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1. Introduction

In this paper, we study 3-dimensional isotropic submanifolds in spheres.
The notion of an isotropic submanifold of an arbitrary Riemannian manifold was
first introduced by B. O’Neill in $[0]_{1}$ . The basic equations for isotropic sub-
manifolds are recalled in Section 2.

Isotropic immersions of submanifolds into spheres have been studied by,

amongst others, T. Itoh, H. Nakagawa, K. Ogiue and K. Sakamoto in [I], [N-I],

[I-O] and [S]. Here, we will prove the two following theorems.

THEOREM 3.1. Let $x:M\rightarrow S^{n}$ be a constant isotropic immersion such that
$\dim(im(h))\leqq 3$ . Then, one of the following holds:

(a) $M$ is totally geodesic in $S^{n}$ ,
(b) There exists a totally geodesic $S^{4}$ in $S^{n}$ , such that the image of $M$ is an

open part of a small hypersphere of $S^{4}$ ,
(c) There exists a totally geodesic $S^{7}$ in $S^{n}$ , such that the image of $M$ is con-

gruent with an open part of $j(R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}}))$ in $S^{7}$ , where $j$ is defined in

Section 3.

THEOREM 3.2. Let $M$ be a 3-dimensional, minimal, isotropic submanifold in
$S^{n}$ . Then, $M$ has constant sectional curvature.

2. Preliminaries

In this section $M$ will always denote a 3-dimensional totally real submani-
fold of $S^{n}(1)$ . We will denote the curvature tensor of $M$ by $R$ . The formulas
of Gauss and Weingarten are given by

(2.1) $D_{X}Y=\nabla_{X}Y+h(X, Y)$ and $ D_{X}\zeta=-A_{\zeta}X+\nabla_{X}^{\perp}\zeta$ ,

Received Apri113, 1989.
(*) Research Assistant of the National Fund for Scientific Research (Belgium).



280 Luc VRANCKEN

where $X$ and $Y$ are tangent vector fields and $\zeta$ is a normal vector field on $M$ .
The space spanned by the image of $h$ , will be called the first normal space.
The equations of Gauss, Codazzi and Ricci for a submanifold of $S^{n}(1)$ are given
by

(2.2) $R(X, Y)Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y+A_{h(Y.Z)}X-A_{h(X.Z)}Y$ ,

(2.3) $(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)$ ,

(2.4) $\langle R^{\perp}(X, Y)\zeta, \eta\rangle=\langle[A_{\zeta}, A_{\eta}]X, Y\rangle$ ,

for tangent (resp. normal) vector fields $X,$ $Y$ and $Z$ (resp. $\zeta$ and $\eta$ ) and $R^{\perp}$

(resp. $\tilde{R}$ ) denotes the curvature tensor of $\nabla^{\perp}$ (resp. $D$).

From now on, we will also assume that $M$ is an isotropic submanifold, $i$ . $e$ .
in each point $p$ of $M,$ $\Vert h(v, v)\Vert$ is independent of the unit vector $v$ . Hence, we
obtain a function $\lambda$ on $M$ by

(2.5) $\lambda(p)=\Vert h(v, v)\Vert$ ,

where $v\in UM_{p}$ . If the function $\lambda$ is also independent of the point $p$ , we say
that $M$ is constant isotropic. In that case, we obtain from $[0]_{1}$ the following
conditions for orthonormal tangent vectors $X,$ $Y,$ $Z$ and $W$ :

(2.6) $\langle h(X, Y), h(X, X)\rangle=0$ ,

(2.7) $\lambda^{2}-\langle h(X, X), h(Y, Y)\rangle-2\langle h(X, Y), h(X, Y)\rangle=0$ ,

(2.8) $\langle h(Y, Z), h(X, X)\rangle+2\langle h(X, Y), h(X, Z)\rangle=0$ ,

(2.9) $\langle h(X, Y), h(Z, W)\rangle+\langle h(X, Z), h(W, Y)\rangle+\langle h(X, W), h(Y, Z)\rangle=0$ .

3. Proof of the theorems

Let $M$ be a 3-dimensional, isotropic submanifold of $S^{n}(1)$ and let $p\in M$ .
Then, we choose an orthonormal basis $\{e_{1}, e_{2}, e_{3}\}$ of $T_{p}M$ in the following way.
Let $S=$ { $(u,$ $v)|u,$ $v\in T_{p}M$ with $\langle u,$ $v\rangle=0$ and $\Vert u\Vert=\Vert v\Vert=1$ }. We define a function
$f$ on $S$ by

$f((u, v))=\Vert h(u, v)\Vert^{2}$ .

Since $S$ is compact, we can choose $(e_{1}, e_{2})$ as a point in which the function $f$

attains a maximum. To conclude the choice of our basis, we choose $e_{3}$ such
that $e_{3}$ is orthogonal to both $e_{1}$ and $e_{2}$ . Since $(e_{1}, e_{2})$ is an absolute maximum
we obtain that

$\langle h(e_{1}, e_{2}), h(e_{1}, e_{3})\rangle=0$ ,

$\langle h(e_{1}, e_{2}), h(e_{2}, e_{3})\rangle=0$ .
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LEMMA 3.1. Let $M$ be a 3-dimensional isotropic submanifold with $\dim(im(h))$

$\leqq 3$ and let $p\in\Lambda f$. Then there exists an orthonormal basis $\{e_{2}, e_{2}, e_{3}\}$ of $T_{p}M$

such that one of the following holds.

