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HYPOELLIPTICITY OF SYSTEMS OF PSEUDO
DIFFERENTIAL OPERATORS WITH

DOUBLE CHARACTERISTICS

By

K. H. KWON

0. Introduction.

In this paper, we are concerned with the hypoellipticity of a system of
pseudodifferential operators on $\Omega$ , an open subset of $R^{N}$ , of the form

(0.1) $P(x, D)=I_{a}p(x, D)+Q(x, D)$ ,

where $I_{d}$ is the identity $d\times d$ matrix, $p(x, D)$ a scalar pseudodifferential operator

of degree $m$ , and $Q(x, D)$ a $d\times d$ system of pseudodifferential operators of de-
gree at most $m-1$ . We shall assume that its principal symbol $p(x, \xi)$ is non-
negative on $ T^{*}\Omega$ , the cotangent bundle of $\Omega$ and that it vanishes exactly of
order 2 on its characteristic set $\Sigma$ , which is assumed to be a symplectic smooth
submanifold of $ T^{*}\Omega$ . In [3], L. Boutet de Monvel and F. Treves have obtained
a necessary and sufficient condition for $P(x, D)$ such as above (in fact, a little
more general ones) to be hypoelliptic with loss of one derivative, which is the
best hypoellipticity for $P(x, D)$ to have. In case of a scalar situation $(i.e. d=1)$,

hypoellipticity (and local solvability) of $P(x, D)$ was studied in [6], assuming,

in addition, that the codimension of $\Sigma$ in $ T^{*}\Omega$ is 2, in which case the analysis

is much simpler than the present case. In this work, we obtain sufficient con-
ditions for $P(x, D)$ to be hypoelliptic, which extend the results in [6] to the
vector situation with no restriction on codimension of $\Sigma$ . As in [6], we rely

heavily on the method of concatenations which was initiated by F. Treves in
[8] and turned out to be quite useful in some cases (cf. [2, 3, 5, 6, 8]). After
reducing the operator under study into a canonical form near a characteristic
point in section 1, we construct, in section 2, a series of operators, called con-
catenations, by which we can reformulate the condition under which $P(x, D)$ is
hypoelliptic with loss of one derivative. Then, in section 3, we state and prove
the main results of this paper.

We use $(x, \xi)=(x_{1}, \cdots, x_{N}, \xi^{1}, \cdots , \xi^{N})$ for the variable point in $\tau*\Omega$ and
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$\omega=\sum_{j=1}^{N}d\xi^{j}\Lambda dx_{j}$ will represent the fundamental symplectic two-form on $ T^{*}\Omega$ .
All pseudodifferential operators in this paper will be classical ones, in the sense
that their total symbols are asymptotic sum of homogeneous terms whose homo-
geneous degrees drop by integers. For a pseudodifferential operator $A$ of degree
$\leqq k,$ $\sigma(A)$ stands for its principal symbol and $\sigma_{k}(A)$ its principal symbol as an
operator of degree $k$ (hence, if $A$ happens to be of degree $<k$ , then $\sigma_{k}(A)\equiv 0$

while $\sigma(A)$ need not be identically $0$). For two pseudodifferential operators $A$

and $B,$ $A\sim B$ means that $A-B$ is regularizing and $[A, B]=AB-BA$ their
commutation bracket. Other notations used but not stated here will be standard
ones of distribution theory and of pseudodifferential operator theory. Functions
and distributions here have their values in a large array of finite dimensional
vector spaces over the complex numbers, which we do not specify, hoping that
it will be clear from the context.

1. Canonical form of the operator near a characteristic point.

Let $\Omega$ be an open subset of $R^{N},$ $N\geqq 1$ and $P(x, D)$ be an operator of the
form $(0.1)$ . For $\sigma(P)=p(x, \xi)I_{d}$ , we shall always assume the followings:

(1.1) $p(x, \xi)\geqq 0$ on $\tau*\Omega$ ;

(1.2) $p(x, \xi)$ vanishes exactly of order 2 on its characteristic set $\Sigma=p^{-1}(0)$ ;

(1.3) $\Sigma$ is a smooth submanifold of $\dot{\tau}*\Omega=T^{*}\Omega\backslash O$ and is symplectic,
that is, the restriction of $\omega$ to its tangent space is
nondegenerate everywhere.

