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By

G. KARPILOVSKY

Abstract. Let $R*G$ be the crossed product of an arbitrary group
$G$ over a simple ring $R$ . Since $G$ acts on $Z(R)$ and $R$ is simple,
$Z(R)$ is a G-field and the fixed field $Z(R)^{G}$ of $G$ is contained in
$Z(R*G)$ . The main result of this paper exhibits a distinguished
basis for $Z(R*G)$ over the field $Z(R)^{G}$ . A number of applications
is also provided. Our method is based on the theory of similinear
monomial representations. In this way we obtain conceptual proofs
of results which otherwise require lengthy computations and ad hoc
arguments.

1. Introduction.

In the past ten years there have been a tremendous surge of activity in the
theory of graded rings and their important special case, namely crossed products.

For a detailed account of the theory, we refer the reader to [4]. The principal
object of this paper is to provide a further development, which is to describe
the center of crossed products over simple rings. We then apply our result to
count nonisomorphic irreducible modules over such crossed products. Among
other applications, we provide information on the number of linearly nonequiv-

alent irreducible projective crossed representations of a finite group over fields.
To describe the main idea and method, let us first recall the following piece

of information. Let $A$ be a ring and let $G$ be a multiplicative group. Given
additive subgroups $X$ and $Y$ of $A$ , we write $XY$ for the additive subgroup of
$A$ consisting of all finite sums

$\Sigma x_{i}y_{i}$ $x_{i}\in X,$ $y_{i}\in Y$ .
We say that $A$ is a G-graded ring, provided there exists a family $\{A_{g}|g\in G\}$

of additive subgroups of $A$ indexed by $G$ such that the following two conditions
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hold:
$A=\bigoplus_{g\in G}A_{g}$ ,

$A_{x}A_{y}\subseteqq A_{xy}$ for any $x,$ $y\in G$ .
It is immediate that $A_{1}$ is a subring of $A$ with IE $A_{1}$ . Let $U(A)$ denote the

unit group of $A$ . We say that a unit $u\in U(A)$ is graded if it lies in $A_{g}$ for
some $g\in G$ . We shall refer to such $g$ as the degree of $u$ and write

$g=\deg(u)$ .
It is clear that the set $GrU(A)$ of all graded units of $A$ is a subgroup of

$U(A)$ and that the sequence of group homomorphisms

$1\rightarrow U(A_{1})\rightarrow c_{rU(A)^{\underline{\deg}_{G}}-1}$
(1)

is always exact except possibly at $G$ . We say that $A$ is a crossed product of
$G$ over $A_{1}$ , written $A=A_{1}*G$ , provided the sequence (1) is exact. In case (1)

is an exact splitting sequence, we shall refer to $A$ as a skew group ring of $G$

over $A_{1}$ . The ring $A$ is said to be a twisted group ring of $G$ over $A_{1}$ , if for
all $g\in G$ , there exists $\overline{g}\in A_{g}\cap U(A)$ such that $\overline{g}$ centralizes $A_{1}$ . In the particular
case where $A_{1}\subseteqq Z(A)$ we shall refer to $A_{1}*G$ as a twisted group algebra of $G$

over $A_{1}$ . For any subset $X$ of $A$ , let $C_{A}(X)$ be the centralizer of $X$ in $A$ . If
$G$ acts on a ring $R$ , we say that $R$ is a G-ring and write $R^{G}$ for the fixed
ring of $G$ defined by

$R^{G}=$ { $r\in R|^{g}r=r$ for all $g\in G$ }.

Now let us look at the question of the justification for restricting our atten-
tion to crossed products over simple rings.

Assume that $A$ is a G-graded ring. What can be said about the center of
$A$ ? The following general observation is due to Dade [1].

Fix $g\in G$ , write $1=\sum_{i=1}^{n}a_{i}b_{t}$ for a suitable positive integer $n$ and suitable

$a_{i}\in A_{g},$ $b_{i}\in A_{g-1},1\leqq i\leqq n$ , and for any $y\in C_{A}(A_{1})$ , put

$gy=\sum_{i=1}^{n}a_{i}yb_{i}$ .

Manifestly, if $A$ is a crossed product of $G$ over $A_{1}$ , we may put $gy=\overline{g}y\overline{g}^{-1}$

where $\overline{g}\in U(A)\cap A_{g}$ . Then $\iota_{y}$ is a unique element of $A$ satisfying $a_{g}y=gya_{g}$

for all $a_{g}\in A_{g}$ . Furthermore, $s_{y\in C_{A}(A_{1})}$ and, provided $y\in Z(A_{1}),$ $gy\in Z(A_{1})$ .
The group $G$ acts as automorphisms of the rings $C_{A}(A_{1})$ and $Z(A_{1})$, with any $g\in G$

sending any $y\in C_{A}(A_{1})andy\in Z(A_{1})$ , respectively, into $gy$ . It is then immediate that
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$Z(A)=C_{A}(A_{1})^{G}$ .