(3.1) (a) $h(e_{1}, e_{1})=h(e_{2}, e_{2})=h(e_{3}, e_{3})=0$ .
$h(e_{1}, e_{3})=h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ ,

$or$

(3.2) (b) $h(e_{1}, e_{1})=h(e_{2}, e_{2})=h(e_{8}, e_{s})\neq 0$ ,

$h(e_{1}, e_{2})=h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ ,
$or$

(3.3) (c) $h(e_{1}, e_{1})=-h(e_{2}, e_{2})=h(e_{3}, e_{3})=\lambda g_{1}$ ,

$h(e_{1}, e_{2})=\lambda g_{2}$ ,

$h(e_{1}, e_{2})=0$ ,

$h(e_{2}, e_{3})=\lambda g_{3}$ ,

where $g_{1},$ $g_{2},$ $g_{3}$ are unit normal vectors at the point $p$ and $\lambda\neq 0$ .

PROOF. First, we assume that $\dim(im(h_{p}))=0$ . This means that $p$ is a
totally geodesic point. Therefore, we obtain (a).

Next, we assume that $\dim(im(h_{p}))=1$ . Since $h$ is symmetric, this implies

that $\lambda(p)\neq 0$ . We choose an orthonormal basis of $T_{p}M$ as shown above. Then,

it follows from the first isotropy condition (2.6) that $h(e_{1}, e_{2})$ is orthogonal to
$h(e_{1}, e_{1})$ . Since $\dim(im(h_{p}))=1$ and $\lambda(p)\neq 0$ this implies that $h(e_{1}, e_{2})=0$ . Similarly,

we also obtain that $h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ .
From the second isotropy condition it then follows that

$ 0=\lambda^{2}-\langle h(e_{1}, e_{1}), h(e_{2}, e_{2})\rangle$ .

Hence, since $M$ is isotropic and $\lambda\neq 0$ , we obtain by applying the Cauchy Schwartz
inequality that $h(e_{1}, e_{1})=h(e_{2}, e_{2})$ . Similarly, we also obtain that $h(e_{3}, e_{3})=h(e_{1}, e_{1})$ .
This proves (b).

Next, we assume that $\dim(im(h_{p}))=2$ . First, we assume that the function
$f$ defined above is identically zero. In this case, we obtain similar as in the
previous case that (b) holds. This is in contradiction with the assumption that
$\dim(im(h_{p}))=2$ . Therefore $f$ is not identically zero. Thus, if we choose an
orthonormal basis indicated above, we obtain that $\Vert h(e_{1}, e_{2})\Vert=\mu\neq 0$ . Therefore
$h(e_{1}, e_{1})$ and $h(e_{1}, e_{2})$ span the first normal space at the point $p$ . By our choice
of orthonormal basis and by the isotropy conditions, we know that $h(e_{1}, e_{3})$ and
$h(e_{2}, e_{3})$ are orthogonal to $h(e_{1}, e_{1})$ and $h(e_{1}, e_{2})$ . Thus $h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ .
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From the isotropy conditions and the Cauchy-Schwartz ineqality it then follows
that $h(e_{1}, e_{1})=h(e_{3}, e_{3})=h(e_{2}, e_{2})$ . By applying then again (2.7), we obtain that
$\mu=0$ , which is again a contradiction.

Finally, we assume that $\dim(im(h))=3$ . By a similar argument as in the
previous case, we obtain that the function $f$ is not identically zero. Therefore,
if we choose an orthonormal basis in the same way as in the previous case,
we have that $\Vert h(e_{1}, e_{2})\Vert=\mu\neq 0$ . Then, we obtain from the isotropy conditions
that

$\langle h(e_{1}, e_{3}), h(e_{2}, e_{2})\rangle=-2\langle h(e_{1}, e_{2}), h(e_{2}, e_{3})\rangle=0$ .

Thus we see that $h(e_{1}, e_{3})$ and $h(e_{2}, e_{3})$ are orthogonal to $h(e_{1}, e_{1}),$ $h(e_{2}, e_{2})$ and
$h(e_{1}, e_{2})$ . If $h(e_{1}, e_{1}),$ $h(e_{2}, e_{2})$ and $h(e_{1}, e_{2})$ span the first normal space, we obtain
that $h(e_{1}, e_{3})=h(e_{2}, e_{3})=0$ . From this, we obtain in the same way as in the
previous case that $\mu=0$ . Therefore, we may assume that $h(e_{1}, e_{1}),$ $h(e_{1}, e_{2})$ and
$h(e_{2}, e_{2})$ are linearly dependent. The first isotropy condition then implies that
$h(e_{2}, e_{2})$ only has a component in the direction of $h(e_{1}, e_{1})$ and the second isotropy
condition then implies that $\mu=\lambda$ and that $h(e_{1}, e_{1})=-h(e_{2}, e_{2})$ . These formulas
imply that there exist orthonormal normal vectors $f_{1},$ $f_{2}$ and $f_{3}$ such that