Condition (1.3) requires that the dimension of $\Sigma$ be even and hence so be its
codimension in $ T^{*}\Omega$ : we shall set

(1.4) codim $\Sigma=2n$ , $n\geqq 1$ integer.

For any characteristic point $\rho$ , since $\omega$ is non-degenerate on $T_{\rho}(\Sigma)$ , the tangent
space of $\Sigma$ at $\rho,$

$T_{\rho}(T^{*}\Omega)$ can be decomposed as

(1.5) $T_{\rho}(T^{*}\Omega)=T_{\rho}(\Sigma)\oplus N_{\rho}(\Sigma)$ ,

where $N_{\rho}(\Sigma)$ denotes the orthogonal complement of $T_{\rho}(\Sigma)$ in $T_{\rho}(T^{*}\Omega)$ with
respect to $\omega$ .

By the assumption (1.2), we can intrinsically define a symmetric bilinear
form $q_{p}(\rho)$ on $T_{\rho}(T^{*}\Omega)$ (cf. [7]) by
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$q_{p}(\rho)(v_{1}, v_{2})=\frac{1}{2}X_{1}(X_{2}(p))(\rho)$ , $v_{1},$ $v_{2}\in T_{\rho}(T^{*}\Omega)$ ,

where $X_{j}$ are some vector fields defined in a neighborhood of $\rho$ with $X_{j}(\rho)=v_{j}$ ,
$j=1,2$ .

Then, it is clearly well-defined and positive-definite on $N_{\rho}(\Sigma)$ . Moreover,
since $\omega is_{-}^{-}non$-degenerate, it induces an endomorphism $A_{p}(\rho)$ of $T_{\rho}(T^{*}\Omega)$ , called
the Hamilton map of $q_{p}(\rho)$ , defined by

(1.6) $q_{p}(\rho)(v_{1}, v_{2})=\omega(v_{1}, A_{p}(\rho)(v_{2}))$ , $v_{1},$ $v_{2}\in T_{\rho}(T^{*}\Omega)$ .
If we set $Q_{p}(\rho)$ to be the quadratic form associated to $q_{p}(\rho)$ , then it is nothing
but the quadratic form, which begins the Taylor expansion of $p(x, \xi)$ at $\rho$ .

The followings are special cases of the results in [3, Section 3] (cf. also
$[5, 7])$ .

PROPOSITION 1.1. Non-O eigenvalues of $A_{\rho}(\rho)$ are $\pm i\lambda_{j}$ , $1\leqq j\leqq n$ , $\lambda_{j}>0$ .
Hence, when $\rho$ varies over $\Sigma,$ $\lambda_{j}$ are positive real-valued functions on $\Sigma$ , which
are invariants ($i.e$ . coordinate-free) associated to $P(x, D)$ .

PROPOSITION 1.2. In a small conic neighborhood $\Gamma$ of any point in $\Sigma$ , there
exist functions $z_{j}$ , homogeneous of degree 1 and $d_{j}>0$ , homogeneous of degree
$m-2$ such that:

(1.7) $p(x, \xi)=\sum_{j}d_{j}z_{j}\overline{z}_{j}$ in $\Gamma$ ;

(1.8) $d_{j}=\lambda_{j}$ on $\Sigma\cap\Gamma,$ $1\leqq j\leqq n$ ;

(1.9) $\{z_{j}, z_{k}\}=\{z_{j},\overline{z}_{k}\}-i\delta_{jk}=0$ in $\Gamma,$ $1\leqq j,$ $k\leqq n$ .
By a standard method of successive approximations, we can construct $n$ pseudo-

differential operators $Z_{j}$ with their principal symbols $\sigma(Z_{j})=z_{j},$ $ 1\leqq$ ] $\leqq n$ , so that
they satisfy the commutation relations in $\Gamma$

(1.10) $[Z_{j}, Z_{k}]\sim 0\sim[Z_{j}, Z_{k}^{*}]-I\delta_{jk}$ , $1\leqq j,$ $k\leqq n$

where $I$ is the identity operator.