Unfortunately, nothing more can be said about $Z(A)$ under these general

circumstances. Since the problem of description of $Z(A)$ seems so intractible
one needs to impose more hypotheses to make any progress. The situation
where $A$ is a crossed product of $G$ over a simple ring $A_{1}$ is favourable for the
following two reasons. First of all, $Z(A_{1})$ is a G-field and the fixed field $Z(A_{1})^{G}$

of $G$ is contained in $Z(A)$ . Thus we may attempt to describe $Z(A)$ by exhibiting

a distinguished basis over $Z(A_{1})^{G}$ .
The second reason can be explained as follows. For each $g\in G$ , fix a unit

$\overline{g}$ of $A$ in $A_{g}$ with $\overline{l}=1$ , and denote by $G_{0}$ the normal subgroup of $G$ consisting
of those $g\in G$ for which conjugation by $\overline{g}$ induces an inner automorphism of
$A_{1}$ . Of course, the definition of $G_{0}$ does not depend upon a choice of units
$g,$ $g\in G$ . Without loss of generality we may assume that $\overline{g}\in C_{A}(A_{1})$ for all
$g\in G_{0}$ . It turns out that if $A_{1}$ is simple, then $C_{A}(A_{1})$ is a twisted group algebra
of $G_{0}$ over the field $Z(A_{1})$ . Thus $C_{A}(A_{1})$ is a vector space over the field $Z(A_{1})$

with distinguished basis $\{\overline{g}|g\in G_{0}\}$ . The latter fact allows us to use the theory

of semilinear monomial representations on graded vector spaces developed in

Section 2, to provide the desired description of $Z(A)$ . This has the advantage

of preparing the way for dealing with more complicated situations, where ad
hoc arguments are less easy to find.

2. Similinear monomial representations on graded vector spaces.

Let $X$ be an arbitrary set. By an X-graded space over a field $F$ we under-
stand a pair (V, $(V_{x})$), where $V$ is a vector space over $F$ and $(V_{x})$ is a family

of one-dimensional subspaces of $V$ indexed by $X$ such that

$V=\bigoplus_{x\subset X}V_{x}$ .

Let $V$ be a vector space over a field $F$. A semilinear transformation of $V$

is any additive homomorphism $f:V\rightarrow V$ for which there exists an automorphism
$\psi$ of $F$ such that

$f(\lambda v)=\psi(\lambda)f(v)$ for all $\lambda\in F,$ $v\in V$ .

Note that the automorphism $\psi$ is uniquely determined by $f$ . A semilinear
transformation $f$ of $V$ is said to be nonsingular if $f$ is a bijection. It is clear
that under the composition of mappings the set of all nonsingular semilinear
transformations of $V$ constitutes a group; we denote this group by $GS(V)$ and
refer to it as the general semilinear group of $V$ . For each $f\in GS(V)$ , let $\psi_{f}$
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be the associated automorphism of $F$. Then the map

$\left\{\begin{array}{l}GS(V)\rightarrow AutF\\f->\psi_{f}\end{array}\right.$

is a homomorphism whose kernel is the general linear group $GL(V)$ on $V$ . In
particular, $GL(V)\triangleleft GS(V)$ .

Let $X$ be an arbitrary set and let (V, $(V_{x})$) be an X-graded space over a
field F. By a semilinear monomial representation on a group $G$ on (V, $(V_{x})$) we
mean a homomorphism

$\ulcorner;G\rightarrow GS(V)$

such that for all $g\in G,$ $\ulcorner(g)$ permutes the $V_{x},$ $x\in X$. Given such a $\ulcorner,$ $F$ be-
comes a G-field and we write $\lambda-\rangle$ $ g\lambda$ for the automorphism of $F$ corresponding

to $\ulcorner(g)$ . Note also that $\ulcorner$ determines a homomorphism $\gamma$ from $G$ to the
permutation group of the set $X$, where for all $g\in G$ and $x,$ $y\in X$

$\gamma(g)x=y$ if and only if $\ulcorner(g)V_{x}=V_{y}$ .
Thus $G$ acts on the set $X$ and we denote by $G(x)$ the stabilizer of $x\in X$,

that is

$G(x)=\{g\in G|\gamma(g)x=x\}$ .
We say that an element $x$ of $X$ is $\ulcorner$-regular if there exists a nonzero $v_{x}$

in $V_{x}$ such that
$\ulcorner(g)v_{x}=v_{x}$ for all $g\in G(x)$ .

We shall refer to a G-orbit of $X$ as being $\ulcorner$-regular if each element of this
orbit is $\ulcorner$-regular. By the fixed-point space of $\lceil^{\urcorner}$ we understand the set of
those $v\in V$ for which

$\ulcorner(g)v=v$ for all $g\in G$ .
It is clear that the fixed-point space of $\ulcorner$ is a vector space over $F^{G}$ , the

fixed field of $G$ .
We have now accumulated all the information necessary to prove the follow-

ing result. Its future application will dispel any notion that semilinear monomial
representations form an exotic class of representations.

THEOREM 1. Let $X$ be an arbitrary set, let (V, $(V_{x})$) be an X-graded space
over a field $F$ and let

$\ulcorner:G\rightarrow GS(V)$

be a semilinear monomial representation of $G$ on (V, $(V_{x})$). Let $Z$ be a full set
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of representatives for the finite $\Gamma$-regular orbits of $X$ and, for each $z\in Z$ , let
$L_{z}$ be the sum of one-dimensional subspaces of $V$ indexed by the elements of the
orbit containing $z$ . For each $z\in Z$ , fix $0\neq v_{z}\in V_{\epsilon}$ with $\ulcorner(g)v_{z}=v_{z}$ for all $g\in G(z)$ .