$h(e_{1}, e_{1})=\lambda f_{1}$ ,

$h(e_{2}, e_{2})=-\lambda f_{1}$ ,

$h(e_{1}, e_{2})=\lambda f_{2}$ ,

$h(e_{1}, e_{3})=\nu_{1}f_{3}$ ,

$h(e_{2}, e_{3})=\nu_{2}f_{3}$ ,

$h(e_{3}, e_{3})=\alpha f_{1}+\beta f_{2}$ .
Then, the isotropy conditions are equivalent with

$ 2\nu_{1}^{2}=\lambda^{2}-\alpha\lambda$ ,

$ 2\nu_{2}^{2}=\lambda^{2}+\alpha\lambda$ ,

$\beta\lambda+2\nu_{1}\nu_{2}=0$ .
From the first two equations, we see that we can put $\nu_{1}=\sin(\theta)\lambda$ and $\nu_{2}=\cos(\theta)\lambda$ .
But then it is clear from the last two equations that $\alpha=(2\cos^{2}(\theta)-1)\lambda$ and
$\beta=-2\sin(\theta)\cos(\theta)\lambda$ . But then if we put $u_{3}=e_{3},$ $g_{3}=f_{3},$ $g_{1}=\cos(2\theta)f_{1}-\sin(2\theta)f_{2}$ ,
$g_{2}=\cos(2\theta)f_{2}+\sin(2\theta)f_{1}$ , $u_{1}=\cos(\theta)e_{1}-\sin(\theta)e_{2}$ and $u_{2}=\sin(\theta)e_{1}+\cos(\theta)e_{2}$ we
obtain (c). This completes the proof of the lemma. $\blacksquare$
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LEMMA 3.2. Let $M$ be as in Lemma 3.1.
(a) If (3.1) holds at a point of $M$, then $K_{p}\equiv 1$ ,
(b) If (3.2) holds at a poznt $p$ of $M$, then $K_{p}\equiv 1+\lambda^{2}$ ,
(c) If (3.3) holds at a point $p$ of $M$, then the sectional curvatures $K$ of $M$

at the point $p$ satisfy $1-2\lambda^{2}\leqq K\leqq 1+\lambda^{2}$ . Furthermore, $K_{p}=1-2\lambda^{2}$ for
every plane through $e_{2}$ and $K_{p}=1+\lambda^{2}$ only for the plane through $e_{1}$ and
$e_{3}$ .

PROOF. (a) and (b) immediately follow from (3.1) and (3.2). To prove (c),

we take an arbitrary tangent plane $\sigma$ at $p$ . Then, we can find an orthonormal
basis {X, $Y$ } of $\sigma$ such that $X=\cos\theta e_{1}+\sin\theta e_{3}$ and $Y=-\cos\phi\sin\theta e_{1}+\sin\phi e_{2}$

$+\cos\phi\cos\theta e_{3}$ , where $\theta,$ $\phi\in R$ . Then

$\langle R(X, Y)Y, X\rangle=\cos^{2}\theta\langle R(e_{1}, Y)Y, e_{1}\rangle+2\cos\theta\sin\theta\langle R(e_{I}, Y)Y, e_{3}\rangle$

$\perp\sin^{2}\theta\langle R(e_{3}, Y)Y, e_{3}\rangle$

$=(1+\lambda^{2})\cos^{2}\phi-3\lambda^{2}\sin^{2}\phi$ .
From this formula, (c) follows immediately. $\blacksquare$

Let us now assume that $M$ is constant isotropic, $i$ . $e$ . $\lambda$ is a constant on $M$ .
Then it follows from Lemma 3.1, Lemma 3.2 and the connectedness of $M$ that
either

(a) (3.1) holds everywhere on $M,$ $i$ . $e$ . $M$ is totally geodesic,
or

(b) (3.2) holds everywhere on $M,$ $i$ . $e$ . $M$ is totally umbilical,

or
(c) (3.3) holds everywhere on $M$ .

Totally geodesic and totally umbilical submanifolds of spheres are well known
([C], $[0]_{2}$ ). So the only case we still have to consider is the case that (3.3)

holds everywhere on $M$ with $\lambda\neq 0$ . Let $p\in M$ . Since in that case the sectional
curvature equals $1+\lambda^{2}$ only for the plane through $e_{1}$ and $e_{3}$ , we see that at
each point $p$ the vector $e_{2}$ is uniquely determined, namely $e_{2}$ is the vector
orthogonal to the unique plane with sectional curvature $1+\lambda^{2}$ . From this it
follows that we can choose differentiable vector fields $E_{1},$ $E_{2},$ $E_{3}$ , defined on a
neighbourhood $U$ of $p$ , such that $\{E_{1}(q), E_{2}(q), E_{3}(q)\}$ satisfies (3.3) for every
$q\in U$. Therefore, we also obtain orthonormal normal vector fields $g_{1},$ $g_{2}$ and $g_{3}$

such that
$h(E_{1}, E_{1})=-h(E_{2}, E_{2})=h(E_{3}, E_{3})=\lambda g_{1}$ ,

$h(E_{1}, E_{2})=\lambda g_{2}$ ,
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$h(E_{1}, E_{3})=0$ ,

$h(E_{2}, E_{3})=\lambda g_{3}$ .

Then, we have the following lemma.