Let $D_{j}$ be pseudodifferential operators with $d_{j}$ as their symbols and set

(1.11) $Z_{0}=P(x, D)-I_{d}(\sum_{j}D_{j}Z_{j}^{*}Z_{j})$ in $\Gamma$ .

Then $Z_{0}$ is a $d\times d$ matrix of pseudodifferential operators of degree at most
$m-1$ in $\Gamma$. We shall denote by $\sigma_{0}=\sigma_{0}(x, \xi)$ the restriction to $\Sigma\cap\Gamma$ of $\sigma_{m-1}(Z_{0})$

the principal symbol of $Z_{0}$ as an operator of degree $m-1$ . By a standard sym-
bolic calculus of pseudodifferential operators, we have
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(1.12) $\sigma_{0}=\sigma_{sub}(P)+I_{d}(\frac{1}{2}\sum\lambda_{j})$ ,

where $\sigma_{sub}(P)$ is the subprincipal symbol of $P(x, D)$ , which is well defined on
$\sum$ , independent of the choice of local coordinates.

2. Concatenations and Hypoelliptcity wiith loss of one dervatice.

Throughout this section, we restrict our attention to the conic open set in
which we can write $P(x, D)$ as
(2.1) $P(x, D)=I_{d}(\sum_{j}D_{j}Z_{j}^{*}Z_{j})+Z_{0}$ .

If we set $W_{j}=D_{j}Z_{j}^{*},$ $1\leqq j\leqq n$ , we have in $\Gamma$

(2.2) $P(x, D)=I_{a}(\sum_{j}W_{j}Z_{j})+Z_{0}$ .

We shall construct a sequence of operators, of which any two consequtive ones
are related by certain relations, called concatenations (cf. [8]), through which
hypoellipticity can be transmitted backward and then give the connection be-
tween the concatenations and the hypoellipticity with loss of one derivative.
The latter means that for any open set $U$ in $\Omega$ , any real number $s$ , and any
distribution $u$ in $U$ .
(2.3) $P(x, D)u\in H_{1oc}^{\epsilon}(U)$ implies $u\in H_{1oc}^{s+m-1}(U)$ .

PROPOSITION 2.1. There are pseudodifferential operators $A_{f}$ of degree $0$ and
$Q_{jk}$ of degree $m-1$ (both are $d\times d$ systems), $1\leqq j,$ $k\leqq n$ , such that

(2.4) $(Z_{j}I_{d}-A_{j})P=P(Z_{j}I_{d}-A_{j})+\sum_{k=1}^{n}Q_{jk}(Z_{k}I_{d}-A_{k})$

and

(2.5) $\sigma(Q_{jk})=\sigma([Z_{j}, W_{k}])I_{d}$ .

PROOF. Here, we temporarily assume that $P$ is a scalar operator, $i$ . $e.,$ $d=1$ .
But, the proof when $P$ is a system remains unchanged except notational com-
plexity. Write $P=\sum_{k=1}^{n}\{W_{k}(Z_{k}-A_{k})+W_{k}A_{k}\}+Z_{0}$ and set $M_{jk}=[Z_{j}-A_{j}, W_{k}]-Q_{jk}$ .
Then, (2.4) is equivalent to

(2.6) $\Sigma\{W_{k}[Z_{j}-A_{f}, Z_{k}-A_{k}]+[Z_{j}-A_{j}, W_{k}A_{k}]+M_{jk}(Z_{k}-A_{k})\}$

$+[Z_{j}-A_{j}, Z_{0}]=0$ .
Note that degree of $M_{jk}$ is at most $m-1$ and we have (2.5) if $M_{jk}$ is of degree
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$\leqq m-2$ .
We are going to show that asymptotic expansions of $A_{j}$ and $M_{jk}$ can be

determined successively so that they satisfy the required conditions. Let $ A_{j}\sim$