(i) If $x\in X$ is $\ulcorner$-regular, then so are all the elements in the G-orbit of $x$

(ii) If $W$ is the fixed-point space of $\ulcorner$ , then
(a) $W=\bigoplus_{z\in Z}(W\cap L_{z})$

(b) $W\cap L_{z}=\{\sum_{g\in T_{z}}9\lambda\ulcorner(g)v_{z}|\lambda\in F^{G(z)}\}$

where $T_{z}$ is a left transversal for $G(z)$ in $G$ containing 1
(c) If $\{\lambda_{i}|i\in I\}$ is an $F^{G}$-basis of $F^{G(z)}$ , then

$\{g$

is an $F^{G}$-basis of $W\cap L_{t}$

(d) If $di_{F}mV<\infty$ and $G$ is a finite group, then $d_{F^{G}}imW<\infty$ and

$\dim W=\sum_{zF^{G}\in Z}(d_{F^{G}}imF^{G(t)})$

Proof. (i) Let $x\in X$ be $\ulcorner$-regular let $y\in X$ be any element in the G-orbit
of $x$ . Then there exists $g\in G$ such that

$\ulcorner(g)V_{x}=V_{y}$ and $G(y)=gG(x)g^{-1}$ .
Since $x$ is $\ulcorner$-regular, there is a non-zero $v_{x}$ in $V_{x}$ fixed by all $\ulcorner(h)$ with

$h\in G(x)$ . Because $\ulcorner|(g^{-1})V_{g}=V_{x}$ , we may write $v_{x}=\subset(g^{-1})v_{y}$ for some non-
zero $v_{y}$ in $V_{y}$ .

Now assume that $t\in G(y)$ , say $t=ghg^{-1}$ with $h\in G(x)$ . Then we have

$\ulcorner(t)v_{y}=\ulcorner(g)\Gamma(h)\ulcorner(g^{-1})v_{y}=\ulcorner(g)\ulcorner(h)v_{x}=\ulcorner(g)v_{x}=v_{y^{\prime}}$

proving (i).

(ii) Denote by $Y$ a full set of representatives for the orbits of $X$ and, for
each $y\in Y$ , let $L_{y}$ be the sum of one-dimensional subspaces of $V$ indexed by

the elements of the orbit containing $y$ . Then

$V=\bigoplus_{y\in Y}L_{y}$

is a decomposition of $V$ into direct sum of G-invariant subspaces. Hence

$W=\bigoplus_{y\in Y}(W\cap L_{y})$ .

Let $v=\sum_{x\in X}v_{x},$
$v_{x}\in V_{x}$ , belong to $W$ and assume that $v_{t}\neq 0$ for some $i\in X$.

Then for all $g\in G,$ $\ulcorner(g)v_{l}\in V_{\gamma(g)l}$ which ensures, in view of the equality
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$\ulcorner(g)v=v$ , that
$0\neq\ulcorner(g)v_{t}=v_{\gamma(g)t}$ .

In particular, if $g\in G(t)$ , then $\ulcorner(g)v_{t}=v_{t}$ , proving that $t$ is $\ulcorner$-regular and
hence, by (i), that $t$ belongs to a $\ulcorner$-regular orbit. Moreover, since the number
of $0\neq v_{x}\in V_{x}$ is finite, $t$ belongs to a finite $\ulcorner$-regular orbit. Thus

$W=\bigoplus_{z\in Z}(W\cap L_{z})$ ,

proving (a).

Given $v\in L_{z}$ , we may write uniquely

$v=\sum_{g\in T_{z}}\lambda_{g}\ulcorner(g)v_{z}$
$(\lambda_{g}\in F)$

since $\{[-(g)v_{z}|g\in T_{z}\}$ is an F-basis for $U_{z}$ . Hence $v\in W\cap L_{z}$ if and only if

$\ulcorner_{|}(h)v=\sum_{g\in T_{z}}h\lambda_{g}\ulcorner(hg)v_{8}=\sum_{s\in r_{z}}\lambda_{g}\ulcorner(g)v_{z}$ for all $h\in G$ (1)

Given $h\in G$ and $g\in T_{z}$ , let $g_{\hslash}\in T_{z}$ be defined by $hg\in g_{h}G(z)$ . Then

$hg=g_{h}t_{h}$ for some $t_{h}\in G(z)$

and therefore
$\ulcorner(hg)v_{z}=\ulcorner(g_{h})\ulcorner(t_{h})v_{z}=\ulcorner(g_{h})v_{z}$ .

Thus (1) is equivalent to

$\sum_{g\in T_{Z}}h\lambda_{g}[\neg(g_{h})v_{z}=\sum_{s\in r_{z}}\lambda_{g}\ulcorner(g)v_{z}$ for all $h\in G$ (2)

Taking into account that $\{g_{h}|g\in T_{z}\}=T_{z}$ , we deduce that (2) is equivalent
to

$h\lambda_{g}=\lambda_{g_{h}}$ for all $h\in G,$ $g\in T_{z}$ . (3)

Now put $\lambda=\lambda_{1}$ and assume that (3) holds. Then, taking $g=1,$ $h\in T_{z}$ and
$h\in G(z)$ , we obtain

$h\lambda=\lambda_{h}$ and $\lambda\in F^{G(z)}$ for all $h\in T_{z}$ . (4)

Conversely, suppose that (4) holds. Fix $h\in G,$ $g\in T_{z}$ and write $hg=g_{h}t_{h}$

for some $t_{h}\in G(z)$ . Then we have

$h\lambda_{g}=^{h}(g\lambda)^{hg}\lambda=g_{h}t_{h}\lambda^{gh}=\lambda=\lambda_{g_{h}}$

proving (3), and thus (b) is established.

