CORINGS AND INVERTIBLE BIMODULES

By
Akira Masuoka

Introduction.

Let $S \subset R$ be a faithfully flat extension of commutative rings (with 1). Grothendieck's faithfully flat descent theory tells that the relative Picard group $\operatorname{Pic}(R / S)$ is isomorphic to $H^{1}(R / S, U)$, the Amitsur 1-cohomology group for the units-functor U. We consider the non-commutative version of this fact in this paper.

Let $S \subset R$ be (non-commutative) rings and denote by $\operatorname{Inv}_{S}(R)$ the group of invertible S-subbimodules of R. Sweedler defined the natural R-coring structure on $R \otimes_{s} R$. We define the natural group map $\Gamma: \operatorname{Inv}_{S}(R) \rightarrow \operatorname{Aut}_{R-c o r}\left(R \otimes_{S} R\right)$, where $\operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)$ denotes the group of R-coring automorphisms of $R \otimes_{s} R$. When is Γ an isomorphism? The answer presented here is as follows (2.10): If either
(a) R is faithfully flat as a right or left S-module or (b) S is a direct summand of R as a right (resp. left) S-module and the functor $-\otimes_{s} R$ (resp. $R \otimes_{s^{-}}$) reflects isomorphisms, then $\boldsymbol{\Gamma}$ is an isomorphism. Indeed we consider some monoid map $\mathbf{I}_{s}^{l}(R) \rightarrow$ $\operatorname{End}_{R-c o r}\left(R \otimes_{s} R\right)$, which is an extension of Γ. We have two applications (3.2) and (3.4), both of which are concerned with the Galois theory.

§0. Conventions.

Let T, Q be arbitrary rings with 1 . We write

$$
U(T)=\text { the group of units in } T .
$$

All modules are assumed to be unital. A (T, Q)-bimodule means a left T module and right Q-module M satisfying $(t m) q=t(m q)$ for $t \in T, m \in M$ and $q \in Q$. A T-bimodule means a (T, T)-bimodule. We denote by

$$
{ }_{T} \mathscr{M}, \quad \mathscr{M}_{T} \text { and }{ }_{T} \mathscr{M}_{Q}
$$

the category of left T-modules, of right T-modules and of $(T, Q$)-bimodules,

[^0]respectively. For $M \in{ }_{T} \mathscr{M}_{T}$,
$$
M^{T}=\{m \in M \mid t m=m t \text { for all } t \in T\} .
$$

Throughout this paper, we fix a ring R with 1 and a subring S of R with the same unit 1 . For arbitrary S-subbimodules $I, J \subset R$, we define the product by

$$
I J=\left\{\sum_{i} x_{i} y_{i} \text { (finite sum) } \mid x_{i} \in I, \quad y_{i} \in J\right\}(\subset R)
$$

and denote by \mathbf{m} the multiplication map:

$$
\mathbf{m}: I \otimes_{s} J \longrightarrow I J, \quad \mathbf{m}(x \otimes y)=x y .
$$

With respect to this product, S-subbimodules of R form a monoid with unit S. $\mathbf{I}_{S}^{l}(R)$ (resp. $\mathbf{I}_{S}^{r}(R)$) denotes the submonoid consisting of S-subbimodules $I \subset R$ such that

$$
R \bigotimes_{S} I \cong R\left(\text { resp. } I \bigotimes_{S} R \cong R\right) \text { through m. }
$$

$\operatorname{Inv}_{S}(R)$ denotes the group of invertible S-subbimodules of R.

§ 1. Preliminaries.

1.1. Proposition. We have the following exact sequence, the first five terms of which can be found in [4, Proposition 1.6, p. 25]:

$$
\left.1 \longrightarrow U\left(S^{S}\right) \longrightarrow U\left(R^{S}\right) \xrightarrow[u]{ } \rightarrow S u=u S \text { Inv }{ }_{S}(R) \xrightarrow[{[-}]\right]{\longrightarrow} \operatorname{Pic}(S) \underset{R \bigotimes_{S_{S}}}{\longrightarrow}\left[\mathcal{R}_{S}\right]
$$

where Pic (S) denotes the Picard group of S and $\left[{ }_{R} \mathcal{H}_{S}\right]$ denotes the isomorphic classes [M] of $M \in_{R} \mathcal{M}_{S}$ with a distinguished class [R].