$\sum_{\alpha\gtrless 0}A_{f}^{a}$ and $M_{jk}\sim\sum_{\alpha\geq 0}M_{jk}^{\alpha}$ and for any $\alpha\geqq 0,$
$A_{j^{(\alpha)}}=\sum_{\beta<\alpha}A_{j}^{\beta}$ and $M_{jk}^{(\alpha)}=\sum_{\beta<\alpha}M_{j}^{\beta_{k}}$ ,

where the degree of $A_{j}^{\alpha}$ is -a and that of $M_{jk}^{\alpha}$ is $ m-2-\alpha$ . If we set

$R_{j^{(\alpha)}}=\Sigma\{W_{k}[Z_{j}-A_{j^{(\alpha)}}, Z_{k}-A_{k^{(\alpha)}}]+[Z_{j}-A_{j^{(\alpha)}}, W_{k}A_{k^{(\alpha)}}]$

$+M_{jk}^{(\alpha)}(Z_{k}-A_{k^{(\alpha)}})\}+[Z_{j}-A_{j^{(\alpha)}}, Z_{0}]$ ,

we need to show that $R_{j^{(\alpha)}}$ is of degree $\leqq m-1-\alpha$ , which inductively proves
our assertion.

When $\alpha=0,$ $R_{j}^{(0)}=[Z_{j}, Z_{0}]$ since $[Z_{j}, Z_{k}]=0$ for all $j,$ $k$ and hence is of
degree $m-1$ .

Assume that $R_{j^{(\alpha)}}$ is of $degree\leqq m-1-\alpha$ , for some $\alpha\geqq 0$ . Counting degrees
of each term in $R_{j}^{(\alpha+1)}$ , we get

$R_{j^{(\alpha+1)}}=R_{j^{(\alpha)}}+\Sigma[Z_{j}, W_{k}]A_{k}^{\alpha}-\Sigma W_{k}[A_{j}^{\alpha}, Z_{k}]+\sum M_{jk}^{\alpha}Z_{k}$ ,

modulo operators of $degree\leqq m-2-\alpha$ . Thus, we need to have

(2.10) $\sigma_{m-1-\alpha}(R_{j^{(\alpha)}}+\Sigma[Z_{j}, W_{h}]A_{k}^{\alpha}-\Sigma W_{k}[A_{j}^{\alpha}, Z_{k}]+\Sigma M_{jk}^{\alpha}Z_{k})$

$=r_{j^{(\alpha)}}-i\Sigma\{z_{j}, w_{k}\}a_{k}^{\alpha}+i\Sigma w_{k}\{a_{j}^{\alpha}, z_{k}\}+\Sigma m_{jk}^{\alpha}z_{k}=0$ ,

where we use the corresponding small letters for the principal symbols of
operators.

Therefore, the problem is reduced to find smooth functions $a_{j}^{\alpha}$ , $1\leqq j\leqq n$ ,

which are homogeneous of $degree-\alpha$ so that $r_{j^{(\alpha)}}-i\Sigma\{z_{j}, w_{k}\}a_{k}^{\alpha}+i\Sigma w_{k}\{a_{j}^{\alpha}, z_{k}\}$

wanishes of order infinity on $\Sigma$ . From now on, we shall omit the superscript
$\alpha$ to simplify the notations. If $a_{j}$ vanishes of order $l$ on $\sum$ , it can be written
as

$a_{j}=\sum_{|\alpha+\beta|\approx l}b_{\alpha.\beta}^{j}z^{\alpha}\overline{z}^{\beta}$ ,

(here $\alpha$ and $\beta$ denote the multiindices)

with $b_{a.\beta}^{j}$ having the suitable homogeneity. Then we have, via $(1,9)$ ,

(2.11) $\Sigma w_{k}\{a_{j}, z_{k}\}-\Sigma\{z_{j}, w_{k}\}$ a $k$

$=\sum_{|a+\beta|=l}\sum_{k=1}^{n}[w_{k}(-i\beta_{k})b_{\alpha.\beta^{Z^{\alpha}\overline{Z}^{\beta-\langle k\rangle}}}^{j}-ib_{\alpha.\beta}^{k}\{z_{i}, w_{k}\}z^{\alpha}\overline{z}^{\beta}]$