Given $\lambda\in F^{G(Z)}$ , we may write $\lambda=\sum_{i=1}^{n}\mu_{i}\lambda_{i}$ for a unique $n\geqq 1$ and unique
$\mu_{1},$ $\cdots,$ $\mu_{n}$ in $F^{G}$ . Then

$\sum_{g\in T_{z}}g\lambda\ulcorner(g)v_{z}=\sum_{g\in T_{z}}(\sum_{i=1}^{n}\mu_{i^{g}}\lambda_{i})\ulcorner(g)v_{z}$



The center of crossed products over simple rings 409

$=\sum_{i=1}^{n}\mu_{i}(\sum_{g\in T_{z}}\lambda_{i}\ulcorner(g)v_{z})$ (5)

and therefore, by (b), $W\cap L_{z}$ is the $F^{G}$-linear span of

$\{\sum_{g\in T_{z}}g\lambda_{i}\ulcorner(g)v_{z}|i\in I\}$ .

Furthermore, if the equality

$\sum_{i=1}^{n}\mu_{i}(\sum_{g\in T_{z}}g\lambda_{i}\ulcorner(g)v_{z})=0$

holds, then by (5) we have $\sum_{g\in T_{z}}g\lambda\ulcorner(g)v_{z}=0$ . But then $\lambda=0$ and hence each $\mu_{i}=0_{r}$

proving (c).

Finally, assume that $d_{F}imV<\infty$ and that $G$ is a finite group. Then $X$ is a
finite set, hence so is $Z$ and, since $d_{F}i_{G}mF^{G(z)}<\infty$ for all $z\in Z,$ $(d)$ follows by
appealing to (a) and (c). $\blacksquare$

3. The center of crossed products over simple rings.

Throughout this section, $R*G$ denotes a crossed product of a (possibly

infinite) group $G$ over a simple ring $R$ . For each $g\in G$ , we fix a unit $\overline{g}$ of
$R*G$ in $(R*G)_{g}$ with $\overline{1}=1$ and define

$\alpha:G\times G\rightarrow U(R)$

by
$\alpha(x, y)=\overline{x}ff\overline{xy}^{-1}$ $(x, y\in G)$ .

We write $G_{0}$ for the normal subgroup of $G$ consisting of all those $g\in G$

for which conjugation by $\overline{g}$ induces an inner automorphism of $R$ . It is clear
that the definition of $G_{0}$ does not depend upon a choice of units $\overline{g},$ $g\in G$ . For
each $g\in G_{0}$ , let $\lambda_{g}\in U(R)$ be such that

$\overline{g}r\overline{g}^{-1}=\lambda_{g}^{-1}r\lambda_{g}$ for all $r\in R$ .
Then $\tilde{g}=\lambda_{g}\overline{g}$ is clearly in $C_{R*G}(R)$ . Thus we may, and from now on we

shall, assume that
$\overline{g}\in C_{R*G}(R)$ for all $g\in G_{0}$ . (1)

As has been observed earlier, the formula $gr=\overline{g}r\overline{g}^{-1},$ $r\in Z(R)$ or $r\in C_{R*G}(R)$ ,
$g\in G$ , provides an action of $G$ on $Z(R)$ and $C_{R*G}(R)$ . Since $G$ acts on $Z(R)$

and $R$ is simple, $Z(R)$ is a G-field and the fixed field $Z(R)^{G}$ of $G$ is contained
in $Z(R^{*}G)$ . Our aim in this section is to provide a distinguished basis for
$Z(R^{*}G)$ over the field $Z(R)^{G}$ . The following two preliminary results will clear
our path.
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LEMMA 2. With the notation above, the following properties hold:
(i) $C_{R*G}(R)=Z(R)*G_{0}$ is a twisted group algebra of $G_{0}$ over the field $Z(R)$ .
(ii) $Z(R*G)=(Z(R)*G_{0})^{G}$ .

PROOF. (i) It follows from (1) that

$Z(R)*G_{0}=\{\sum_{g\in G_{0}}x_{g}\overline{g}|x_{g}\in Z(R)\}\subseteqq C_{R*G}(R)$ .

Conversely, let $x=\sum_{g\in G}x_{g}\overline{g}\in C_{R*G}(R)$ and let $x_{g}\neq 0$ for some $g\in G$ . Then

$rx_{g}=x_{g}^{g}r$ for all $r\in R$ .
Hence $Rx_{g}=x_{g}R$ is a nonzero ideal of $R$ and thus $R=Rx_{g}=x_{g}R$ . It

follows that $x_{g}$ is a unit of $R$ such that

$gr=x_{g}^{-1}rx_{g}$ for all $r\in R$ .

Therefore $g\in G_{0}$ and, by (1),

$r=gr=x_{g}^{-1}rx_{g}$ for all $r\in R$

which shows that $x_{g}\in Z(R)$ . This proves that $C_{R*G}(R)\subseteqq Z(R)*G_{0}$ as required.
(iii) Direct consequence of (i) and the fact that $Z(R*G)$ consists of all

elements of $C_{R*G}(R)$ which commute with all $\overline{g},$ $g\in G$ . $\blacksquare$

The discussion has now reached a point where, in order to make further
progress, we need to bring in the notion of $\alpha$-regularity.

