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KILLING VECTOR FIELDS AND THE HOLONOMY
ALGEBRA IN SEMIRIEMANNIAN MANIFOLDS

By

Enric Fossas i COLET

Abstract In this paper we generalize some results of Kostant [2]

to semiriemannian manifolds of signature $s$ . We also prove that
any Killing vector field on a semiriemannian homogeneous compact

flat manifold is parallel.

0. Introduction.

Let $(M_{s}^{n}, g)$ be a semiriemannian manifold of dimension $n$ and signature $s$ .
Let $X$ be a Killing vector field on $M$. The $A_{X}$ -operator provides a skew sym-
metric endomorphism of $TM$. It is well known that

$\nabla_{Y}A_{X}=R_{XY}$ .
This fact and the Ambrossse-Singer theorem $(Wo)$ show that the $A_{X}-$

operator lies infinitesimally in the holonomy algebra $h$ of $M$.
We ask ourselves whether or not $A_{X}$ lies in $h$ .
In the riemannian case the question has an affirmative answer on compact

manifolds [2]. We obtain here a similar result in the semiriemannian case.
Finally we study the holonomicity of a Killing vector field on semirieman-

nian manifolds of constant curvature. If the curvature is non zero, the holonomy

algebra can be represented as $po(n, s)$ , that is the skew symmetric endomor-
phisms of $TM$. In this case each Killing vector field is holonomic.

There are flat manifolds and Killing vector fields on them such that the
$A_{X}$-operator does not lie in the holonomy algebra, that is $A_{X}\not\in h$ . Take, for
instance, $R_{s}^{n}$ . In the usual coordinates on $R_{s}^{n},$ $X$ is a Killing vector field if

$X=\sum_{i.j}\epsilon_{i}K_{i}^{j}x_{i^{\frac{\partial}{\partial x_{j}}}}$

where $K_{i}^{j}=-K_{j}^{i}$ are constants, $\epsilon_{i}=g(\partial/\partial_{X_{i}}, \partial/\partial x_{i})=\pm 1$ and $x_{0}=1$ . There are
nonholonomic Killing vector fields on $R_{s}^{n}$ : nonparallel vector fields are nonholo-
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nomic because flatness implies $h=0$ .
However, the assumption of compactness and homogeneity of $M$ allows us

to state that any Killing vector field on a compact homogeneous semiriemannian
flat manifold is parallel.

1. Main theorem.

Let $(M_{s}^{n}, g)$ be a semiriemannian manifold of dimension $n$ and signature $s$ .
If $p\in M$ and $A,$ $B\in End(T_{p}M)$ we denote by $\phi$ the trace form

$\phi(A, B)=$ -trace $(A\cdot B)$ .
Note that,

i) $\phi$ is nondegenerate on $po(n, s)$ ,

ii) $\phi$ is parallel.

From now on for any $\Omega\subset po(n, s),$ $\Omega^{\perp}$ will denote its orthogonal comple-

mentary with respect to $\phi$ .

THEOREM 1. Let $(M_{\epsilon}^{n}, g)$ be a semiriemannian manifold compact orientable
manifold and $X$ a Killing vector field on M. If $\phi$ is nondegenerate on the
holonomy algebra $h$ , then the $A_{x}$-operator decomposes as

$A_{X}=h+B_{X}$

where $h\in h,$ $B_{X}\in h^{\perp}and$ $\psi(B_{X}, B_{X})=0$ .

PROOF. The nondegenerate character of $\phi$ on $h$ allows us to decompose

$po(n, s)=h+h^{\perp}$ and $A_{X}=h+B_{X}$

in a unique way.
For any field $Y$ on $M$.