$=\sum_{|\alpha+\beta|=l}\sum_{k=1}^{n}[(-i\beta_{k})b_{a.\beta}^{j}d_{k}-ib_{\alpha.\beta}^{k}d_{k}\delta_{jk}]z^{\alpha}\overline{z}^{\beta}$
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modulo functions vanishing of order at least 1+1 on $\sum$ . Here, $\langle k\rangle$ is the k-th
unit vector in $R^{n}$ . From the right hand side of the equation (2.11), let us pick

up the coefficients of $z^{\alpha}\overline{z}^{\beta}$ for any fixed multiindices $\alpha,$ $\beta$ with $|\alpha+\beta|=l$ . It is

$(-i)\sum_{k=1}^{n}(\beta_{i}b_{a.\beta}^{j}d_{k}+b_{a.\beta}^{k}d_{k}\delta_{jk})$ .

Therefore, the problem is whether we can find $b_{\alpha.\beta}^{k}$ to satisfy

(2.12) $(\sum_{k=1}^{n}\beta_{k}d_{i}+d_{j})b_{a.\beta}^{j}=-r_{\alpha.\beta}^{j}$ , $1\leqq j\leqq n$ ,

where $\gamma_{a.\beta}^{f}$ is the coefficient of $z^{\alpha}\overline{z}^{\beta}$ in the Taylor series expansion of $r_{j}$ on $\sum$ .

The equation (2.12) is trivially solvable for $b_{\alpha.\beta}^{j}$ for any given $r_{\alpha.\beta}^{j}$ since the
coefficient $\sum_{k}\beta_{k}d_{k}+d_{j}$ is positive for $j=1,$ $\cdots,$ $n$ . If we set $P_{jk}=\delta_{jk}P+Q_{jk}$ ,

$P^{(1)}=(P_{jk})$ to be an $nd\times nd$ system of operators and $Z^{(0)}$ to be a column vector
with $n$ entries, each one of which is $Z_{j}I_{d}-A_{j}$ , then (2.4) reads as

(2.13) $Z^{(0)}P^{(0)}=P^{(1)}Z^{(0)}$ , $P^{(0)}=P$ .
On the other hand, we may write

(2.14) $P^{(1)}=I_{nd}(\sum_{k}W_{k}Z_{k})+Z_{0^{(1)}}$ ,

where $Z_{0}$
) $1$ ) is an $ndXnd$ system of operators of degree at most $m-l$ . With

$P^{(1)}$ instead of $P^{(0)}=P$, we can repeat the same argument as the one in pro-
position 2.1 and by induction, we can get a sequence of operators $P^{(j)},$ $j\geqq 0$ ,

satisfying

(2.15) $Z^{(j)}P^{(j)}=P^{(j+1)}Z^{(j)}$ (called (left) concatenations),

(2.16) $P^{(j)}=I_{nJd}(\sum_{k}W_{k}Z_{k})+Z_{0^{(f)}}=\sum_{k}W_{k}(Z_{k}-A_{k^{(j)}})+\tilde{Z}_{0^{(j)}}$ ,

where $Z_{0}^{(0)}=Z_{0},$ $A_{k^{(0)}}=A_{k}$ , and

(2.17) $\tilde{Z}_{0}^{(j)}=Z_{0^{(j)}}+\sum_{k}W_{k}A_{k^{(j)}}$ .

Now, let $\sigma_{0}^{(j)}=\sigma_{m-1}(\tilde{Z}_{0^{(j)}})|_{\Sigma\cap\Gamma}=\sigma_{m-1}(Z_{0^{(j)}})|_{\Sigma\cap\Gamma}$ to be the restriction to $\Sigma\cap\Gamma$ of
the principal symbol of $\tilde{Z}_{0}^{(j)}$ regarded as an operator of degree $m-1$ . From the

definition of $P^{(1)}$ , it follows immediately that $\sigma_{0}^{(1)}=\sigma_{0^{(0)}}\otimes I_{n}+I_{d}\otimes A$ , where $A=$