Exactness at Pic (S) means that, for any invertible S-bimodule $J, R \otimes_{s} J \cong R$ in ${ }_{R} \mathscr{M}_{S}$ iff J is isomorphic to some $I \in \operatorname{Inv}_{S}(R)$, which can be verified easily. Needless to say, we can get another exact sequence from the above one by replacing the last map with $\operatorname{Pic}(S) \underset{-{ }_{-S^{R}}}{\longrightarrow}\left[s \mathscr{M}_{R}\right]$, defining $\left[s \mathscr{M}_{R}\right]$ similarly. In particular, we have

$$
\begin{equation*}
\mathbf{I}_{S}^{L}(R) \cap \mathbf{I}_{S}^{r}(R) \supset \operatorname{Inv}_{S}(R) . \tag{1.2}
\end{equation*}
$$

An R-coring is a triple (C, Δ, ε), where $C \in_{R} \mathscr{M}_{R}$, and $\Delta: C \rightarrow C \otimes_{R} C$ and ε : $C \rightarrow R$ are maps in ${ }_{R} \mathscr{M}_{R}$ satisfying the usual co-associativity and co-unitarity. Let C be an R-coring. Denote the monoid of R-coring endomorphisms (resp. the group of R-coring automorphisms) of C by

$$
\operatorname{End}_{R-\operatorname{cor}}(C)\left(\text { resp. } \operatorname{Aut}_{R-\operatorname{cor}}(C)\right) .
$$

If an automorphism f of C in ${ }_{R} \mathscr{M}_{R}$ commutes with Δ, it commutes with $\boldsymbol{\varepsilon}$ auto-
matically, since $\boldsymbol{\varepsilon} \circ f=(\boldsymbol{\varepsilon} \otimes \boldsymbol{\varepsilon}) \circ(i d \otimes f) \circ \boldsymbol{\Delta}=\boldsymbol{\varepsilon} \circ f^{-1} \circ(i d \otimes \boldsymbol{\varepsilon}) \circ(f \otimes f) \circ \boldsymbol{\Delta}=\boldsymbol{\varepsilon} \circ f^{-1} \circ(i d \otimes \boldsymbol{\varepsilon}) \circ \boldsymbol{\Delta}^{\circ}$ $f=\boldsymbol{\varepsilon}$. Denote the set of group-likes [6, 1.7, Definition] in C by $\operatorname{Gr}(C)$:

$$
\operatorname{Gr}(C)=\left\{g \in C \mid \Delta(g)=g \otimes_{R} g, \varepsilon(g)=1\right\} .
$$

$R \otimes_{s} R$ has the following R-coring structure [6, 1.2, p. 393]:

$$
\begin{aligned}
\Delta: & R \otimes_{s} R \longrightarrow\left(R \otimes_{s} R\right) \otimes_{R}\left(R \otimes_{s} R\right)=R \otimes_{s} R \otimes_{s} R, \\
& \Delta(x \otimes y)=x \otimes 1 \otimes y, \\
\varepsilon: & R \otimes_{S} R \longrightarrow R, \quad \boldsymbol{\varepsilon}(x \otimes y)=x y .
\end{aligned}
$$

The natural identification

$$
\left(R \otimes_{S} R\right)^{S}=\operatorname{End}_{R} \mathscr{H}_{R}\left(R \otimes_{S} R\right)
$$

makes the left-hand side into a ring with the following product:

$$
\begin{equation*}
\left(\sum_{i} x_{i} \otimes y_{i}\right) \cdot\left(\sum_{j} z_{j} \otimes w_{j}\right)=\sum_{i, j} z_{j} x_{i} \otimes y_{i} w_{j} \tag{1.3}
\end{equation*}
$$

for $\Sigma_{i} x_{i} \otimes y_{i}, \Sigma_{j} z_{i} \otimes w_{j} \in\left(R \otimes_{S} R\right)^{S}$. Then we have the identification

$$
\begin{align*}
& \left(R \otimes_{S} R\right)^{s} \cap \operatorname{Gr}\left(R \otimes_{S} R\right)=\operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right) \tag{1.4}\\
& U\left(\left(R \otimes_{S} R\right)^{S}\right) \cap \operatorname{Gr}\left(R \otimes_{S} R\right)=\operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)
\end{align*}
$$

as monoids and as groups, respectively.
Remark. The product (1.3) is related closely to Sweedler's $\times{ }_{s}$-product [7]. Indeed, the ring $\left(R \otimes_{s} R\right)^{S}$ equals $\tilde{R} \times{ }_{S} R$ in [7, Section 3].