We say that $g\in G$ is $\alpha$-regular, provided $g$ satisfies the following two
conditions:

(a) $g\in G_{0}$

(b) There exists a nonzero $v$ in $(Z(R)*G_{0})_{g}$ such that $\overline{x}v=v\overline{x}$ for all $x\in C_{G}(g)$

Since each nonzero $v$ in $(Z(R)*G_{0})_{g}$ is of the form $v=\lambda\overline{g}$ for som $0\neq\lambda\in Z(R)$

and some $g\in G_{0}$ , we see that $g\in G_{0}$ is $\alpha$-regular if and only if there exists
$0\neq\lambda\in Z(R)$ such that

$x\lambda\alpha(x, g)=\lambda\alpha(g, x)$ for all $x\in C_{G}(g)$ . (2)

Thus, if $G$ acts trivially on $Z(R)$ , then $g\in G_{0}$ is $\alpha$ -regular if and only if

$\alpha(x, g)=\alpha(g, x)$ for all $x\in C_{G}(g)$

while if $R*G$ is a skew group ring of $G$ over $R(i.e$ . if $\alpha(x, y)=1$ for all
$x,$ $y\in G$ ) then each $g\in G_{0}$ is $\alpha$ -regular.

The following observation will enable us to take full advantage of Theorem 1.
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LEMMA 3. Let $F=Z(R),$ $V=F*G_{0}$ and, for each $g\in G_{0}$ , put $V_{g}=\{\lambda\overline{g}|\lambda\in F\}$

(i) (V, $(V_{g})$) is a $G_{0}$-graded space over the field $F$,

(ii) For each $g\in G$ , the map $\ulcorner(g):V\rightarrow V$ defined by

$\ulcorner(g)(v)=\overline{g}v\overline{g}^{-1}$

is a nonsingular similinear transformation of $V$ ,
(iii) The map $\ulcorner;G\rightarrow GS(V)$ is a semilinear monomial representation of $G$

on (V, $(V_{g})$) such that,
(a) For each $x\in G_{0},$ $G(x)=C_{G}(x)$ ,
(b) An element $g\in G_{0}$ is $\ulcorner$-regular if and only if $g$ is $\alpha$-regular. In parti-

cular by Theorem 1, if $g\in G_{0}$ is $\alpha$-regular, then so is any G-conjugate of $g$ ,
(c) $Z(R*G)$ is equal to the fixed-point space of $V$.

PROOF. (i) Direct consequence of the fact that { $\overline{g}|g\in G_{0}$) is an F-basis
of $F*G_{0}$

(ii) The map $\ulcorner(g)$ obviously additive and is a bijection. Since for all
$\lambda\in F,$ $v\in V$ ,

$\ulcorner(g)(\lambda v)=(\overline{g}\lambda\overline{g}^{-1})(\overline{g}v\overline{g}^{-1})=g\lambda\ulcorner(g)v$

the assertion follows.
(iii) Owing to (ii), each $\ulcorner(g)\in GS(V)$ and since $\ulcorner(g)$ permutes the $V_{x}$ ,

$x\in G_{0},$ $\ulcorner$ is in fact a semilinear monomial representation of $G$ on (V, $(V_{g})$).

Let $\gamma$ denote the corresponding homomorphism from $G$ to the permutation group
of the set $G_{0}$ . Then, for each $g\in G,$ $x\in G_{0},$ $\gamma(g)=gxg^{-1}$ and thus $G(x)=C_{G}(x)$ .
This proves (a) and (b), by applying (a) and the definitions of $\alpha$-regularity and
$\ulcorner$-regularity. Property (c) being a consequence of Lemma 2(ii), the result
follows. $\blacksquare$

We say that a conjugacy class $C$ of $G$ contained in $G_{0}$ is $\alpha$-regular if $g$

is $\alpha$-regular for some (hence for all) $g$ in $C$ .
We are at last in a position to attain our main objective, which is to prove

the following result, a particular case of which is due to Yamazaki (5).

THEOREM 4. Let $R*G$ be a crossed product of a group $G$ over a simple
ring $R$ and let $Z$ be a full set of representatives for finite $\alpha$-regular classes of
G. For each $z\in Z$ , choose $0\neq r_{z}\in Z(R)$ such that

$gr_{z}\alpha(g, z)=r_{z}\alpha(z, g)$ for all $g\in C_{G}(z)$

let $\{\lambda_{i.z}|i\in I_{z}\}$ be a $Z(R)^{G}$-basis of $Z(R)^{C_{G}(z)}$ , let $T_{z}$ be a left transversal for
$C_{G}(z)$ in $G$ containing 1, and put
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$v_{i.z}=\sum_{g\in T_{l}}g(\lambda_{i,z}r_{z})(\overline{g}\overline{z}\overline{g}^{-1})$
$(i\in T_{z})$

(i) $\bigcup_{z\in Z}\{v_{i,z}|i\in I_{z}\}$ is a $Z(R)^{G}$-basis of $Z(R*G)$

(ii) If $G$ is finite, then $Z(R)\dim_{G}Z(R*G)$ is also finite and is given by the
following formula

$z(R)\dim_{G}Z(R*G)=\sum_{z\in Z}(\dim_{G}Z(R)^{C_{G}(z)})$ .