LEMMA 3.3. Let us assume that (3.3) holds on $M$ , where $\lambda$ is a constant

different from zero. Then $\lambda=\frac{1}{\sqrt{}^{-}2^{-}},$ $M$ is locally isometric with $R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}})$ and

after identification $E_{2}$ is tangent to R. Further, $\nabla_{X}E_{2}=0$ , for every tangent

vector field $X$ and we can still choose locally $E_{1}$ and $E_{s}$ in such a way that they

satisfy (3.3) and such that $\nabla_{E_{2}}E_{1}=\nabla_{E_{2}}E_{3}=0$ . Finally, $(\nabla h)$ is orthogonal to $im(h)$ .

PROOF. Let $p\in M$ . First, we will prove that $(\nabla h)\perp h$ . In order to do so,

it is sufficient to prove that $(\nabla h)$ is orthogonal to $g_{I},$ $g_{2}$ and $g_{3}$ . In order to do
so, we first extend $e_{1},$ $e_{2},$ $e_{3}$ to local orthonormal vector fields $U_{1},$ $U_{2},$ $U_{3}$ such

that $U_{i}(p)=e_{i}$ and $\nabla_{e_{j}}U_{i}=0$ , where $i,$ $j\in M$ . Since $M$ is constant isotropic, we
know that

$\langle h(U_{i}, U_{i}), h(U_{i}, U_{i})\rangle=\lambda^{2}$ ,

where $i_{--}^{--}\{1,2,3\}$ . By differentiating this we obtain that

(3.4) $\langle(\nabla h)(e_{j}, e_{i}, e_{i}), h(e_{i}, e_{i})\rangle=0$ .
Similarly, using the previous equations, we find from $\langle h(U_{i}, U_{j}), h(U_{i}, U_{i})\rangle=0$ ,

for different $i$ and $j$ , that

(3.5) $\langle(\nabla h)(e_{k}, e_{i}, e_{j}), h(e_{i}, e_{i})\rangle+\langle(\nabla h)(e_{k}, e_{i}, e_{i}), h(e_{i}, e_{j})\rangle=0$ .

So, if we take $i=1,$ $j=3$ and $k=2$ , we find that

(3.6) $\langle(\nabla h)(e_{2}, e_{1}, e_{3}), g_{1}\rangle=0$ .

Then (3.4) together with (3.6) implies that $(\nabla h)\perp g_{1}$ . Therefore, (3.5) becomes

$\langle(\nabla h)(e_{k}, e_{i}, e_{i}), h(e_{i}, e_{j})\rangle=0$ ,

where $i,$ $j,$ $k\in\{1,2,3\},$ $ i\neq$]. Since (3.3) holds at the point $p$ this implies that

$\langle(\nabla h)(e_{k}, e_{2}, e_{2}), g_{2}\rangle=\langle(\nabla h)(e_{k}, e_{1}, e_{1}), g_{2}\rangle=0$ ,

$\langle(\nabla h)(e_{k}, e_{2}, e_{2}), g_{3}\rangle=\langle(\nabla h)(e_{k}, e_{3}, e_{3}), g_{3}\rangle=0$ .
Then, if we take the local orthonormal frame $\{E_{1}, E_{2}, E_{3}\}$ previously defined,
we find that

$\langle h(E_{1}, E_{2}), h(E_{1}, E_{2})\rangle=\lambda^{2}$ .
Hence by deriving this with respect to $E_{3}$ , we obtain that
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$ 0=\langle(\nabla h)(E_{3}, E_{1}, E_{2}), h(E_{1}, E_{2})\rangle+\langle h(\nabla_{E_{3}}E_{1}, E_{2}), h(E_{1}, E_{2})\rangle$

$+\langle h(E_{1}, \nabla_{E_{3}}E_{2}), h(E_{1}, E_{2})\rangle$ .

Thus $(\nabla h)(E_{3}, E_{1}, E_{2})$ is also orthogonal to $g_{2}$ . Similarly, starting from
$\langle h(E_{2}, E_{3}), h(E_{2}, E_{3})\rangle=\lambda^{2}$ , we obtain that $(\nabla h)(E_{1}, E_{2}, E_{3})$ is also orthogonal to
$g_{3}$ . Using similar arguments, we also can prove that

$\langle(\nabla h)(E_{1}, E_{3}, E_{3}), g_{2}\rangle=\langle(\nabla h)(E_{2}, E_{3}, E_{3}), g_{2}\rangle=0$ ,

$\langle(\nabla h)(E_{1}, E_{1}, E_{3}), g_{3}\rangle=\langle(\nabla h)(E_{2}, E_{1}, E_{1}), g_{3}\rangle=0$ .