§ 2. Main results.

We define the monoid map

$$
\begin{equation*}
\Gamma: \mathbf{I}_{S}^{l}(R) \longrightarrow \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right) \tag{2.1}
\end{equation*}
$$

Let $I \in \mathbf{I}_{S}^{\prime}(R)$. Define $\boldsymbol{\Gamma}(I)$ to be the composition

$$
R \otimes_{s} R \underset{\mathbf{m}^{-1} \otimes i d}{\sim} R \otimes_{s} I \otimes_{s} R \xrightarrow[i d \otimes \mathbf{m}]{ } R \otimes_{s} R
$$

Explicitly, if $\Sigma_{i} x_{i} \otimes y_{i} \in R \otimes_{S} I$ goes to $1 \in R$ through m,

$$
\Gamma(I)(a \otimes b)=\sum_{i} a x_{i} \otimes y_{i} b
$$

for $a \otimes b \in R \otimes_{s} R$. Clearly, $\varepsilon \cdot \Gamma(I)=\varepsilon$. We have

$$
\sum_{i} x_{i} \otimes 1 \otimes y_{i}=\sum_{i, j} x_{i} \otimes y_{i} x_{j} \otimes y_{j} \quad \text { in } R \otimes_{S} R \otimes_{S} I
$$

since these go to $\sum_{i} x_{i} \otimes y_{i} \in R \otimes_{s} R$ through $R \otimes_{s} R \otimes_{S} I \underset{i d \otimes \mathbf{m}}{\sim} R \otimes_{s} R$. Hence $\Gamma(I)$
commutes with Δ. Thus $\Gamma(I) \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$. It is easy to see that Γ is a monoid map.
2.2. Theorem. If either
(a) R is faithfully flat as a right S-module
or (b) S is a direct summand of R as an S-bimodule, then $\Gamma: \mathbf{I}_{S}^{l}(R) \rightarrow \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$ is an isomorphism.

Let

$$
\begin{equation*}
\mathbf{J}(g)=\{x \in R \mid g(x \otimes 1)=1 \otimes x\} \tag{2.3}
\end{equation*}
$$

for $g \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)$. In case (a) or (b) holds, we show the map $g \mapsto \mathrm{~J}(g)$ gives the inverse of Γ.

Define the maps $d_{1}, d_{2}: R \rightrightarrows R \otimes_{s} R$ by

$$
d_{1}(x)=1 \otimes x, \quad d_{2}(x)=x \otimes 1 \quad \text { for } x \in R
$$

2.4. Lemma. Fix $g \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)$ and write

$$
\iota=\text { inclusion }: \mathbf{J}(g) \longrightarrow R, \quad \delta=d_{1}-g \circ d_{2}: R \longrightarrow R \otimes_{s} R .
$$

(1) The following is an exact sequence:

$$
0 \longrightarrow \mathbf{J}(g) \xrightarrow{\iota} R \xrightarrow{\delta} R \otimes_{s} R .
$$

(2) The following is an exact sequence:

$$
0 \longrightarrow R \xrightarrow{g \circ d_{2}} R \otimes_{s} R \xrightarrow{i d \otimes \delta} R \otimes_{s} R \otimes_{s} R
$$

Moreover, we have

$$
\mathbf{m} \circ\left(g \circ d_{2}\right)=i d_{R}, \quad\left(g \circ d_{2}\right) \circ \mathbf{m}+\left(\mathbf{m} \otimes i d_{R}\right) \circ\left(i d_{R} \otimes \delta\right)=i d_{R \otimes S_{S} R}
$$

(3) If R is flat as a right S-module, then $\mathbf{J}(g) \in \mathbf{I}_{S}^{\ell}(R)$.

Proof. (1) is a restatement of (2.3),
(2) is verified directly.
(3). This follows from the following commutative diagram with exact rows:

where the upper row is exact, since R_{S} is flat.
Q.E.D.
2.5. Lemma. Let g, ι, δ be as in (2.4). Assume S is a direct summand of R as an S-bimodule. Then we have:
(1) There exist $\pi: R \rightarrow \mathbf{J}(g)$ and $\psi: R \bigotimes_{s} R \rightarrow R$ in $s \mathcal{M}_{S}$ satisfying

$$
\begin{equation*}
\pi \circ \iota=i d_{\mathbf{J}(g)}, \quad \iota \circ \pi+\psi \circ \delta=i d_{R} . \tag{2.5.1}
\end{equation*}
$$

(2) $\mathbf{J}(g) \in \mathbf{I}_{S}^{l}(R)$.