(iii) $Z(R*G)=Z(R)^{G}$ is and only if {1} is the only finite $\alpha$-regular class of
$G$ .

PROOP. (i) Keeping the notation of Lemma 3, put $v_{z}=r_{z}\overline{z}$ . Then our
choice of $r_{z}$ ensures that $v_{z}\neq 0$ is in $V_{z}$ and that $\ulcorner(g)v_{z}=v_{z}$ for all $g\in C_{G}(z)$ .
Moreover, for each $\lambda\in F^{C_{G}(z)}$ and $g\in T_{z}$ ,

$g\lambda\ulcorner(g)v_{z}=g\lambda\ulcorner(g)(r_{z}\overline{z})=g\lambda^{g}r_{z}(\overline{g}\overline{z}\overline{g}^{-1})$ ,

$=g(\lambda r_{z})(\overline{g}\overline{z}\overline{g}^{-1})$ .
The desired conclusion is therefore a consequence of Theorem l(a), (c) and

Lemma 3(a), (c).

(ii) If $G$ is finite, then $d_{F}imV=|G_{0}|$ is also finite. Hence the required

assertion follows from Theorem l(ii) and Lemma 3(a), (c).

(iii) Direct consequence of (i) $\blacksquare$

4. Applications.

The aim of this section is to provide a number of applications of Theorem
4. All conventions and notations introduced in Section 3 remain in force. In
particular, $R*G$ denotes the crossed product of an arbitrary group $G$ over a
simple ring $R,$ $Z$ a full set of representatives for finite $\alpha$ -regular classes of $G$

and, for each $z\in Z,$ $T_{z}$ is a left transversal for $C_{G}(z)$ in $G$ containing 1.

THEOREM 5. Assume that $G$ acts trivially on $Z(R)(e.g$ . $R*G$ is a $tw\iota sted$

group ring of $G$ over $R$ ). Then

(i) $(\sum_{g\in T_{z}}\overline{g}\overline{z}\overline{g}^{-1}|z\in Z)$ is a $Z(R)$-basis of $Z(R*G)$ . In particular, if $G_{0}$ is

finite, then $Z(R)\dim Z(R*G)$ is also finite and is equal to the number of $\alpha$-regular

classes of $G$ .
(ii) If $G$ is abelian, then $Z$ is a subgroup of $G$ and $\{\overline{z}|z\in Z\}$ a $Z(R)$-basis

of $Z(R*G)$ .
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PROOF. (i) Keep the notation of Theorem 4. Since $G$ acts trivially on
$Z(R)$ , we can choose $r_{z}=1$ for all $z\in Z$ . Futhermore, we also have

$Z(R)^{G}=Z(R)=Z(R)^{C_{G}(z)}$ .
Hence $|I_{z}|=1$ and we can choose $\lambda_{i.z}=1$ . $\backslash $

Now apply Theorem 4(i).

(ii) Assume that $G$ is abelian. Then, $Z$ consists of all $\alpha$ -regular elements
of $G$ and, for each $z\in Z,$ $C_{G}(z)=G$ , so as $T_{z}$ we can choose {1}. This proves
that $\{\overline{z}|z\in Z\}$ is a $Z(R)$-basis of $Z(R*G)$ , by applying (i).

Assume that $z_{1},$ $z_{2}\in Z$ . Then $\overline{z}_{1}\overline{z}_{2}=\alpha(z_{1}, z_{2})\overline{z_{1}z_{2}}$ and $\alpha(z_{1}, z_{2})\in Z(R)$ since
$z_{1},$

$z_{2}\in G_{0}$ . Taking into account that $\overline{z}_{i}\in Z(R*G)$ and $Z(R)\subseteqq Z(R*G),$ $i=1,2$,

we conclude that $\overline{z_{1}z_{2}}\in Z(R*G)$ . Thus, by definition $z_{I}z_{2}$ is $\alpha$-regular. Finally,
assume that $z\in Z$ . Since

$\overline{z}\overline{z}^{-1}=\alpha(z, z^{-1})\cdot\overline{1}\in Z(R)\subseteqq Z(R*G)$ ,

we see that $\overline{z}^{-1}\in Z(R*G)$ . Hence $z^{-1}$ is $\alpha$ -regular and therefore $z^{-1}\in Z$ as
required. $\blacksquare$

THEOREM 6. Let $R*G$ be a skew group ring of a group $G$ over a simple
ring $R$ , let $Z$ be a full set of representatives of finite conjugacy classes of $G$

contained in $G_{0}$ and, for each $z\in Z$ , let $\{\lambda_{i.z}|i\in I_{z}\}$ be a $Z(R)^{G}$-basis of $Z(R)^{C_{G^{(S)}}}$ .
Put

$v_{i.z}=\sum_{g\in T_{z}}g\lambda_{i.z}(\overline{g}\overline{z}\overline{g}^{-1})$
$(i\in I_{z})$

Then
$\bigcup_{\iota\in Z}\{v_{i.z}|i\in I_{z}\}$ is a $Z(R)^{G}$-basis of $Z(R*G)$ .