$R_{XY}=\nabla_{Y}A_{X}=\nabla_{Y}h+\nabla_{Y}B_{X}$ .
$R_{XY}$ and $\nabla_{Y}h$ lie in $h$ and $\nabla_{Y}B_{X}$ lies in $h^{\perp}$ . Thus $\nabla_{Y}B_{X}=0$ and $B_{X}$ is

parallel.
And accordingly

$divB_{X}X=trace(B_{X}\cdot B_{X})=\phi(B_{x}, B_{X})$ .
But $\phi(B_{X}, B_{X})$ is constant because

$Y\phi(B_{X}, B_{X})=2\phi(\nabla_{Y}B_{X}, B_{X})=0$ .
Finally, the integral of $divB_{X}X$ on $M$ gives
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$0=\int_{M}div(B_{X}X)=kvol(M)$ .
That is

$0=k=\phi(B_{X}, B_{X})$ .
(Q. E. D.)

REMARK. This theorem still holds without the assumption of orientability
because the covering of the orientations is (2: 1) and is also a local isometry.

We gave in [1] some examples of compact semiriemannian manifolds with
nonholonomic Killing vector fields.

2. The flat case.
Let $(M_{s}^{n}, g)$ be a compact flat manifold. If $X$ is a Killing vector field on

$M$, by Theorem 1
$\phi(A_{X}, A_{X})=0$ .

On the assumption of homogeneity, we will see in this section that $A_{x}=0$ .
We recall

LEMMA 2 [2]. Let $(M_{s}^{n}, g)$ be a semiriemannian manifold; if $X$ is a Killing
vector field on $M$, assume that

$2f=g(X, X)$ .
Then,

i) $gradf=A_{X}X$.
ii) $H^{f}(V, W)=g(\nabla_{V}X, \nabla_{W}X)+g(R_{XV}X, W)=g(\nabla_{V}(A_{X}X), W)$

iii) $\Delta f=-\phi(A_{X}, A_{X})-Ric(X, X)$ .

PROPOSITION 3 (Marsden) [2]. A homogeneous compact semiriemannian mani-
fold is complete.

COROLLARY 4. A homogeneous compact flat semiriemannian manifold is geo-
desically convex. ($i.e$ . given any two points there is a geodesic joining them).

PROOF. By Proposition 3 the universal covering of $M$ is a flat complete
simply connected manifold; thus it is $R_{s}^{n}$ . In order to obtain a geodesic $\sigma$ join-
ing $p\in M$ and $q\in M$, take $\tilde{p}$ , in the fiber of $p$ and $\tilde{q}$ in the fiber of $q$ and pro-
ject on $M$ the straight line $\tilde{p}\tilde{q}$ . (Q. E.D.)

PROPOSITION 5. Let $X$ be a Killing vector field on a homogeneous compact

flat semiriemannian manifold $(M_{s}^{n}, g)$ . The product $g(X, X)$ is constant on $M$.
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PROOF. $A_{X}X$ is a Jacobi field.
Let $\gamma$ be a geodesic; then

$\nabla_{\gamma}.(\nabla_{\gamma}.(A_{X}X))=\nabla_{\gamma}.((\nabla_{\gamma}.A_{X})X+A_{X}(\nabla_{\gamma}.X))=\nabla_{\gamma}.(R_{X\gamma}.X-A_{X}A_{X}\gamma\cdot)$

$=-\nabla_{\gamma}.(A_{X}(A_{X}\gamma))=-(\nabla_{\gamma}.A_{X})(A_{X}\gamma\cdot)-A_{X}(\nabla_{\gamma}.(A_{x}\gamma))$

$=R_{X\gamma}.(A_{X}\gamma\cdot)-A_{X}((\nabla_{\gamma}.A_{X})(\gamma)-A_{X}A_{X}(\nabla_{\gamma}.\gamma))=0$ .
Assume that $2f=g(X, X)$ . Since $M$ is compact, $f$ reaches at least a maxi-

mum and a minimum at $p$ and $q$ respectively. By Corollary 4 there is a geo-
desic joining $p$ and $q$ . Call it $\sigma$ . $A_{X}X$ is a Jacobi field on $\sigma$ which cancels at
$p$ and $q$ (Lemma 2). Because of the flatness of $M,$ $A_{X}X=0$ .