Proof. (1). Let $p: R \rightarrow S$ be a projection in ${ }_{s} \mathscr{M}_{S}$ and take π, ψ as follows:

$$
\pi: R \xrightarrow{d_{2}} R \otimes_{S} R \xrightarrow{g} R \otimes_{S} R \xrightarrow{p \otimes i d} R, \quad \phi: R \otimes_{S} R \xrightarrow{p \otimes i d} R .
$$

We show $\pi(R) \subset \mathbf{J}(g)$. Assume $\sum_{i} x_{i} \otimes y_{i} \in \operatorname{Gr}\left(R \otimes_{s} R\right)$ corresponds to g in (1.4). Then, for $a \in R$,

$$
\pi(a)=\sum_{i} p\left(a x_{i}\right) y_{i}
$$

and

$$
\begin{aligned}
& g(\pi(a) \otimes 1)=\sum_{i, j} p\left(a x_{i}\right) y_{j} x_{j} \otimes y_{j} \\
& =\sum_{i} p\left(a x_{i}\right) \otimes y_{i} \quad\left(\text { since } \sum x_{i} \otimes y_{i} x_{j} \otimes y_{j}=\sum x_{i} \otimes 1 \otimes y_{i}\right) \\
& =1 \otimes \pi(a) .
\end{aligned}
$$

Thus $\pi(a) \in \mathbf{J}(g)$. The remainder is verified easily.
(2). This follows, since by (1) the sequence (2.4.1) is exact in case ${ }_{s} S_{s} \bigoplus_{s} R_{s}$, too.
Q.E.D.
2.6. Definition. The functor $R \otimes_{S}-$ (resp. $-\otimes_{s} R$) reflects isomorphisms, if a map f in $s \mathscr{M}$ (resp. in \mathscr{M}_{S}) is an isomorphism whenever $i d_{R} \bigotimes_{s} f$ (resp. $f \otimes_{s} i d_{R}$) is such.

If this is the case, $I \subset J$ for $I, J \in \mathbf{I}_{S}^{l}(R)$ (resp. $\in \mathbf{I}_{S}^{r}(R)$) implies $I=J$.
2.7. Lemma. Let $g, h \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right), I \in \mathbf{I}_{S}^{l}(R)$.
(1) $\mathbf{J}(g) \mathbf{J}(h) \subset \mathbf{J}(g h)$.
(2) If $\mathbf{J}(g) \in \mathbf{I}_{s}^{l}(R)$, then $\Gamma \circ \mathbf{J}(g)=g$.
(3) $I \subset \mathbf{J} \circ \boldsymbol{\Gamma}(I)$. Hence, if $\mathbf{J} \circ \boldsymbol{\Gamma}(I) \in \mathbf{I}_{S}^{l}(R)$ and $R \otimes_{s}$ - reflects isomorphisms, then $I=\mathbf{J} \cdot \boldsymbol{\Gamma}(I)$.

Proof. (1). This holds, since, if $x \in \mathbf{J}(g), y \in \mathbf{J}(h)$,

$$
\begin{aligned}
& d_{1}(x y)=d_{1}(x) y=g \circ d_{2}(x) y=g\left(d_{2}(x) y\right)= \\
& g\left(x d_{1}(y)\right)=g\left(x h \circ d_{2}(y)\right)=g \circ h\left(x d_{2}(y)\right)=g \circ h \circ d_{2}(x y) .
\end{aligned}
$$

(2). This follows from the following commutative diagram :

(3). Assume $\sum_{i} x_{i} \otimes y_{i} \in R \otimes_{S} I$ goes to $1 \in R$ through m. Then, for $a \in I$, $\sum_{i} a x_{i} \otimes y_{i}=1 \otimes a$ in $R \otimes_{S} I$, since both sides go to a through \mathbf{m}. This implies $I \subset \mathbf{J} \circ \boldsymbol{\Gamma}(I)$.
Q.E.D.