Therefore in order to prove that $(\nabla h)\perp h$ , it only remains to prove that
$(\nabla h)(E_{3}, E_{3}, E_{3})$ is orthogonal to $g_{2}$ and that $(\nabla h)(E_{1}, E_{1}, E_{1})$ is orthogonal to
$g_{3}$ . In particular, we already know that $(\nabla h)(E_{k}, E_{1}, E_{3})$ is orthogonal to $im(h)$

for every $k$ . But on the other hand, we have that

$(\nabla h)(E_{k}, E_{1}, E_{3})=-h(\nabla_{E_{k}}E_{1}, E_{3})-h(E_{1}, \nabla_{E_{k}}E_{3})$

$=-\langle\nabla_{E_{k}}E_{1}, E_{2}\rangle\lambda g_{3}-\langle E_{2}, \nabla_{E_{k}}E_{3}\rangle\lambda g_{2}$

$-(\langle\nabla_{E_{k}}E_{1}, E_{3}\rangle+\langle\nabla_{E_{k}}E_{3}, E_{1}\rangle)\lambda g_{1}$

Thus $\nabla_{E_{k}}E_{2}=0$ , where $k=1,2,3$ . But then if follows by deriving
$\langle h(E_{3}, E_{3}), h(E_{1}, E_{2})\rangle=0$ and $\langle h(E_{1}, E_{1}), h(E_{2}, E_{3})\rangle=0$ that also $(\nabla h)(E_{3}, E_{3}, E_{3})$

is orthogonal to $g_{2}$ and that $(\nabla h)(E_{1}, E_{1}, E_{1})$ is orthogonal to $g_{3}$ . So $(\nabla h)\perp h$ .
Since $\nabla_{E_{k}}E_{2}=0,$ $k=1,2,3$ , it follows that $R(E_{1}, E_{2})E_{2}=0$ . Hence from the

Gauss equation we find that $0=1-2\lambda^{2}$ . Thus $\lambda=\frac{1}{\sqrt{2}}$ .
Now, we can define two orthogonal distributions $T_{1}$ and $T_{2}$ by

$T_{1}$ : $p-T_{1}(p)=vect\{E^{Z}(p)\}$ ,

$T_{2}$ : $p-T_{2}(p)=vect\{E_{1}(p), E_{3}(p)\}$ .

Since $\nabla_{E_{k}}E_{2}=0,$ $k=1,2,3$ , we find that $\nabla_{T_{2}}T_{1}\subset T_{1},$ $\nabla_{T_{1}}T_{1}\subset T_{1}$ . Since $T_{1}$ and
$T_{2}$ are orthogonal distributions, we find from the de Rham decomposition the-
orem ([K-N]) that $M$ is locally isometric with $R\times M^{\prime}$ , where $T_{1}$ is tangent to

$R$ and $T_{2}$ is tangent to $M^{\prime}$ . Since $M^{\prime}$ has constant Gaussian curvature $\frac{3}{2}$

we also have that $M^{\prime}$ is locally isometric with a sphere of radius $\frac{\sqrt{2}}{\sqrt{3}}$

Finally, since $M$ is locally isometric with a product, it is clear that we can

$choose=0$

.
locally vector fields $E_{1}$ and $E_{3}$ , orthogonal to $T_{1}$ , such that

$\nabla_{E_{2}}E_{1}=\nabla_{E_{2-}}E_{3}$

In the following lemmas, we will compute the normal connection on $M$ and
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prove that $M$ lies linearly full in a 7-dimensional sphere. Let $p\in M$ and let
$\{E_{1}, E_{2}, E_{3}\}$ the local orthonormal basis given by Lemma 3.2. Then, if we
define local functions $\alpha$ and $\beta$ on $M$, by

$\nabla_{E_{1}}E_{3}=\alpha E_{1}$ ,

$\nabla_{E_{3}}E_{1}=\beta E_{3}$ ,

we have the following lemmas.

LEMMA 3.4. If we denote the $corresponding\cdot orthonormal$ normal vector fields
by $g_{1},$ $g_{2}$ and $g_{3}$ we obtain that

$\nabla_{E_{1}}^{\perp}g_{1}=\nabla_{E_{\dot{u}}}^{\perp}g_{1}=\nabla_{E_{2}}^{\perp}g_{2}=\nabla_{E_{2}}^{\perp}g_{3}=0$ ,

$\nabla_{E_{1}}^{\perp}g_{3}=\alpha g_{2}$ ,

$\nabla_{E_{3}}^{\perp}g_{2}=\beta g_{3}$ ,

$\nabla_{E_{2}}^{\perp}g_{1}=f$ ,

$\nabla_{E_{1}}^{\perp}g_{2}=-\alpha g_{3}+f$ ,

$\nabla_{E_{3}}^{\perp}g_{3}=-\beta g_{2}+f$ ,

where $f$ is a normal vector field to $M$ which is also normal to $g_{1},$ $g_{2}$ and $g_{3}$ .

PROOF. First, we notice that

$(\nabla h)(E_{k}, E_{1}, E_{3})=-h(\nabla_{E_{k}}E_{1}, E_{3})-h(E_{1}, \nabla_{E_{k}}E_{3})=0$ .

Therefore, if we put $k=1$ and apply the Codazzi equation, we obtain that

$0=\lambda\nabla_{E_{3}}^{\perp}g_{1}-2h(\nabla_{E_{3}}E_{1}, E_{1})=\lambda\nabla_{E_{3}}^{\perp}g_{1}$ .
Similarly, if we put $k=3$ , we obtain that $\nabla_{E_{1}}^{\perp}g_{1}=0$ . Finally, if we put $k=2$ ,

we find from the Codazzi equations that

$0=\lambda\nabla_{E_{1}}^{\perp}g_{3}-\alpha h(E_{1}, E_{2})$ ,

$0=\lambda\nabla_{E_{3}}^{\perp}g_{2}-\beta h(E_{2}, E_{3})$ .