PROOF. Since $R*G$ is a skew group ring, each $g\in G_{0}$ is $\alpha$-regular. Further-
more, in the notation of Theorem 4, we can put $r_{z}=1$ . Now apply Theorem
$4(i)$ . $\blacksquare$

Our next application of Theorem 4 is concerned with counting nonisomorphic

irreducible $R*G$ -modules.

THEOREM 7. Let $R*G$ be a crossed product of a finite group $G$ over a simple
ring $R$ and assume that

$ Z(R)\dim_{o}R<\infty$ and that char $R\int|G|$ .

Denote by $n(R*G)$ the number of nonisomorphic irreducible $R*G$ -modules.
Then
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$n(R*G)\leqq\sum_{z\in Z}(\dim_{o}Z(R)^{C_{G}(z))}$

with equality if $Z(R)^{G}$ is a splitting field for the $Z(R)^{G}$-algebra $R*G$ .

PROOF. By hypothesis, $R*G$ is a finite-dimensional algebra over the field
$Z(R)^{G}$ . Furthermore, since char $R\parallel|G|$ , $R*G$ is semisimple by Maschke’s
theorem [4]. Hence

$n(R*G)\leqq_{Z(R)}\dim_{G}Z(R*G)$

with equality if $Z(R)^{G}$ is a splitting field for $R*G$ . Now apply Theorem 4(ii).
$\blacksquare$

As an easy consequence of Theorem 7, we derive

COROLLARY 8. Let $R*G$ be a crossed product of a finite group $G$ over a
simple ring R. Assume that the following three conditions hold:

(i) $G$ acts trivially on $Z(R)(e.g$ . $R*G$ is a twisted group ring of $G$ over
$R)$ .

(ii) $R$ is finite-dimensional over $Z(R)$ .
(iii) char $R$ I $|G|$

Then the number of nonisomorphic irreducible $R*G$ -modules does not exceed
the number of $\alpha$-regular classes of G. The equality holds if $Z(R)$ is a splitting

field for the $Z(R)$-algebra $R*G$ .

PROOF. By hypothesis, $Z(R)^{G}=Z(R)$ and so the result follows by virtue of
Theorem 7. $\blacksquare$

5. Projective crossed representations.

Throughout this section, $G$ denotes a finite group, $V$ a finite-dimensional
vector space over a field $F$ and $Z^{2}(G, F^{*})$ the group of all 2-cocycles of $G$

over $F^{*}$ defined with respect to a specified action of $G$ on $F$. Given $\alpha\in$

$Z^{2}(G, F^{*})$ , we write $F^{\alpha}G$ for the corresponding crossed product of $G$ over
$F$. Thus $F^{\alpha}G$ is a free left F-module with basis $\{\overline{g}|g\in G\}$ and with multipli-
cation defined distributively by using the identities

$\overline{x}\overline{y}=\alpha(x, y)\overline{x}ff$ for all $x,$ $y\in G$

$\overline{x}\lambda=^{x}\lambda\overline{x}$ for all $x\in G,$ $\lambda\in F$

where $ x\lambda$ denotes the image of $\lambda$ under the automorphism of $F$ corresponding

to $x$ . In what follows we always choose $\overline{1}=1$ so that $\alpha(g, 1)=\alpha(1, g)=1$ for
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all $g\in G$ .
The concept of a projective crossed representation of $G$ over $F$ was intro-

duced by Jacobson [3] (under the name projective representation). An important
application of projective crossed representations was provided by Isaacs [2],

whose used the matrix form of such representations.
Our aim in this section is to apply Theorem 4 in order to provide information

on the number of linearly non-equivalent irreducible projective crossed represen-
tations. Since no adequate formal treatment of projective crossed representations
is available in the literature, we will provide all relevant details which are
required for our purposes.

In what follows we write $GS(V)$ for the general semilinear group of $V$ ,
that is the group of all nonsingular semilinear transformations of $V$ . A mapping

$\rho:G\rightarrow GS(V)$

is called a projective crossed representation of $G$ over $F$ if there exists a mapping

$\alpha:G\times G\rightarrow F^{*}$

such that
(i) $\rho(x)\rho(y)=\alpha(x, y)\rho(xy)$ for all $x,$ $y\in G$

(ii) $\rho(1)=1_{V}$

To stress the dependence of $\rho$ on $V$ and $\alpha$ , we shall often refer to $\rho$ as an
$\alpha$ -representation of $G$ on $V$ . For each $g\in G$ , let $l_{g}$ be the automorphism of $F$

determined by $\rho(g)$ . Then one immediately verifies that
(a) The formula $g\lambda=l_{g}(\lambda),$ $g\in G,$ $\lambda\in F$, provides an action of $G$ on $F$.
(b) $\alpha\in Z^{2}G,$ $F^{*}$), where $Z^{2}(G, F^{*})$ is defined with respect to the action of

$G$ on $F$ given in (a).

Assume that
$\rho:G-GS(V)$

is an $\alpha$ -representation of $G$ on $V$ . If $\alpha(x, y)=1$ for all $x,$ $y\in G$ , then we say
that $\rho$ is a crossed representation of $G$ over $F$. Thus a crossed representation
of $G$ over $F$ is just a homomorphism $\rho:G\rightarrow GS(V)$ . In case each $\rho(g)\in GL(V)$ ,

we refer to $\rho$ as a projective representation of $G$ over $F$. Hence $\rho$ is a
projective representation if and only if it determines the trivial action of $G$ on
$F$. Finally, if $\rho$ is both crossed and projective representation, then $\rho$ is nothing
else but a linear representation of $G$ over $F$.