Proof of (2.2). Under (a) or (b), $R \otimes_{S}$ - reflects isomorphisms. Hence, by (2.7) we have only to show $\mathbf{J}(g) \in \mathbf{I}_{S}^{l}(R)$ for any $g \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$. This is shown in (2.4)-(2.5).
Q.E.D.

Symmetrically we have the anti-monoid map

$$
\begin{equation*}
\Gamma^{\prime}: \mathbf{I}_{S}^{r}(R) \longrightarrow \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right) \tag{2.8}
\end{equation*}
$$

defining $\Gamma^{\prime}(I), I \in \mathbf{I}_{S}^{r}(R)$, to be the composition

$$
R \otimes_{s} R \underset{i d \otimes \mathbf{m}^{-1}}{\sim} R \otimes_{s} I \otimes_{s} R \xrightarrow[\mathbf{m} \otimes i d]{ } R \otimes_{s} R .
$$

Let $S^{\circ} \subset R^{\circ}$ denote the opposite rings of $S \subset R$. By the natural idetification

$$
\mathbf{I}_{S}^{r}(R)=\mathbf{I}_{s o}^{l}\left(R^{0}\right), \quad R \otimes_{s} R=R^{0} \otimes_{s o} R^{\circ} \quad\left(x \otimes y \leftrightarrow y^{0} \otimes x^{0}\right),
$$

we can identify the Γ^{\prime}-map (2.8) with the Γ-map for $S^{\circ} \subset R^{\circ}$. Hence (2.2) yields the following:
2.9. Theorem. If either
(a) R is faithfully flat as a left S-module
or (b) S is a direct summand of R as an S-bimodule,
then $\Gamma^{\prime}: \mathbf{I}_{S}^{r}(R) \rightarrow \operatorname{End}_{R-c o r}\left(R \bigotimes_{S} R\right)$ is an anti-isomorphism.
The inverse \mathbf{J}^{\prime} is given by

$$
\mathbf{J}^{\prime}(g)=\{x \in R \mid x \otimes 1=g(1 \otimes x)\}\left(g \in \operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)\right) .
$$

The Γ-map (2.1) is restricted to the $\operatorname{group}_{\operatorname{map}} \operatorname{Inv}_{s}(R) \rightarrow \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)$, which is called Γ, too.
2.10. Theorem. If either
(a) R is faithfully flat as a right or left S-modnle
or (b) S is a direct summand of R as a right (resp. left) S-module and the
functor $-\otimes_{S} R$ (resp. $R \otimes_{S^{-}}$) reflects isomorphisms,
then $\boldsymbol{\Gamma}: \operatorname{Inv}_{S}(R) \rightarrow \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$ is an isomorphism and

$$
\mathbf{I}_{S}^{l}(R) \cap \mathbf{I}_{S}^{r}(R)=\operatorname{Inv}_{\mathcal{S}}(R)
$$

Proof. If $I \in \mathbf{I}_{S}^{l}(R) \cap \mathbf{I}_{S}^{r}(R), \Gamma(I) \in \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$. Hence, by (2.7) we have only to show $\mathbf{J}(g) \in \operatorname{Inv}_{S}(R)$ for any $g \in \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$. In case (a) this holds by (2.2) or (2.9). Concerning case (b), considering $S^{\circ} \subset R^{o}$, we have only to show the following :
2.11. Lemma. Assume S is a direct summand of R as a right S-module. Let $g \in \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)$. Then we have:
(1) $\mathbf{J}\left(i d_{R \otimes_{S} R}\right)=S$.
(2) $\mathbf{J}(g) \in \mathbf{I}_{S}^{r}(R)$.
(3) If $-\otimes_{S} R$ reflects isomorphisms, $\mathbf{J}(g) \in \operatorname{Inv}_{S}(R)$.

Proof. (1). Easy.
(2). This follows from the following commutative diagram with exact rows, the notation being the same as in (2.4).

Commutativity is verified easily. The lower row is exact by (1). Modifying the proof of (2.5) (1), we have that there exist π, ψ in \mathscr{M}_{s} satisfying (2.5.1), so the upper row is exact.
(3). If $-\otimes_{s} R$ reflects isomorphisms, by (2) and (2.7)(1) we have $\mathbf{J}(g) \mathbf{J}(h)$ $=\mathbf{J}(g h)$ for any $g, h \in \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)$. This, together with (1), implies (3).
Q.E.D.

§ 3. Applications.