Then $f(p)=f(q)$ and $f$ must be constant on M. (Q.E.D.)

THEOREM 6. Let $X$ be a Killing vector field on a semiriemannian homo-
geneous compact flat manifold $M_{s}^{n}$ . Then $X$ is parallel.

PROOF. 1st step. The universal covering of $M_{\$}^{n}$ is $R_{s}^{n}$ . Then $ M\cong R_{l}^{n}/\Gamma$

where $\Gamma$ is a properly discontinuous subgroup of the motions of $R_{t}^{n}$ . Let $\tilde{X}$ be
the lift of $X$ on $R_{s}^{n}$ ; $\tilde{X}$ is a Killing vector field on $R_{s}^{n}$ and it is $\Gamma$-invariant.

$2^{nd}$ step. Take $f=(1/2)g(X, X)=(1/2)g(\tilde{X},\tilde{X})$ .
From Lemma 2 and because of the flatness of $M$,

$H^{f}(V, W)=g(\nabla_{V}X, \nabla_{W}X)=g(A_{X}V, A_{X}W)=-g(A_{X}A_{x}V, W)$ .
On the other hand, by Proposition 5

$H^{f}(V, W)=0$ $\forall V,$ $W$ .
Thus $A_{x}\cdot A_{X}=0$ and $A_{\tilde{x}}\cdot A_{\tilde{X}}=0$ .

$3^{rd}$ step. Let $p$ be a point of $R_{\epsilon}^{n}$ . We can choose a basis of $T_{p}Mv_{1},$ $w_{1},$ $\cdots$ ,
$v_{r},$ $w_{r},$ $u_{1},$ $\cdots$ , $u_{t}$ in which the $A_{\tilde{X}}$ matrix has the form

$V_{1}$ $W_{1}$ $v_{r}$ $w_{r}$ $u_{1}$ $u_{t}$

$(^{*})$ $[\underline{010100}|_{\overline{0}}0\ovalbox{\tt\small REJECT}$
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Using parallel transport and because of the flatness we can assume that we
have a coordinate system $x_{1},$ $y_{1},$ $\cdots,$ $x_{r},$ $y_{r},$ $z_{1},$

$\cdots$ , $z_{t}$ on $R_{s}^{n}$ such that the matrix
of the $A_{\tilde{X}}$-operator in the associated frame is $(^{*})$ . In this coordinate system the
nonparallel part of $\tilde{X}$ is

$x_{1}\frac{\partial}{\partial y_{1}}+\cdots+x_{r}\frac{\partial}{\partial y_{1}}$ .
There is no lost of generality in assuming that

$\tilde{X}=x_{1}\frac{\partial}{\partial y_{1}}+\cdots+x_{r}\frac{\partial}{\partial y_{r}}$ .

$4^{th}$ Step. Let us now consider the new system

$(x_{1}, \cdots, x_{r}, y_{1}, \cdots, y_{r}, z_{1}, \cdots, z_{l})$ .
Let $\mu$ be an element of $\Gamma$ ; because of the homogeneity of $M_{s}^{n},$ $\Gamma$ is a group

of pure translations (see [4] pg. 135). In our new coordinate system

$x$ $y$ $z$

$\mu=\left(\begin{array}{lll}I & 0 & 0\\0 & I & 0\\0 & 0 & I\end{array}\right)+\left(\begin{array}{l}M\\N\\U\end{array}\right)$

where $I$ is the identity matrix.
The $\Gamma$-invariance of $\tilde{X}$ is reflected on the $\mu$ -matrix by the fact that $M=0$ ,

so that the dimension of the subspace spanned by the translation components of
the elements of $\Gamma$ is not greater than $n-r$ . If $r\neq 0$ the translation components

of the elements of $\Gamma$ do not generate $R_{s}^{n}$ . But this is impossible because $M$ is
compact.

Consequently, $r=0$ and $\tilde{X}$ and $X$ are parallel. (Q. E.D.)
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