From the Codazzi equation $(\nabla h)(E_{2}, E_{1}, E_{2})=(\nabla h)(E^{I}, E_{2}, E_{2})$ , we then obtain
that

$\lambda\nabla_{E_{2}}^{\perp}g_{2}=-\lambda\nabla_{E_{1}}^{\perp}g_{1}=0$ .

Similarly, we obtain from the Codazzi equation $(\nabla h)(E_{2}, E_{3}, E_{2})=(\nabla h)(E_{3}, E_{2}, E_{2})$

that $\nabla_{E_{2}}^{\perp}g_{3}=0$ . Then, we define a normal vector field $f$ by

$f=\nabla_{E_{2}}^{\perp}g_{1}$ .
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It follows from the fact that $(\nabla h)(E_{2}, E_{1}, E_{1})$ is orthogonal to $im(h)$ that the
normal vector field $f$ is orthogonal to $g_{1},$ $g_{2}$ and $g_{3}$ . Then, it follows from
the Codazzi equations $(\nabla h)(E_{2}, E_{1}, E_{1})=(\nabla h)(E_{1}, E_{2}, E_{1})$ and $(\nabla h)(E_{2}, E_{3}, E_{3})=$

$(\nabla h)(E_{3}, E_{2}, E_{3})$ that
$\nabla_{E_{1}}^{\perp}g_{2}=-\alpha g_{3}+f$ ,

$\nabla_{E_{3}}^{\perp}g_{s}=-\beta g_{2}+f$ .
This completes the proof of this lemma.

LEMMA 3.5. Let $p\in M$ and let $E_{1},$ $E_{2},$ $E_{3},$ $g_{1},$ $g_{2},$ $g_{3}$ and $f$ be local vector

fields (normal or tangent) as defined above. Then
(i) $\langle f, f\rangle=1$

(ii) $\nabla_{E_{1}}^{\perp}f=-g_{2}$ ,

$\nabla_{E_{3}}^{\perp}f=-g_{3}$ .

PROOF. First, we take a local normal vector field $\eta$ which is orthogonal
to $im(h),$ $i$ . $e$ . which is orthogonal to $g_{1},$ $g_{2}$ and $g_{3}$ . Since $\eta$ is orthogonal to
$im(h)$ , it follows from the Ricci equation that

(3.7) $\langle R^{\perp}(E_{1}, E_{2})g_{1}, \eta\rangle=0$ ,

(3.8) $\langle R^{\perp}(E_{2}, E_{3})g_{1}, \eta\rangle=0$ ,

(3.9) $\langle R^{\perp}(E_{2}, E_{1})g_{2}, \eta\rangle=0$ .
On the other hand, using Lemma 3.4, we find that

$R^{\perp}(E_{I}, E_{2})g_{1}=\nabla_{E_{1}}^{\perp}\nabla_{E_{2}}^{\perp}g_{1}-\nabla_{E_{2}}^{\perp}\nabla_{E_{1}}^{\perp}g_{1}-\nabla_{\zeta E_{1}.E_{2^{J}}}^{\perp}g_{1}$

$=\nabla_{E_{1}}^{\perp}f$ .
Combining this with (3.7) and Lemma 3.4, we find that

$\nabla_{E_{1}}^{\perp}f=-\langle f, f\rangle g_{2}$ .

Similarly, we find from (3.8) and (3.9) that

$\nabla_{E_{2}}^{\perp}f=-\langle f, f\rangle g_{1}$ ,

$\nabla_{E_{3}}^{\perp}f=-\langle f, f\rangle g_{3}$ .

From these formulas, it is immediately clear that $f$ has constant length. But,

we have first that

$\langle R^{\perp}(E_{1}, E_{2})g_{1}, g_{2}\rangle=\langle\nabla_{E_{1}}^{\perp}f, g_{2}\rangle=-\langle f, f\rangle$ .
On the other hand, by applying the Ricci identity, we obtain that
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$\langle R^{\perp}(E_{1}, E_{2})g_{1}, g_{2}\rangle=\langle[A_{g_{1}}, A_{g_{2}}]E, E_{2}\rangle$

$=\langle A_{g_{2}}E_{1}, A_{g_{1}}E_{2}\rangle-\langle A_{g_{1}}E_{1}, A_{g_{2}}E_{2}\rangle$

$=-\lambda^{2}-\lambda^{2}=-1$ .

This completes the proof of this lemma. $\blacksquare$

From these lemmas, it is clear that $(\nabla h)$ only has a component in the
direction of $f$ . Furthermore, by applying all these lemmas, we see that the
space spanned by $im(h)$ and $im(\nabla h)$ is parallel with respect to the normal con-
nection and has constant dimension 4. Therefore, by the reduction theorem of

J. Erbacher [E], there exists a totally geodesic $S^{7}$ of $S^{n}$ , such that $M$ is
contained in $S^{7}$ . The following example then shows that this case is possible.