Put $Z=R^{R}$, the center of R. The Miyashita action (see [3, p. 100] or [9, pp. 137-8])

$$
\operatorname{Inv}_{S}(R) \longrightarrow \operatorname{Aut}_{Z-\mathrm{alg}}\left(R^{S}\right)
$$

decomposes as follows:

$$
\begin{equation*}
\operatorname{Inv}_{S}(R) \underset{\Gamma}{\longrightarrow} \operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right) \underset{\kappa}{\longrightarrow} \operatorname{Aut}_{Z-\mathrm{alg}}\left(R^{S}\right) \tag{3.1}
\end{equation*}
$$

where κ is the anti-group map induced from the "clipping"

$$
\left(R \otimes_{S} R\right)^{S} \longrightarrow \operatorname{End}_{\mathscr{M}_{z}}\left(R^{S}\right), \quad \sum x_{i} \otimes y_{i} \longmapsto\left(a \mapsto \sum x_{i} a y_{j}\right) .
$$

By using (2.10) we can prove directly Corollary (6.24) in Doi and Takeuchi [1].
3.2. Corollary [1, (6.24)]. Assume that R is an Azumaya algebra over a commutative ring Z and that S is a subalgebra of R such that R is a progenerator as a left or right S-module. Then, the Miyashita action $\operatorname{Inv}_{s}(R) \rightarrow \operatorname{Aut}_{z-\mathrm{alg}}\left(R^{S}\right)$ is an anti-isomorphism of groups.

Proof. By symmetry we may assume that ${ }_{s} R$ is a progenerator. Condition (a) in (2.10) being satisfied, Γ in (3.1) is bijective, and so is κ, as will be shown soon. It is easy to see that $R^{s} \otimes_{z} R \cong \operatorname{End}_{S} \mathscr{M}_{(}(R)$. Applying $\mathscr{M}_{R}(-, R)$ to this isomorphism, we have $R \bigotimes_{s} R \cong \mathscr{M}_{z}\left(R^{s}, R\right)$, so

$$
\begin{aligned}
R \otimes_{s} R \otimes_{s} R & \cong \mathscr{M}_{z}\left(R^{s}, R\right) \otimes_{s} R=\mathscr{M}_{z}\left(R^{s}, R \otimes_{s} R\right) \\
& \cong \mathscr{M}_{Z}\left(R^{s}, \mathscr{M}_{z}\left(R^{s}, R\right)\right)=\mathscr{M}_{z}\left(R^{s} \otimes_{z} R^{s}, R\right)
\end{aligned}
$$

Taking ($)^{s}$, we have

$$
\begin{gathered}
\left(R \otimes_{S} R\right)^{S} \cong \operatorname{End}_{\mathscr{H}_{Z}}\left(R^{s}\right), \quad\left(R \otimes_{S} R \otimes_{S} R\right)^{S} \cong \mathscr{M}_{Z}\left(R^{s} \otimes_{z} R^{s}, R^{s}\right) \\
\text { and consequently } \quad \operatorname{End}_{R-c o r}\left(R \otimes_{s} R\right) \cong \operatorname{End}_{z-\operatorname{alg}_{g}}\left(R^{s}\right)
\end{gathered}
$$

through the "clipping" maps. Therefore κ is bijective. This completes the proof.
Q.E.D.

From now on, we assume that $S \subset$ the center of R. Hence S is commutative, and R and $R \bigotimes_{S} R$ are S-algebras.
3.3. Lemma. Any $g \in \operatorname{Gr}\left(R \otimes_{s} R\right)$ is invertible in $R \otimes_{s} R$.

Proof. Let g^{-}be the image of g under the twist map $x \otimes y \mapsto y \otimes x, R \otimes_{s} R$ $\rightarrow R \otimes_{s} R$. Then g^{-}is the inverse of g in $R \otimes_{s} R$, since

$$
g g^{-}=d_{2} \circ \mathbf{m}(g)=1 \otimes 1=d_{1} \circ \mathbf{m}(g)=g^{-} g
$$

