sigma Y=0$ 2) $G(f)$ and $G(g)$ are connected and
3) $f$ is onto.
The there exists a point $x\in X$ such that $ f(x)\cap g(x)\neq\emptyset$ .

PROOF. Since $X$ and $Y$ are weakly chainable by 1), there exist irreducible
onto maps $a:P\rightarrow X$ and $b:P\rightarrow Y$ . By the uppersemicontinuity and 2), $G(f)$ ,
$G(g)\subset X\times Y$ are continua. By [10] Theorem 3, there exist subcontinua $K$ and
$L$ of $P\times P$ such that $a\times b(K)=G(f)$ and $a\times b(L)=G(g)$ . Let $p_{i}\prime s$ ( $\pi_{i}\prime s$ resp.)

denote the projection maps from $P\times P$ ( $X\times Y$ resp.) to the i-th factor, $i=1,2$ .
Then $a(p_{1}(K))=\pi_{1}(G(f))=X$, and by the irreducibility of $a,$ $p_{1}(K)=P$. Similarly,
$p_{1}(L)=P,$ $p_{2}(K)=P$.

Since $P$ is arc-like, it is easy to see that $ K\cap L\neq\emptyset$ , hence $ G(f)\cap G(g)\neq\emptyset$ .
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Take $(x, y)\in G(f)\cap G(g)$ . The point $x$ satisfies the conclusion.

COROLLARY 4.2. Let $f,$ $g:X\rightarrow 2^{Y}$ be $u.s$ . $c$ . functions and suppose that
1) $\sigma X=\sigma Y=0$

2) $f$ is onto and $G(f)$ is connected, and
3) $g$ is continuous.
Then there exists a point $x\in X$ such that $ f(x)\cap g(x)\neq\emptyset$ .

PROOF. By [13] Lemma 1, there exists an $u$ . $s$ . $c$ . function $h:X\rightarrow 2^{Y}$ such
that $h(x)\subset g(x)$ for each $x\in X$ and $G(h)$ is connected.

THEOREM 4.3 (cf. [13] Theorem 2). Let $f,$ $g:X\rightarrow C(Y)$ be $u$ . $s$ . $c$ . functions.
Suppose that

2) $\sigma Y=0$ and 2) $f$ is onto.
Then there exists a point $x\in X$ such that $ f(x)\cap g(x)\neq\emptyset$ .

PROOF. Define a subset $G(f, g)$ of $Y\times Y$ by $\bigcup_{x\in X}f(x)\times g(x)$ . Since $f(x)$

and $g(x)$ are continua for each $x\in X$, and $f$ and $g$ are uppersemicontinuous,
$G(f, g)$ is a subcontinuum of $Y\times Y$ , and $\pi_{1}(G(f, g))=Y(\pi_{1}$ is the projection

to the first factor). By [2], $\sigma_{0}Y=0$ , so $ G(f, g)\cap\Delta Y\neq\emptyset$ . This means the con-
clusion.

Let $f:X\rightarrow 2^{X}$ be a function. A point $x\in X$ is called a fixed point of $f$ if

$x\in f(x)$ .

COROLLARY 4.4. Let $X$ be a continuum with $\sigma X=0$ . Then $X$ has the fixed
point property for the following classes of multi-valued functions.

1) { $f:X\rightarrow 2^{x}|f$ is $u.s$ . $c$ . and $G(f)$ is connected}.
2) { $f:X\rightarrow 2^{x}|f$ is continuous}.
3) { $f:X\rightarrow C(X)|f$ is $u.s$ . $c.$ }.
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