EXAMPLE 3.1. Let us consider $S^{7}$ as a hypersurface in $C^{4}$ . Then, it is
well-known that starting from the complex structure on $S^{7}$ , one can induce a
Sasakian structure $\phi$ on $S^{7}$ with structure vector field $\zeta$ . Then, we consider

the following immersion $j$ from $R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}})$ into $S^{7}$ :

$j(u, y_{1}, y_{2}, y_{3})=(j_{1}, j_{2}, j_{3}, j_{4}, j_{5}, j_{6}, j_{7}, j_{8})$ ,

where

$j_{1}=\frac{\sqrt{2}}{\sqrt{3}}\cos(\frac{1}{\sqrt{2}^{-}}u)y_{1}+\frac{1}{3}\cos(\sqrt{2}u)$

$]_{2^{=-\frac{\sqrt{2}}{\sqrt{3}}\sin(\frac{1}{\sqrt{2}}u)y_{1}+\frac{1}{3}\sin(\sqrt{2}u)}}$

$j_{3}=\frac{1}{\sqrt{3}}\sin(\frac{1}{\sqrt{2}}u)y_{1}+\frac{\sqrt{2}}{3}\sin(\sqrt{2}u)$

$j_{4}=\frac{1}{\sqrt{3}}\cos(\frac{1}{\sqrt{2}}u)y_{1}-\frac{\sqrt{2}}{3}\cos(\sqrt{2}u)$

$j_{5}=\cos(\frac{1}{\sqrt{2}}u)y_{2}$

$j_{6}=-\sin(\frac{1}{\sqrt{2}}u)y_{2}$

$j_{7}=\cos(\frac{1}{\sqrt{2}}u)y_{3}$

$j_{8}=-\sin(\frac{1}{\sqrt{2}}u)y_{3}$
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where $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=\frac{2}{3}$ . Then, a straightforward computation shows that $\zeta$ is a

normal vector field on $R\times S^{2}(\frac{\sqrt{2}}{3})$ . Hence the immersion is a totally real

immersion. Furthermore, if we choose coordinates in such a way that

$y_{1}=\frac{\sqrt{2}}{\sqrt{3}}\cos(\frac{\sqrt{3}}{\sqrt{2}}v)\cos(\frac{\sqrt{3}}{\sqrt{2}}w)$

$y_{2}=\frac{\sqrt{2}}{\sqrt{}^{-}3^{-}}\sin(\frac{\sqrt{3}}{\sqrt{2}}v)\cos(\frac{\sqrt{3}}{\sqrt{2}}w)$

$y_{3}=\frac{\sqrt{2}}{\sqrt{3}}\sin(\frac{\sqrt{3}}{\sqrt{2}}w)$ ,

it is easy to check that $j$ is an isotropic immersion.

THEORFM 3.1. Let $x:M\rightarrow S^{n}$ be a constant isotropic immersion such that
$\dim(im(h))\leqq 3$ . Then, one of the following holds:

(a) $M$ is totally geodesic in $S^{n}$ ,
(b) There exists a totally geodesic $S^{4}$ in $S^{n}$ , such that the image of $M$ is an

open part of a small hypersphere of $S^{4}$ ,

(c) There exists a totally geodesic $S^{7}$ in $S^{n}$ , such that the image of $M$

congruent with an open part of $j(R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}}))$ in $S^{7}$ .

PROOF. From Lemma 3.1 and Lemma 3.2 it follows that either (3.1) or
(3.2) or (3.3) holds on $M$ . If (3.1) or (3.2) holds on $M,$ $M$ is totally umbilical.
Therefore, by the classification of totally umbilical submanifolds of spheres
([C]), we obtain (a) and (b). Therefore, we may assume that (3.3) holds on $M$ .
Then, we know from Lemma 3.3 that $M$ is locally isometric with $R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}})$ .
Further from the remark following Lemma 3.5, we know that there exists a
totally geodesic $S^{7}$ in $S^{n}$ such that the image of $M$ is contained in $S^{7}$ . Now,
let $p\in M$ and let $U$ be a neighbourhood of $p$ on which $M$ is isometric with

$R\times S^{2}(\frac{\sqrt{2}}{\sqrt{3}})$ . Then, on $U$, we can consider the two following immersions

$x$

$M\rightarrow S^{7}$

$U\xi_{R\times S^{2}(\frac{\sqrt{2}}{\sqrt{2}})\vec{j}S^{7}}$

From Lemma 3.3, Lemma 3.4 and Lemma 3.5, it then follows that we can
apply the uniqueness theorem ([Sp], volume 4). Thus there exists an isolnetry
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$A$ of $S^{7}$ such that on $U$

$A\circ x=j$ .
Since the immersion $j$ is an analytic immersion, it follows immediately that the
isometry $A$ is indepenent of the point $p$ . $\blacksquare$

THEOREM 3.2. Let $M$ be a 3-dimensional, minimal, isotropic submanifold in
$S^{n}(1)$ . Then, $M$ has constant sectional curvature.

PROOF. Let $p\in M$ and let us assume that $p$ is not a totally geodesic point.
Then, it follows by combining Lemma 3.1 with the minimality of $M$ that
$\dim(im(h))$ is greater than or equal to 4. On the other hand, it follows from
the minimality of $M$ that $\dim(im(h))$ is less than or equal to 5. Let us choose,
as indicated at the beginning of this section, an orthonormal basis $\{e_{1}, e_{2}, e_{3}\}$

of $T_{p}M$. Clearly $im(h)$ is spanned by $h(e_{1}, e_{1}),$ $h(e_{1}, e_{2}),$ $h(e_{2}, e_{2}),$ $h(e_{1}, e_{3})$ and
$h(e_{2}, e_{8})$ .