Lemma does not assert $\operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{s} R\right)=\operatorname{Aut}_{R-c o r}\left(R \otimes_{S} R\right)$, since the usual product in $\operatorname{Gr}\left(R \otimes_{S} R\right)$ comes from that in $R^{\circ} \otimes_{S} R$ (1.3), By (3.3) or (2.2), it holds that

$$
\operatorname{End}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)=\operatorname{Aut}_{R-\operatorname{cor}}\left(R \otimes_{S} R\right)
$$

if one of the following holds:
(1) there exists an S-algebra anti-automorphism of R,
(2) R is finitely generated projective as an S-module,
(3) $S=k$ is a field and (\#) $R^{n} \cong R^{m}$ in ${ }_{R} \mathscr{M}$ (or in \mathscr{M}_{R}) for any $n, m \in \mathbf{N}$
implies $n=m$,
where R^{n} denotes the direct sum of n copies of R. In particular, if (3) holds, then by Proposition (1.1)

$$
\operatorname{Gr}\left(R \otimes_{k} R\right)=\left\{u^{-1} \otimes u \in R \otimes_{k} R \mid u \in U(R)\right\} .
$$

If R is left (or, respectively, right) Artinian, it satisfies condition (\#) (cf. [8, p. 460]).

Here we can prove the following theorem announced in [2] without proof. A bialgebra H over a field k is called a Galois bialgebra of an algebra R, if (R, ρ) is a right H-comodule algebra and if the β-map

$$
\beta: R \otimes_{k} R \longrightarrow R \otimes_{k} H, \quad \beta(x \otimes y)=(x \otimes 1) \rho(y)
$$

is bijective.
3.4. Theorem. Assume that a cocommutative bialgebra (H, Δ, ε) over a field k is a Galois bialgebra of such an algebra R that satisfies condition (\#). Then H is necessarily a Hopf algebra, i.e., it has the antipode.

Proof. The cocommutative bialgebra H has the antipode iff the monoid $\operatorname{Gr}_{L}\left(L \otimes_{k} H\right)$ of group-likes in $L \bigotimes_{k} H$ is a group for any finite extension L / k of fields. Since $L \bigotimes_{k} H$ is Galois bialgebra of $L \otimes_{k} R$ which satisfies condition (\#), it is sufficient to see that $\operatorname{Gr}(H)$ is a group.

View $R \otimes_{k} H \in_{R} \mathscr{M}_{R}$ via $x \cdot(a \otimes h) \cdot y=(x a \otimes h) \rho(y)$ for $x, y \in R, a \otimes h \in R \bigotimes_{k} H$. As is verified easily, $R \bigotimes_{k} H$ is an R-coring with the structure

and the β-map is an isomorphism of R-corings.
Let $g \in \operatorname{Gr}(H)$. Since $1 \otimes g \in R \otimes_{k} H$ is a group-like, there exists $u \in U(R)$ such that $\beta\left(u^{-1} \otimes u\right)=1 \otimes g$ by assumption on R, so $\rho(u)=u \otimes g$. Hence g should be invertible and $\rho\left(u^{-1}\right)=u^{-1} \otimes g^{-1}$. This completes the proof.
Q. E.D.

Acknowledgement

I thank Professor M. Takeuchi who taught me an elegant proof of the faithfully flat descent theorem.

References

[1] Doi, Y. and Takeuchi, M., Hopf-Galois extensions of algebras, the MiyashitaUlbrich action, and Azumaya algebras, J. Algebra, 121 (1989), 488-516.
[2] Masuoka, A., Cogalois theory for field extensions, to appear in J. Math. Soc. Japan.
[3] Miyashita, Y., On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1970), 97-121.
[4] Miyashita, Y., An exact sequence associated with a generalized crossed product, Nagoya Math. J., 49 (1973), 21-51.
[5] Sweedler, M., Hopf algebras, Benjamin, New York, 1969.
[6] Sweedler, M., The predual theorem to the Jacobson-Brourbaki theorem, Trans. Amer. Math. Soc., 213 (1975), 391-406.
[7] Sweedler, M., Groups of simple algebras, I. H.E.S. Publ., 44 (1975), 79-189.
[8] Takeuchi, M., Relative Hopf modules-equivalences and freeness criteria, J. Algebra, 60 (1979), 452-471.
[9] Ulbrich, K.-H., Vollgraduierte Algebren, Abh. Math. Sem. U. Hamburg, 51 (1981), 136-148.
[10] Waterhouse, W., Introduction to affine group schemes, GTM 66, Springer-Verlag, 1979.

Akira Masuoka
Institute of Mathematics
University of Tsukuba
Tsukuba-city, Ibaraki 305
Japan

[^0]: Received May 9, 1988.