$(\lambda_{j}\delta_{jk})$ and $\otimes denotes$ the direct product of matrices. Similarly, by induction,

we have

(2.18) $\sigma_{0}^{(j)}=\sigma_{0^{(j-1)}}\otimes I_{n}\times I_{nJ- 1d}\otimes A$ , $j\geqq 1$ ,

of which any eigenvalue is a sum of an eigenvalue of $\sigma_{0^{(j-1)}}$ and an eigenvalue



Hypoellipticity of Systems 449

of $A$ . Therefore, again by induction on $j$ and using (1.12), we get

(2.19) $spec\sigma_{0}^{(j)}=spec\sigma_{sub}(P)+\frac{1}{2}\sum_{k=1}^{n}\lambda_{k}+s\frac{pecA+\cdots+spec}{j\sim time}A$ ,

$j\geqq 0$ ,

where the plus signs on the right stand for the addition of complex numbers.
Let us consider the following condition on $P(x, D)$ :

(2.20) all $\tilde{Z}_{0^{(j)}}$ (equivalently $Z_{0^{(j)}}$ ) are elliptic of order $m-1$

on $\Sigma$ (hence in $\Gamma$ if it is small enough).

In view of (2.19), condition (2.20) is equivalent to:
(2.21) for any point $\rho$ in $\Sigma$ , any r-tuple of nonnegative integers

$r=(r_{1}, \cdots, r_{n})$ , and any eigenvalue $\mu$ of $\sigma_{sub}(P)(\rho)$ ,

$\mu+\sum_{j\Rightarrow 1}^{n}(\frac{1}{2}+r_{j})\lambda_{j}\neq 0$ .
As is now well known (cf. [1, 3]), condition (2.21) is necessary and sufficient
for $P(x, D)$ to be hypoelliptic with loss of one derivative (cf. (2.3)), which is
sufficient but not necessary for $P(x, D)$ to be hypoelliptic.

3. Hypoellipticity.

Although it is not clear how to weaken the condition (2.21) itself to get
just hypoellipticity of $P(x, D)$ , we can replace it by the equivalent condition
(2.20), which can be modified to give some sufficient conditions for $P(x, D)$ to
be hypoelliptic. In this section, as in section 2, we restrict ourselves to the
sufficiently small conic open subset $\Gamma$ of arbitrary characteristic point of $P(x, D)$ ,

in which we can write $P$ as (2.2) and construct the concatenations (2.15). This
is possible since hypoellipticity is purely a local (or rather microlocal) property

and out of $\Sigma,$ $P(x, D)$ is elliptic. Let us consider the following weakened form
of the condition (2.20):

(3.1) all $\tilde{Z}_{0}^{(j)}$ are hypoelliptic.

Returning to the equation (2.19), we can see that $\tilde{Z}_{0^{(j)}}$ will be elliptic of degree
$m-1$ for large enough $j$ since any eigenvalue $\lambda_{k}$ of the matrix $A$ is strictly
positive. Therefore, the condition (3.1) involves, in fact, only a finitely many
$\tilde{Z}_{0^{(j)}}$ .

LEMMA 3.1. Suppose $P(x, D)$ satisfies the condition (3.1). If, for some $j>0$ ,
$P^{(j+1)}$ is hypoelliptic, then so is $P$.
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PROOF. Let $u$ be a distribution such that $P^{(j)}u$ is $C^{\infty}$ . Then, from (2.6),

so is $P^{(j+1}$ ) $Z^{(j)}u=Z^{(j)}P^{(j)}u$ . Since $P^{(j+1)}$ is hypoelliptic, $Z^{(j)}u$ and so equi-

valently $(Z_{k}-A_{k^{(j)}})u,$ $1\leqq k\leqq n$ , are $C^{\infty}$ . Then $\tilde{Z}_{0^{(j)}}u=P^{(j)}u-\Sigma W_{k}(Z_{k}-A_{k^{(j)}})u$

and so $u$ is $C^{\infty}$ since $\tilde{Z}_{0}^{(j)}$ is hypoelliptic by the assumption, which means that
$P^{(j)}$ is also hypoelliptic. By repeating the same argument j-times, we reach to
the conclusion that $P$ is hypoelliptic.