Since $h(e_{1}, e_{3})$ is orthogonal to $h(e_{1}, e_{1})$ and $h(e_{3}, e_{3})$ , it follows from the
minimality $M$ that $h(e_{1}, e_{3})$ is orthogonal to $h(e_{2}, e_{2})$ . Furthermore, by the
choice of our basis, we also know that $h(e_{1}, e_{3})$ is orthogonal to $h(e_{1}, e_{2})$ .
Similarly, we also obtain that $h(e_{2}, e_{3})$ is orthogonal to $h(e_{1}, e_{1}),$ $h(e_{2}, e_{2})$ and
$h(e_{1}, e_{2})$ .

From (2.8) and the minimality of $M$, it than follows that

$\langle h(e_{1}, e_{3}), h(e_{2}, e_{3})\rangle=-\frac{1}{2}\langle h(e_{1}, e_{2}), h(e_{3}, e_{3})\rangle$

$=\frac{1}{2}\langle h(e_{1}, e_{2}), h(e_{1}, e_{1})\rangle+\frac{1}{2}\langle h(e_{1}, e_{2}), h(e_{2}, e_{2})\rangle$

$=0$ .
On the other hand, it follows from (2.7) and the Cauchy Schwartz inequality

that $h(e_{1}, e_{3})\neq 0\neq h(e_{2}, e_{3})$ . By the choice of our basis, this implies that $h(e_{1}, e_{2})\neq 0$ .
By combining these information, we see that there orthonormal normal

vector fields $g_{1},$ $g_{2},$ $g_{3},$ $g_{4}$ and a normal vector field $g_{5}$ , which is orthogonal to
$g_{1},$ $g_{2},$ $g_{3}$ and $g_{4}$ such that

$h(e_{1}, e_{1})=\lambda g_{1}$ ,

$h(e_{1}, e_{2})=\mu_{1}g_{2}$ ,

$h(e_{1}, e_{3})=\mu_{2}g_{3}$ ,

$h(e_{2}, e_{3})=\mu_{3}g_{4}$ ,

$h(e_{2}, e_{2})=\mu_{4}g_{1}+g_{5}$ .
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Then, we find from (2.7) that

$ 2\mu_{2}^{2}=\lambda^{2}-\langle h(e_{1}, e_{1}), h(e_{3}, e_{3})\rangle$

$=2\lambda^{2}+\langle h(e_{1}, e_{1}), h(e_{2}, e_{2})\rangle$

$=2\lambda^{2}+\lambda^{2}-2\mu_{1}^{2}$ .
Similarly, we find that

$2\mu_{3}^{2}=3\lambda^{2}-2\mu_{1}^{2}$ .

The minimality and (2.7) also imply that

$\lambda^{2}=\langle h(e_{3}, e_{3}), h(e_{3}, e_{8})\rangle$

$=2\lambda^{2}+2\langle h(e_{1}, e_{1}), h(e_{2}, e_{2})\rangle$

$=4\lambda^{2}-4\mu_{1}^{2}$ .

Thus, we may assume that $\mu_{1}=\frac{\sqrt{3}}{2}\lambda$ . Hence, we may assume that $\mu_{2}=\mu_{3}=\frac{\sqrt{3}}{2}$ .
From (2.7) it then follows that $\mu_{4}=-\frac{1}{2}\lambda$ . Finally, it follows from $\langle h(e_{2}, e_{2})$ ,

$h(e_{2}, e_{2})\rangle=\lambda^{2}$ that $\langle g_{5}, g_{5}\rangle=\frac{3}{4}\lambda^{2}$ . We can summarize this as follows. There

exists orthonormal normal vector fields $f_{1},$ $f_{2},$ $f_{3},$ $f_{4}$ and $f_{5}$ such that:

$h(e_{1}, e_{1})=\lambda f_{1}$ ,

$h(e_{1}, e_{2})=\frac{\sqrt{3}}{2}\lambda f_{2}$ ,

$h(e_{2}, e_{2})=-\frac{\lambda}{2}f_{1}+\frac{\sqrt{3}}{2}\lambda f_{3}$ ,

$h(e_{1}, e_{3})=\frac{\sqrt{3}}{2}\lambda f_{4}$ ,

$h(e_{2}, e_{3})=\frac{\sqrt{3}}{2}\lambda f_{5}$ ,

$h(e_{3}, e_{3})=-\frac{\lambda}{2}f_{1}-\frac{\sqrt{3}}{2}\lambda f_{3}$ .

Using the Gauss equation, we find from these formulas that

$R(e_{1}, e_{2})e_{3}=R(e_{2}, e_{3})e_{1}=R(e_{3}, e_{1})e_{2}=0$ ,

$\langle R(e_{1}, e_{2})e_{2}, e_{1}\rangle=\langle R(e_{1}, e_{3})e_{3}, e_{1}\rangle=\langle R(e_{2}, e_{3})e_{3}, e_{2}\rangle=1-\frac{5}{4}\lambda^{2}$ .

Hence, $M$ has constant sectional curvatures. $\blacksquare$
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