Let $\rho:G\rightarrow GS(V)$ be an $\alpha$ -representation of $G$ on $V$ . The degree of $\rho$ ,

written $\deg\rho$ , is defined as the dimension of $V$ . A subspace $W$ of $V$ is said
to be invariant if $W$ is sent into itself by all semilinear transformations $\rho(g)$,
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$g\in G$ . We say that $\rho$ is irreducible, if $O$ and $V$ are the only invariant sub-
spaces of $V$ . The representation $\rho$ is said to be completely reducible if for any

invariant subspace $W$ there exists another such subspace $W^{\prime}$ such that $V=W\oplus W^{\prime}$ .
We refer to $\rho$ as being indecomposable if $V$ cannot be written as a nontrivial
direct sum of invariant subspaces.

Two projective crossed representations

$\rho_{i}$ : $G\rightarrow GS(V_{i})$

are said to be linearly equivalent if there exists a vector space isomorphism

$f:V_{1}\rightarrow V_{2}$

such that
$\rho_{2}(g)=f\rho_{1}(g)f^{-1}$ for all $g\in G$ .

It is an immediate consequence of the definition that linearly equivalent

projective representations determine the same action of $G$ on $F$ and their cor-
responding cocycles are equal.

The following result shows that the study of $\alpha$ -representations with a fixed
action of $G$ on $F$ is equivalent to the study of $F^{\alpha}G$ -modules.

LEMMA 9. Let $F$ be a G-field and let $\alpha\in Z^{2}(G, F^{*})$ , where $Z^{2}(G, F^{*})$ is

defined with respect to the given action of $G$ on F. Then, there is a bijective
correspondence between $\alpha$-representations of $G$ which determine the given action

of $G$ on $F$ and $F^{\alpha}G$-modules. This correspondence maps $\iota|bijectively$ linearly

equivalent (irreducible, completely reducible, indecomposable) $\alpha$-representations into
isomorphic (irreducible, completely reducible, indecomposable) $F^{\alpha}G$-modules.

PROOF. Let $\rho$ be an $\alpha$ -representation of $G$ on the space $V$ which gives

rise to the given action of $G$ on $F$. Then $\rho(g)(\lambda v)=g\lambda\rho(g)v$ for all $\lambda\in F$,
$v\in V,$ $g\in G$ . Hence, a straightforward verification shows that the map

$f:F^{\alpha}G-End(V)$

defined by

$f(\sum_{g\in G}x_{g}\overline{g})=\sum_{g\in G}x_{g}\rho(g)$ $(x_{g}\in F)$

is a ring homomorphism. Hence $V$ becomes an $F^{\alpha}G$ -module by setting

$(\sum_{g\in G}x_{g}\overline{g})v=\sum_{g\in G}x_{g}\rho(g)v$ $x_{g}\in G,$ $v\in V$ .

Conversely, given an $F^{\alpha}G$ -module $V,$ $V$ is a vector space over $F$ and we
define $\rho(g)\in End(V)$ by $\rho(g)v=\overline{g}v$ . Then $\rho(g)$ is invertible and
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$\rho(g)(\lambda v)=\overline{g}(\lambda v)=g\lambda\overline{g}v=g\lambda\rho(g)$ for all $\lambda\in F,$ $g\in G,$ $v\in V$

Thus each $\rho(g)$ lies in $GS(V)$ and the automorphism of $F$ determined by
$\rho(g)$ coincides with that determined by $g$ . Furthermore, by the definition of
$\rho$ , we have $\rho(1)=1_{V}$ and $\rho(x)\rho(y)=\alpha(x, y)\rho(xy)$ for all $x,$ $y\in G$ . Thus $\rho$ is an
a-representation of $G$ on $V$ which determines the given action of $G$ on $F$. This
sets up the desired bijective correspondence.

Let $\rho$ be an $\alpha$-representation of $G$ on the space $V$ . A subspace $W$ of $V$

is invariant under all $\rho(g),$ $g\in G$ if and only if $W$ is an $F^{\alpha}G$ -submodule. Hence
the correspondence maps bijectively irreducible (completely reducible, indecom-
posable) $\alpha$ -representations into irreducible (completely reducible, indecomposable)
$F^{\alpha}G$ -modules.

Finally, a straightforward argument shows that two $\alpha$-representations are
linearly equivalent if and only if the corresponding $F^{\alpha}G$ -modules are isomorphic.
So the lemma is true. $\blacksquare$

We are now ready to prove

THEOREM 10. Let $F$ be a G-field, let $\alpha\in Z^{2}(G, F^{*})$ , let $X$ be a full set of
representatives for the $\alpha$-regular classes of $G$ and let char $F\int|G|$ . Denote by $n$

the number of linearly nonequivalent irreducible $\alpha$ -representations of $G$ which
determine the given action of $G$ on F. Then

$n\leqq\sum_{x\in X}\dim F^{C_{G}(x)}F^{G}$

with equality if $F^{G}$ is a splitting field for the $F^{G}$-algebra $F^{\alpha}G$ .
PROOF. Since $G$ is finite, the field extension $F/F^{G}$ is also finite. The

desired conclusion is therefore a consequence of Theorem 7 and Lemma 9. $\blacksquare$
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