Lemma 3.1 means that under the condition (3.1), hypoellipticity of $P^{(j)}$ can
be transmitted backward along the concatenation (2.15). Now, we can give the
main results of this paper as follows.

THEOREM 3.1. If the condition (3.1) is satisfied, then $P(x, D)$ is hypoelliptic.

PROOF. By the Lemma 3.1, it suffices to have hypoellipticity of $P^{(j)}$ for

some $j\geqq 0$ . Reminding that $\tilde{Z}_{0^{(j)}}$ is elliptic of order $m-1$ for large enough $j$ ,

say, for $j\geqq J$ and that each $P^{(f)}$ has the same principal part as $P,$ $P^{(I)}$ satisfies
the condition (2.20) and so is hypoelliptic (with loss of one derivative).

REMARK 3.1. Of course, the condition (3.1) is satisfied provided that
(3.2) all $\tilde{Z}_{0^{(j)}}$ are elliptic of $degree\leqq m-1$ in $\Gamma$.
in which case the construction of concatenations is much simpler than ours (cf.

$[3, 5])$ . In that case, (analytic) hypoellipticity of $P(x, D)$ was already treated
in [5].

The following special case of the theorem (3.1) is worth to mention since
it involves only $\tilde{Z}_{0}^{(0)}$ .

COLOLLARY 3.1. If $\tilde{Z}_{0}^{(0)}$ is hypoelliptic and is of degree strictly less than
$m-1$ , then $P(x, D)$ is hypoelliptic.

PROOF. By the assumption, $\sigma_{0^{(0)}}$ , a principal symbol of $\tilde{Z}_{0^{(0)}}$ as an operator

of degree $m-1$ , must vanish identically on $\Sigma$ . Therefore due to (1.12) and (2.19),

any eigenvalue of $\sigma_{0}^{(j)},$ $j\geqq 1$ , is of the form $\sum r_{i}\lambda_{j}$ , where $r=(r_{1}, \cdots, r_{n})\in Z_{+}^{n}$ ,

$|r|=r_{1}+\cdots+r_{n}=j$ and $\lambda_{j}$ are positive numbers introduced in proposition 1.1.
Hence, $0$ can not be an eigenvalue of $\tilde{Z}_{0^{(j)}},$ $j\geqq 1$ , and so they are elliptic of
degree $m-1$ on $\Sigma$ . Therefore, the condition (3.1) is satisfied.

Careful inspection of the proof of theorem 3.1 reveals that the condition
(3.1) is sufficient but not necessary for $P(x, D)$ to be hypoelliptic as the follow-
ing result shows.

THEOREM 3.2. $P(x, D)$ is hypoelliptic provided that the characteristic set of
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each $Z_{0}^{(j)},$ $j\geqq 0$ , is disjoint from $\Sigma$ .

PROOF. It suffices to have an analog of lemma 3.1 under the given assump-
tion. So, assume that, form some $j\geqq 0,$ $P^{(j+1)}$ is hypoelliptic and that $P^{(j)}u$ is
$C^{\infty}$ for a distribution $u$ . As in the proof of lemma 3.1, $Z_{0^{(j)}}u$ is also $C^{\infty}$ . Hence,
$u$ must be $C^{\infty}$ also since its wave-front set is a subset of the intersection of
char $\tilde{Z}_{0^{(j)}}$ and char $ P^{(j)}=\Sigma$ , which is empty by the assumption. The rest of
the proof is the same as that of theorem 3.1.

From the theorem 3.2, it seems to us that that the hypoellipticity of $P(x, D)$

may be determined by the behavior of the principal symbol of $\tilde{Z}_{0^{(j)}}$ on $\Sigma$ . In
[6], we have already pushed in this direction when the codimension of $\Sigma$ in
$ T^{*}\Omega$ is 2 $(i.e. n=1)$ by introuducing boundary operators which live only on $\Sigma$

(cf. section 3 in [6]). However, at the moment, it is not clear how to define
the boundary operators in the present case.
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